A Putative RNA-Binding Protein Positively Regulates Salicylic Acid–Mediated Immunity in Arabidopsis

Yiping Qi,1 Kenichi Tsuda,1 Anna Joe,2,3 Masanao Sato,1 Le V. Nguyen,1 Jane Glazebrook,1 James R. Alfano,2 Jerry D. Cohen,4 and Fumiaki Katagiri1

1Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, St. Paul 55108, U.S.A.; 2Center for Plant Science Innovation and Department of Plant Pathology and 3Center for Plant Science Innovation and School of Biological Sciences, University of Nebraska, Lincoln 68588, U.S.A.; and 4Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, 55108, U.S.A.

Submitted 9 May 2010. Accepted 2 July 2010.

RNA-binding proteins (RBP) can control gene expression at both transcriptional and post-transcriptional levels. Plants respond to pathogen infection with rapid reprogramming of gene expression. However, little is known about how plant RBP function in plant immunity. Here, we describe the involvement of an RBP, Arabidopsis thaliana RNA-binding protein-defense related 1 (AtRBP-DR1; At4g03110), in resistance to the pathogen Pseudomonas syringae pv. tomato DC3000. AtRBP-DR1 loss-of-function mutants showed enhanced susceptibility to P. syringae pv. tomato DC3000. Overexpression of AtRBP-DR1 led to enhanced resistance to P. syringae pv. tomato DC3000 strains and dwarfism. The hypersensitive response triggered by P. syringae pv. tomato DC3000 avrRpt2 was compromised in the Atrbp-dr1 mutant and enhanced in the AtRBP-DR1 overexpression line at early time points. AtRBP-DR1 overexpression lines showed higher mRNA levels of SID2 and PRI, which are salicylic acid (SA) inducible, as well as spontaneous cell death in mature leaves. Consistent with these observations, the SA level was low in the Atrbp-dr1 mutant but high in the overexpression line. The SA-related phenotype in the overexpression line was fully dependent on SID2. Thus, AtRBP-DR1 is a positive regulator of SA-mediated immunity, possibly acting on SA signaling-related genes at a post-transcriptional level.

Plants have evolved inducible immunity against a variety of pathogens. One mode of inducible immunity is triggered by microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs), which are recognized by pattern recognition receptors (PRR) (Ausubel 2005; Jones and Dangl 2006). For example, a conserved 22-amino-acid fragment (flg22) of bacterial flagellin can be recognized by the FLS2 PRR to activate immune responses (Gomez-Gomez and Boller 2000; Zipfel et al. 2004). The disease resistance triggered in this manner is called PAMP-triggered immunity (PTI) (Jones and Dangl 2006). Pathogens well adapted to particular plant hosts deliver effectors that can interfere with PTI. Plants can activate another mode of immunity triggered upon perception of pathogen effector proteins by plant disease resistance (R) proteins. For example, the Arabidopsis R protein RPS2 recognizes the bacterial effector AvrRpt2 to trigger immunity (Bent et al. 1994; Mindrinos et al. 1994). The immunity triggered in this way is called effector-triggered immunity (ETI) (Jones and Dangl 2006).

Both PTI and ETI use the salicylic acid (SA) pathway to defend against biotrophic and hemibiotrophic pathogens, such as Pseudomonas syringae (Shah 2003; Glazebrook 2005; Tsuda et al. 2008, 2009). Many genes involved in SA signaling have been identified. For example, the SID2 gene encodes the SA biosynthesis enzyme isochorismate synthase (Wildermuth et al. 2001) and the NPR1 gene encodes an important positive regulator of SA responses (Cao et al. 1997; Mou et al. 2003). Activation of the SA pathway leads to high expression of many genes, including pathogenesis-related 1 (PR1), which is thus a good marker gene for activation of this pathway. However, successful biotrophic and hemibiotrophic pathogens have evolved mechanisms to antagonize SA-mediated immunity. For example, some P. syringae strains secrete the phytoalexin coronatine, which is a structural mimic of the jasmonic acid (JA)–isoleucine conjugate, the active form of the plant hormone JA (Bender et al. 1999; Thines et al. 2007). The pathogens seem to use coronatine to suppress the SA pathway (Zhao et al. 2003; Uppalapati et al. 2005; Thilmony et al. 2006) based on the inhibitory effect of the JA pathway on the SA pathway (Schenk et al. 2000; Glazebrook et al. 2003). Also, effectors produced by P. syringae, such as HopM1, AvrE, and HopI1, have been shown to suppress SA signaling in plants (DebRoy et al. 2004; Jelenska et al. 2007).

Gene expression is controlled at both transcriptional and post-transcriptional levels. RNA-binding proteins (RBP) are involved in multiple post-transcriptional processes. After protein-coding genes are transcribed into pre-mRNA by RNA polymerase II, processing and modification steps, such as splicing, are required to produce functional mRNA that is ready for export from the nucleus to the cytoplasm (Lorkovic 2009). The cytoplasmic mRNAs can be translated or degraded (Lorkovic 2009). RBP can regulate all of these processes. For example, approximately 30% of Arabidopsis genes are thought to be alternatively spliced, and RBP, such as serine/arginine-rich (SR) proteins, are involved in selection of splice sites and recruitment of the splicing machinery to selected splice sites (Reddy 2007). Plant RBP are characterized by the presence of RNA-binding domains, such as the RNA recognition motif.
(RRM) or the K-homology (KH) domain (Lorkovic 2009). The Arabidopsis genome contains more than 200 putative RBP genes, and some of them have been shown to be involved in abiotic stress responses and flowering (Lorkovic and Barta 2002; Kim et al. 2005; Kim et al. 2007, 2008; Lorkovic 2009).

A large percentage of genes in the plant genome respond transcriptionally to pathogen attack (Tao et al. 2003; Thilmony et al. 2006). In addition to reprogramming of transcription, post-transcriptional regulation also plays a role in the plant immune response. For example, alternatively spliced transcript forms of both N and RPS4 R genes are required for their full function (Dinesh-Kumar and Baker 2000; Zhang and Gassmann 2003). A glycine-rich RBP family member, GRP7, was shown to be involved in the plant immune response (Fu et al. 2007). GRP7 is required for defense against P. syringae pathogens and is targeted by the effector HopU1 for mono-ADP-ribosylation (Fu et al. 2007). In addition, GRP7 is involved in many other biological processes, such as seed germination (Kim et al. 2008), cold response (Kim et al. 2008), stomata opening and closing (Kim et al. 2008), circadian rhythm (Staiger et al. 2003; Schoning et al. 2007), and flowering (Streitner et al. 2008). Discovery of RNA-binding proteins involved in plant immunity will contribute to our understanding of post-transcriptional regulation in plant responses to pathogens.

Here, we report the functional characterization of a putative RBP that affects plant immunity. It contains three RRM motifs and was named AtRBP-defense related 1 (AtRBP-DR1). Loss-of-function mutants of AtRBP-DR1 were more susceptible to P. syringae pv. tomato DC3000 compared with wild-type plants, whereas AtRBP-DR1 overexpression lines were more resistant. Also, the Atrbp-dr1 mutant accumulated less SA. Overexpression of AtRBP-DR1 constitutively activated the SA pathway in a SID2-dependent manner. Thus, AtRBP-DR1 affects SA-mediated immunity to hemibiotrophic pathogens.

RESULTS AND DISCUSSION

AtRBP-DR1 mutants are compromised in resistance to P. syringae pv. tomato DC3000.

In our previous work, we used co-immunoprecipitation followed by mass spectrometry to identify proteins making complexes with RPS2 using relatively stringent criteria (Qi and Katagiri 2009). We applied relaxed criteria to identify more putative RPS2-complex component proteins for further study, including AtRBP-DR1 (At4g03110) (Supplementary Fig. 1) (Qi and Katagiri, 2009).

AtRBP-DR1 contains three RRM, with two close to the N terminus and one close to the C terminus (Fig. 1A). The presence of more than one RRM (as in AtRBP-DR1) is thought to enhance RNA binding affinity and specificity (Clery et al. 2008). Two A. thaliana T-DNA lines with insertions in AtRBP-DR1 (SALK_041205 and SALK_141510) were obtained from the Arabidopsis Biological Resource Center. According to the Arabidopsis Information Resource (Swarbreck et al. 2008), SALK_041205 has a T-DNA insertion in the second exon, while SALK_141510 has a T-DNA insertion in the second intron of AtRBP-DR1 (Fig. 1B). The AtRBP-DR1 transcript was not detected in either mutant using reverse-transcription polymerase chain reaction (RT-PCR) but it was in wild-type plants (Fig. 1B), indicating that both T-DNA insertions abolished mRNA accumulation. Thus, both SALK_041205 and SALK_141510 are null alleles of AtRBP-DR1. They were named Atrbp-dr1-1 and Atrbp-dr1-2, respectively.

The Atrbp-dr1 mutants were used to test for a role of AtRBP-DR1 in disease resistance. Growth of P. syringae pv. tomato DC3000 strains carrying an empty vector or constructs encoding AvrRpm1 or AvrRpt2 in the Atrbp-dr1 mutants was compared with that in wild-type plants. Inclusion of strains expressing AvrRpm1 and AvrRpt2 allowed us to determine the extent to which ETI was affected in Atrbp-dr1 mutants. Both Atrbp-dr1-1 and Atrbp-dr1-2 mutants allowed significantly more growth of P. syringae pv. tomato DC3000 than wild-type plants, with a difference of approximately 0.3 log₂ units (Fig. 1C). Similar bacterial growth differences were observed with P. syringae pv. tomato DC3000 avrRpm1 (Fig. 1D) and avrRpt2 (Fig. 1E), indicating that the mutations reduce the basal resistance level but do not have a significant effect on ETI. The small effect of the mutations on bacterial growth may be due to existence of a gene that is partially functionally redundant. The closest homolog of AtRBP-DR1, At1g03457, shares 67% amino acid identity. Because both mutant alleles showed essentially the same phenotype, the observed phenotype is most certainly caused by the mutations in AtRBP-DR1 and not by incidental mutations in other genes.

To further confirm that the observed phenotype was caused by the mutations, complementation of the mutant phenotype with the wild-type transgene was attempted. The genomic sequence of AtRBP-DR1 (without the stop codon) containing approximately 1.5 kb upstream (as the promoter) was cloned into the Gateway binary vector pEG303 (Earley et al. 2006) to fuse the Myc epitope tag to the C-terminus of AtRBP-DR1. The resulting construct was used to transform Atrbp-dr1-1 mutant plants. T1 plants were first selected for BASTA resistance and then screened for AtRBP-DR1::Myc expression with immunoblots using anti-Myc antibody. Transgenic plants with detectable protein levels were retained. Among their progeny, T2 plants of two independent transgenic lines, AtRBP-DR1::Myc-1 and AtRBP-DR1::Myc-8, were used to test for complementation of the P. syringae pv. tomato DC3000 avrRpt2 growth phenotype. Both transgenic lines were able to complement the mutant phenotype (Supplementary Fig. 2). Moreover, AtRBP-DR1::Myc-8 T2 plants were more resistant than wild-type plants. The results suggest not only that the AtRBP-DR1::Myc transgene was functional and complemented the mutant phenotype but also that overexpression of AtRBP-DR1 may enhance disease resistance to P. syringae pv. tomato DC3000.

AtRBP-DR1 overexpression enhances resistance to P. syringae pv. tomato DC3000 and leads to dwarfism.

To confirm that the chosen complementation lines had enhanced resistance against P. syringae pv. tomato DC3000 strains, T3 plants homozygous for the transgenes were obtained from lines AtRBP-DR1::Myc-1 and AtRBP-DR1::Myc-8. The bacterial growth assay with P. syringae pv. tomato DC3000 strains was performed to compare these two transgenic lines with wild-type plants. Indeed, significant reduction of bacterial growth in both transgenic lines compared with wild-type plants was observed (Fig. 2A and B). Furthermore, both AtRBP-DR1::Myc-1 and AtRBP-DR1::Myc-8 plants were smaller than wild-type plants and the Atrbp-dr1-1 mutant (Fig. 2C). Both the enhanced resistance and the morphological phenotype may be due to the AtRBP-DR1::Myc expression levels.

To test this hypothesis, constructs for expressing Myc::AtRBP-DR1 and AtRBP-DR1::YFP::HA under the control of the constitutive Cauliflower mosaic virus (CaMV) 35S promoter were made and used to transform Atrbp-dr1-1 mutants. T1 transgenic plants of various sizes ranging from very small to normal were observed. For each construct, one dwarf plant and one plant of relatively normal size were chosen to obtain T3 plants for further study (Fig. 2C). Immunoblot analysis with both anti-Myc and anti-hemagglutinin (HA) antibodies confirmed that the severity of dwarfism was correlated with protein levels of AtRBP-DR1 (Fig. 2D). Thus, we conclude that overexpression
of *AtRBP-DR1* enhances disease resistance to *P. syringae pv. tomato* DC3000 strains and leads to dwarfism.

AtRBP-DR1 overexpression activates the SA pathway.

It is known that SA signaling plays a major role in defense against biotrophic or hemibiotrophic pathogens such as *P. syringae pv. tomato* DC3000 (Shah 2003; Glazebrook 2005). Also, dwarf plant phenotypes can result from elevated SA levels, as found in *Arabidopsis cpr* (Clarke et al. 2000) and *dnd* (Clough et al. 2000; Jurkowski et al. 2004) mutants. It is conceivable that overexpression of *AtRBP-DR1* activates the SA pathway and, thus, leads to dwarf plants. To examine this possibility, we conducted quantitative (q)RT-PCR to monitor the mRNA levels of *AtRBP-DR1* and two SA marker genes, *SID2* and *PR1*, in the eight lines shown in Figure 2C. All four transgenic lines expressing *AtRBP-DR1* from the 35S promoter showed significantly higher *AtRBP-DR1* mRNA levels than wild-type plants (Fig. 3A). The mRNA levels of *SID2* and *PR-1* were high in most *AtRBP-DR1* transgenic lines (Fig. 3B and C). The mRNA level of *PR-1* was significantly higher in both *AtRBP-DR1::Myc-1* and *AtRBP-DR1::Myc-8* lines than in wild-type plants (Fig. 3C), which is consistent with the observed enhanced resistance to *P. syringae pv. tomato* DC3000 in these two lines. Importantly, the expression levels of *AtRBP-DR1*, *SID2*, and *PR1* in all eight lines were positively correlated (Fig. 3D). Collectively, these results suggest that *AtRBP-DR1* has a positive effect on SA signaling.

To further test *AtRBP-DR1*'s role in the SA pathway, we measured SA in *Atrbp-dr1-1*, an *AtRBP-DR1::Myc-1* overexpression line, and wild-type plants after treatment with PTI-inducers (flg22 and the *P. syringae pv. tomato* DC3000 hrcC mutant) or *P. syringae pv. tomato* DC3000 avrRpt2. *P. syringae pv. tomato* DC3000 hrcC does not have a functional type III secretion system to deliver effector proteins into plant cells (Deng et al. 1998) and, thus, can only trigger PTI. In mock-treated plants, *AtRBP-DR1::Myc-1* had a higher level of SA while the mutant had a lower level compared with the wild type (Fig. 3E). Flg22, *P. syringae pv. tomato* DC3000 hrcC, and *P. syringae pv. tomato* DC3000 avrRpt2 treatments induced a dramatic increase of SA in both the mutant and wild-

Fig. 1. Resistance to *Pseudomonas syringae pv. tomato* DC3000 is compromised in *AtRBP-DR1* mutants. **A**, *AtRBP-DR1* protein has three RNA recognition motifs (RRM). The RRM were identified by scanning the protein sequence using ScanProsite and their relative positions in the protein are depicted. **B**, T-DNA insertion mutants of *AtRBP-DR1* appear to be null. The upper panel depicts a schematic representation of *AtRBP-DR1* (*At4g03110*), with exons shown as black boxes. The T-DNA insertion sites are indicated by arrows. The positions of a pair of primers (F2 and R1), with which reverse-transcription polymerase chain reaction (RT-PCR) was performed to detect *AtRBP-DR1* transcript, are also shown. The lower panels show the RT-PCR results. The left panel shows detection of *AtRBP-DR1* transcript in the two *AtRBP-DR1* mutants and the wild type (Col). The right panel shows amplification of *Actin2* transcript as a control. **C**, *Atrbp-dr1* mutants were susceptible to *P. syringae pv. tomato* DC3000 pLAFR. Leaves of 5-week-old wild-type (Col) and *Atrbp-dr1* mutant plants were inoculated with *P. syringae pv. tomato* DC3000 pLAFR at a dose of 2 × 10^5 CFU/ml. The bacterial counts were measured at 0 and 2 days post-inoculation (dpi). Data were collected in three independent experiments and analyzed using a mixed linear model. Bars represent the mean values with the standard errors. Significant differences between *Atrbp-dr1* mutants and Col are indicated by asterisks for *P* < 0.005. **D** and **E**, Experiments were conducted and results were analyzed similarly to **C**, except that the bacterial strains were **D**, *P. syringae pv. tomato* DC3000 avrRpm1 and **E**, *P. syringae pv. tomato* DC3000 avrRpt2.
type plants but not in the *AtRBP-DR1* overexpression line, likely due to the preexisting high SA levels in this line (Fig. 3E). These data indicate that AtRBP-DR1 has a positive effect on SA accumulation.

We also noticed that there was sporadic cell death in old rosette leaves of *AtRBP-DR1* overexpression lines, such as *AtRBP-DR1::Myc-1* and *AtRBP-DR1::Myc-8* (Fig. 3F). The dead cells were evident when the leaves were stained with trypan blue (Fig. 3F). Such a cell death or lesion-mimic phenotype is very likely due to constitutive activation of SA signaling in these plants.

Activation of the SA pathway by *AtRBP-DR1* overexpression is dependent on *SID2*.

The *SID2* gene encodes an isochorismate synthase, which is required for producing SA during immune responses (Wildermuth et al. 2001). To examine whether the SA in the *AtRBP-DR1* overexpression lines is made using this pathway, we introduced a *sid2* mutation into the overexpression line *AtRBP-DR1::Myc-8*. In the F2 generation, *AtRBP-DR1::Myc-8* *SID2* plants showed dwarfism and spontaneous cell death, indicating accumulation of a higher level of SA (Fig. 4A). However, *AtRBP-DR1::Myc-8 sid2* plants were morphologically indistinguishable from wild-type Col and the *sid2* mutant, suggesting that the dwarfism and spontaneous cell death of the *AtRBP-DR1* overexpression plants were suppressed by the *sid2* mutation. Thus, the *AtRBP-DR1* overexpression phenotype was *SID2* dependent. Next, we performed qRT-PCR to examine the level of *SID2* dependence by measuring *PR1* mRNA accumulation in wild-type, *sid2*, *AtRBP-DR1::Myc-8* *SID2*, and *AtRBP-DR1::Myc-8 sid2* plants. The mRNA levels of *AtRBP-DR1::Myc* were comparable in *AtRBP-DR1::Myc-8* *SID2* and *AtRBP-DR1::Myc-8 sid2* plants (Fig. 4B), which indicates that the *sid2* mutation does not affect *AtRBP-DR1::Myc* expression. As expected, *AtRBP-DR1::Myc-8* *SID2* plants had a higher level of *PR1* expression than the wild type (Fig. 4C). In contrast, *AtRBP-DR1::Myc-8 sid2* plants showed a *PR1* mRNA level which was as low as in *sid2* (Fig. 4C). The morphological phenotype and *PR1* mRNA accumulation data suggest that activation of the SA pathway in *AtRBP-DR1* overexpression plants is fully dependent on *SID2*.

AtRBP-DR1 is involved in the hypersensitive response triggered by *P. syringae pv. tomato* DC3000 avrRpt2.

One characteristic response in ETI is the hypersensitive response (HR), which is evident when plants are challenged with high inocula of bacteria carrying effector genes that induce ETI. Electrolyte leakage can be used to measure the HR quantitatively (Heath 2000). To test whether *AtRBP-DR1* is involved in the HR induced by *P. syringae pv. tomato* DC3000 *avrRpt2* or *avrRpm1*, we conducted an electrolyte leakage assay over a time course with the wild-type, an *Atrbp-dr1-1* mutant, and an *AtRBP-DR1::Myc-1* overexpression line. *Atrbp-dr1-1* showed slower electrolyte leakage compared with the wild type while *AtRBP-DR1::Myc-1* showed faster electrolyte leakage at early time points, when they were challenged with *P. syringae pv. DC3000*.
Fig. 3. *AtRBP-DR1* overexpression upregulates the salicylic acid (SA) pathway. mRNA levels of the A, *AtRBP-DR1*; B, *SID2* (*At1g74710*); and C, *PR-1* (*At2g14610*) genes in Col, *Atrbp-dr1-1*, and six *AtRBP-DR1* overexpression lines in the *Atrbp-dr1-1* background, determined by quantitative reverse-transcription polymerase chain reaction. The vertical axis represents the log2-transformed mRNA level relative to *Actin2*. Data were collected in two independent experiments and analyzed by a mixed linear model. Bars represent the mean values with the standard errors. A and C, Overexpression lines showing significantly higher expression levels than Col were indicated for *P* < 0.05 (*) or <0.005 (**). B, Overexpression lines showing significantly higher expression levels than *Atrbp-dr1-1* were indicated for *P* < 0.1. D, The *AtRBP-DR1*, *SID2*, and *PR-1* mRNA levels are well correlated across the plant lines. The pairwise Pearson correlation coefficients of the mRNA levels and their associated *P* values are shown. E, SA level is lower in the mutant and higher in the overexpression lines. Mock (water), 1 µM flg22, *Pseudomonas syringae* pv. *tomato* DC3000 hrcC (1 × 10^8 CFU/ml), or *P. syringae* pv. *tomato* DC3000 *avrRpt2* (2 × 10^7 CFU/ml) were infiltrated into 5-week-old Col (gray bars), *AtRBP-DR1::Myc-1* (blue bars), or *Atrbp-dr1-1* (black bars) leaves. The free SA levels at 9 h postinoculation (hpi) are shown on a log10 scale. Bars represent means and standard errors of two biological replicates calculated by a mixed linear model. Statistically significantly higher or lower SA levels in *AtRBP-DR1::Myc-1* or *Atrbp-dr1-1* plants compared with Col are indicated (*, *P* < 0.05). F, Photograph of representative 6-week-old rosette leaves of Col, *Atrbp-dr1-1*, *AtRBP-DR1::Myc-1*, and *AtRBP-DR1::Myc-8* (upper panel) and a photograph of leaves of the same genotypes after trypan blue staining (lower panel).
tomato DC3000 avrRpt2 (Fig. 5A; Supplementary Figs. 3 and 4). However, no differences were observed among Col, Atrbp-dr1-1, and AtRBP-DR1::Myc-1 plants challenged with P. syringae pv. tomato DC3000 avrRpm1 (Fig. 5B). These data suggest that AtRBP-DR1 is involved in HR triggered by P. syringae pv. tomato DC3000 avrRpt2 but not by DC3000 avrRpm1 under our experimental conditions.

It was reported that SA can potentiate the HR triggered by an avirulent pathogen (Shirasu et al. 1997). Thus, the observed slower HR in the Atrbp-dr1 mutant and faster HR in the AtRBP-DR1 overexpression line when both were challenged with P. syringae pv. tomato DC3000 avrRpt2 can be explained by the differences in their endogenous SA levels. Arabidopsis NahG plants express the bacterial enzyme salicylate hydroxylase and do not accumulate SA (Delaney et al. 1994). The RPS2-mediated response but not the RPM1-mediated response was greatly suppressed in NahG plants (Tao et al. 2003). In this study, we did not see differences in HR triggered by P. syringae pv. tomato DC3000 avrRpm1 in either the Atrbp-dr1 mutant or the AtRBP-DR1 overexpression line compared with the wild type, supporting the idea that the RPM1-mediated response is less SA dependent than the RPS2-mediated response.

Fig. 4. AtRBP-DR1 overexpression phenotype is dependent on SID2. A, Photograph of representative rosette leaves of 6-week-old Col, sid2, AtRBP-DR1::Myc-8 SID2, and AtRBP-DR1::Myc-8 sid2. mRNA levels of B, AtRBP-DR1 and C, PR-1 in leaves of 6-week-old plants of the indicated genotypes were measured by quantitative reverse-transcription polymerase chain reaction. Vertical axis represents the log2-transformed mRNA level relative to Actin2. Data were collected from two biological replicates of Col and sid2 and five biological replicates of AtRBP-DR1::Myc-8 SID2 and AtRBP-DR1::Myc-8 sid2. Bars represent means and standard errors calculated by a mixed linear model. Significant differences are indicated by different letters, with \(P < 0.05 \).

Fig. 5. AtRBP-DR1 is involved in the hypersensitive response (HR) triggered by Pseudomonas syringae pv. tomato DC3000 avrRpt2. Ion leakage from leaves of 5-week-old Atrbp-dr1-1, AtRBP-DR1::Myc-1, Col, and either A, rps2-101C or B, rpm1-3 after inoculation with P. syringae pv. tomato DC3000 A, avrRpt2 or B, avrRpm1 at a dose of \(2 \times 10^8 \) CFU/ml. Ion leakage was measured every 2 h from 2 to 12 h postinoculation (hpi) and also at 24 and 32 hpi. Data were collected in two independent experiments (with three replicates for each sample per experiment), log10-transformed, and analyzed with a mixed linear model after fitting a fourth-order polynomial linear model to the time course of each plant. The figure only shows the electrolyte leakage in the early time course, from 2 to 12 h postinoculation.
AtRBP-DR1 protein seems to be localized in the cytoplasm.

To learn more about the function of AtRBP-DR1 protein, we examined its localization in *Arabidopsis* rosette leaves. Confocal microscopy on multiple AtRBP-DR1::YFP::HA transgenic lines was conducted. Consistent with the overexpression phenotype described above, a stronger YFP signal was detected in smaller transgenic plants, in which the fusion protein was expressed at higher levels (Supplementary Fig. 5). AtRBP-DR1::YFP::HA protein seemed to localize in the cytoplasm, particularly in the guard cells (Fig. 6A), although we cannot exclude the possibility that it also localized in the nucleus.

To confirm the cytosolic localization, lysates of AtRBP-DR1::Myc-8 transgenic plants were subjected to subcellular fractionation into microsomal and soluble fractions. HSC70 isoforms were used as a soluble protein marker while RN14 was used as a microsomal protein marker (Mackey et al. 2002). Differential detection of these proteins in the fractions indicate that the fractionation was successful (Fig. 6B). We found that AtRBP-DR1::Myc was present mainly in the soluble fraction (Fig. 6B), which confirmed the cytosolic localization of AtRBP-DR1 as found by confocal microscopy.

Some RBP can shuttle between the cytoplasm and the nucleus (Kessler et al. 1997) or reorganize within the nucleus in response to certain treatments, such as abscissic acid (Li et al. 2002; Ng et al. 2004). Therefore, we examined the possibility that AtRBP-DR1 localization may change after pathogen challenge. AtRBP-DR1::YFP::HA-7 transgenic plants were only slightly smaller than Col plants but the YFP signal was still detectable in this transgenic line. The leaves of the transgenic plants were inoculated with water (mock), *P. syringae* pv. *tomato* DC3000, or *P. syringae* pv. *tomato* DC3000 hrcC mutant. One day later, the AtRBP-DR1::YFP::HA protein localization was examined in inoculated leaves. The localization of AtRBP-DR1::YFP::HA under the three treatments was similar (Supplementary Fig. 6). Thus, AtRBP-DR1 did not appear to relocalize at the subcellular level upon *P. syringae* pv. *tomato* DC3000 challenge. However, we cannot exclude the possibility that AtRBP-DR1 may relocalize at other time points.

Unlike RPS2, which is a PM protein (Axtell and Staskawicz 2002; Ng et al. 2004), we examined the possibility that AtRBP-DR1 localization may change after pathogen challenge. AtRBP-DR1::YFP::HA-7 transgenic plants were only slightly smaller than Col plants but the YFP signal was still detectable in this transgenic line. The leaves of the transgenic plants were inoculated with water (mock), *P. syringae* pv. *tomato* DC3000, or *P. syringae* pv. *tomato* DC3000 hrcC mutant. One day later, the AtRBP-DR1::YFP::HA protein localization was examined in inoculated leaves. The localization of AtRBP-DR1::YFP::HA under the three treatments was similar (Supplementary Fig. 6). Thus, AtRBP-DR1 did not appear to relocalize at the subcellular level upon *P. syringae* pv. *tomato* DC3000 challenge. However, we cannot exclude the possibility that AtRBP-DR1 may relocalize at other time points.

Unlike RPS2, which is a PM protein (Axtell and Staskawicz 2003), AtRBP-DR1 was found to be a cytosolic protein. AtRBP-DR1 was identified as a candidate RPS2-complex component only after application of very relaxed criteria. We have not been able to demonstrate formation of an in vivo protein complex containing both RPS2 and AtRBP-DR1 by any other methods (not shown). Considering these facts, it is unlikely that AtRBP-DR1 and RPS2 truly form a complex.

The cytosolic localization suggests that AtRBP-DR1 may relocalize at other time points. In planta, SA-mediated immunity plays a major role in the defense against biotrophic or hemibiotrophic pathogens, such as *P. syringae* pv. *tomato* DC3000. In this study, we demonstrated a role of the putative RNA-binding protein AtRBP-DR1 in this immunity. Our data suggest that AtRBP-DR1 positively contributes to resistance against *P. syringae* pv. *tomato* DC3000, through raising SA levels in a *SID2*-dependent manner. In the future, testing for RNA-binding activity and identification of the binding targets of AtRBP-DR1 will help us further elucidate the function of AtRBP-DR1.

Regulation of the AtRBP-DR1 mRNA level.

Because AtRBP-DR1 contributes to resistance to DC3000 strains by positively regulating the SA pathway, the extent to which pathogen infection altered AtRBP-DR1 mRNA levels was examined. It has been shown that SA-related defense responses are activated in flg22-induced and *P. syringae* pv. *tomato* DC3000 hrcC-induced PTI (Tsuda et al. 2008). No clear change in the AtRBP-DR1 mRNA level upon treatment with MAMPs (flg22 and *P. syringae* pv. *tomato* DC3000 hrcC) was observed at any of the three time points examined (Supplementary Fig. 8).

An effect of externally applied SA on the AtRBP-DR1 mRNA level was also tested. Liquid-cultured wild-type seedlings were treated by adding 0.5 mM SA to the medium, and mRNA levels of AtRBP-DR1 and *PR-1* were measured by qRT-PCR 3 h later. Because it is SA responsive, *PR-1* transcript showed a dramatic increase (more than 16-fold) 3 h after SA treatment (Supplementary Fig. 9). However, no significant change in the AtRBP-DR1 mRNA level was observed at the same time point. Thus, AtRBP-DR1’s mRNA was not induced or suppressed under the tested MAMPs or SA treatment conditions.

Conclusion.

In planta, SA-mediated immunity plays a major role in the defense against biotrophic or hemibiotrophic pathogens, such as *P. syringae* pv. *tomato* DC3000. In this study, we demonstrated a role of the putative RNA-binding protein AtRBP-DR1 in this immunity. Our data suggest that AtRBP-DR1 positively contributes to resistance against *P. syringae* pv. *tomato* DC3000, through raising SA levels in a *SID2*-dependent manner. In the future, testing for RNA-binding activity and identification of the binding targets of AtRBP-DR1 will help us further elucidate the function of AtRBP-DR1.

MATERIALS AND METHODS

Plant ecotype and mutants.

All the plants used in this study had the genetic background of accession Col-0. Both AtRbp-dr1-1 (SALK_041205) and AtRbp-dr1-2 (SALK_141510) were T-DNA insertion mutants (Alonso et al. 2003). SALK_041205 was genotyped using the primers LBe, LP1, and RP1 and SALK_141510 was genotyped using primers LBe, LP2, and RP2 (Supplementary Table 1) (Sessions et al. 2002). Plant growth conditions were as described by Tsuda and associates (2008).

** Constructs and transgenic plants.**

The AtRBP-DR1 genomic sequence containing the 1.5 kb upstream from the start codon was PCR amplified with the primers At4g03110-pro-5 and At4g03110-3 (without stop) from Col-0 genomic DNA, cloned into pCR8/GW/TOPO (Invitrogen, San Diego, CA, U.S.A.), and then recombined into the Gateway destination vector pEG303 (Earley et al. 2006) to obtain pEG303-pAtRBP-DR1::AtRBP-DR1::Myc. *Agrobacterium tumefaciens* GV3101/pMP90 was transformed with pEG303-pAtRBP-DR1::AtRBP-DR1::Myc. The transformed *A. tumefaciens* strain was used to transform *Arabidopsis* plants using the floral dip method (Clough and Bent 1998). T1
transgenic plants were selected by spraying LIBERTY 200 SL herbicide (18.19% glufosinate ammonium; Bayer Cropscience, Kansas City, MO, U.S.A.) at a 1:2,000 dilution in water. T3 homozygous plants were selected in the same manner.

The genomic sequence of the AtRBP-DR1 coding sequence was PCR amplified with primers At4g03110-5 and At4g03110-3 (without stop) from Col-0 genomic DNA, cloned into pCR8/GW/TOPO (Invitrogen), and then recombined into the Gateway destination vector pEG203, which contains the CaMV 35S promoter (Earley et al. 2006), to obtain pEG203-Myc::AtRBP-DR1. The remaining steps were the same as those used in generating AtRBP-DR1::Myc plants.

AtRBP-DR1::YFP::HA plants were made using the same procedure as used for making Myc::AtRBP-DR1 plants, except that destination vector pEG101 (Earley et al. 2006) was used. With this construct, expression of the transgene was controlled by the CaMV 35S promoter, and YFP-HA was fused to the C-terminus of the protein.

We were not successful in cloning the intron-spliced coding sequence of AtRBP-DR1 directly from Arabidopsis mRNA. Instead, it was cloned in the following manner. The A. tumefaciens strain carrying pEG203-Myc::AtRBP-DR1 was suspended with MES buffer (10 mM MES-KOH, 10 mM MgCl₂, 150 μM acetoxyringone, pH 5.6) to an optical density at 600 nm (OD₆₀₀) of 0.2. The bacterial suspension was infiltrated into 4-week-old Nicotiana benthamiana leaves for transient expression. Two days later, the infiltrated leaves were collected and used for RNA extraction with TRizol reagent (Invitrogen). The extracted RNA was then used as template for amplifying AtRBP-DR1 cDNA using RT-PCR with primers At4g03110-5 and At4g03110-3 (without stop). The amplified cDNA was cloned into pCR8/GW/TOPO (Invitrogen). The AtRBP-DR1 cDNA was moved from the entry clone pCR8/GW/TOPO (Invitrogen) to destination vector pETDEST15 (Invitrogen) to obtain pETDEST15-GST::AtRBP-DR1.

P. syringae strains.

The bacterial strains P. syringae pv. tomato DC3000 carrying AvrRpm1 (Dangl et al. 1992), AvrRpt2 (Whalen et al. 1991), or the empty pLAFR3 vector (Staskawicz et al. 1987) were cultured in King’s B medium supplemented with rifampicin (25 μg/ml) and tetracycline (10 μg/ml). The hrcC mutant strain (Deng et al. 1998) was cultured in King’s B medium supplemented with rifampicin (25 μg/ml).

Bacterial growth assay.

The P. syringae pv. tomato DC3000 strains were cultured at 22°C in King’s B liquid medium supplemented with appropriate antibiotics. The overnight-cultured bacterial cells were suspended with 5 mM MgSO₄ to a density of 2 × 10⁷ CFU/ml (OD₆₀₀ = 0.0001). The bacterial suspension was infiltrated into rosette leaves of 5-week-old Arabidopsis, two leaves per plant. Two leaf discs (total surface 0.57 cm²) were punched from a single leaf and used as one replicate. For each genotype, six replicates were taken for day 0 and eight replicates were taken for day 2. Leaf discs were pulverized in 400 μl of 5 mM MgSO₄ and a dilution series was made. For each dilution, 10 μl was streaked onto King’s B plates with appropriate antibiotics and the plates were kept at 22°C. Two days later, bacterial colonies were counted. The data collected in independent experiments were analyzed together using a mixed linear model which was described by Tsuda and associates (2008).

Electrolyte leakage assay.

The electrolyte leakage assay was conducted in a manner similar to one we described previously (Tsuda et al. 2009). Briefly, leaves of 5-week-old plants were inoculated with P. syringae pv. tomato DC3000 avrRpt2 or avrRpm1 at an OD₆₀₀ of 0.1 (1 × 10⁷ CFU ml⁻¹). One hour after inoculation, four leaf discs were taken from two leaves of each plant and transferred to a petri dish containing 25 ml of water. After 0.5 h of washing with gentle agitation, the leaf discs were transferred to glass tubes containing 6 ml of water. The conductivity (reflecting electrolyte leakage) of the samples was determined using a portable conductivity meter (VWR Scientific, Batavia, IL, U.S.A.) at 2, 4, 6, 8, 10, 12, 24, and 32 h postinoculation (hpi). This experiment was repeated twice, and data from two independent experiments were combined for analysis.

Fig. 6. AtRBP-DR1 protein appears to be cytoplasmic. A, Yellow fluorescent protein (YFP)-tagged AtRBP-DR1 was visualized in Arabidopsis epidermal cells. Rosette leaves of 6-week-old 35S:AtRBP-DR1::YFP::HA transgenic line no. 7 (T2) were visualized using confocal microscopy for YFP fluorescence. A representative picture is shown with a scale bar of 100 μm. B, Myc-tagged AtRBP-DR1 is a soluble protein. Total proteins were extracted from rosette leaves of 6-week-old AtRBP-DR1::Myc-8 transgenic plants and fractionated into microsomal and soluble fractions. Protein samples from both microsomal and soluble fractions were analyzed by immunoblot using anti-Myc, anti-HSC70, or anti-RIN4 antibody. Proteins transferred to a polyvinylpolypyrrolidone membrane were also visualized by Ponceau S staining. The experiment was done twice with similar results.
Results were analyzed by fitting a polynomial linear model through the electrolyte leakage curves of individual plants and using a mixed-effect linear model on the coefficients of these curves as previously described (Van Poecke et al. 2007). Specifically, the following model was fit to the data: \(C_{i} = S_{i} + T_{i} + M_{i} + T_{i} \times M_{i} + P_{i} + \epsilon_{i} \), where \(C \) is log_{10} transformer conductivity; \(S \) is sample (fixed effect); \(T \) is Time (fixed effect); \(P \) is plant (random effect); \(R \) is replicate (random effect); \(\epsilon \) is residual; \(i = 1, \ldots, 8; j = 1, \ldots, 48; \) and \(k = 1.2 \). The lme function in the nlme package in the R environment was used. The model was defined by the combination of the plant genotype and the bacterial strain used. The conductivity value was log_{10} transformed because the log transformation made the residual distribution close to normal. The data from 24 and 32 hpi were not included in the model fitting because the conductivity values from these late time points were highly variable. To avoid convergence problems, the coefficients of the \((1 + Tm + Tm^2 + Tm^3 + Tm^4)p_{1}\) random effect were assumed to be independent, and \(Tm \) was centered and scaled to range from \(-1 \) to \(1 \).

RT-PCR.

Total RNA was extracted from 4-week-old Col, Atibrp-dr1-1, and Atibrp-dr1-2 leaves with TRIzol reagent (Invitrogen). The extracted RNA was then used as template for amplifying AtRBP-DR1 and Actin2 using a Qiagen OneStep RT-PCR kit (Qiagen, Basel, Switzerland).

qRT-PCR analysis.

For the MAMPs treatment, the RNA samples were from previous work described by Tsuda and associates (2008). Three independent experiments (biological replicates) were performed.

The following model was fit to the cycle threshold (Ct) value data using the lme function in the nlme package in the R environment: \(C_{i} = G_{i} + R_{i} + \epsilon_{i} \), where \(G \) is a fixed effect of the gene–genotype–treatment interaction, and \(R \) and \(\epsilon \) are random effects of the replicate and residual, respectively. The mean estimate of the gene–genotype–treatment interaction was used as the modeled Ct value. The relative \(log_{2} \) expression values were obtained by subtracting the Ct value of the genes from the Ct value of the Actin2 gene and compared for each gene using two-tailed \(t \) tests. For the \(t \) tests, the standard error appropriate for each comparison was calculated using the variance and covariance values obtained from the model fitting.

For the SA treatment, Col-0 seedlings were grown in liquid culture. The culture was performed as described (Denoux et al. 2008), with the following modifications: 25 ml of grinding buffer (50 mM HEPES-KOH [pH 7.5], 1 mM EDTA, and 0.125 M Tris-HCl, pH 6.8) was added at a ratio of 1 g of tissue to 2 ml of buffer. The samples were boiled for 6 min and centrifuged at 16,000 \(\times g \) for 10 min. The supernatant was used for further analysis.

For microsomal fractionation, 1 g of leaf tissue from 5-week-old AtRBP-DR1::Myc-8 plants was flash frozen and ground to fine powder in liquid nitrogen, followed by adding 5 ml of grinding buffer (50 mM HEPES-KOH [pH 7.5], 10 mM EDTA, 330 mM sucrose, 0.6% polyvinylpyrrolidone, 1 mM dithiothreitol, and 1× complete-mini protease inhibitor [Roche, Branchburg, NJ, U.S.A.]). The homogenate was filtered through double-layered Miracloth (Calbiochem, La Jolla, CA, U.S.A.) and the filtrate was centrifuged at 16,000 \(\times g \) for 15 min at 4°C. Supernatant (3.5 ml) was further centrifuged at 100,000 \(\times g \) for 1 h at 4°C. The pellet was treated as the microsomal fraction and resuspended with 100 \(\mu l \) of resuspension buffer (20 mM HEPES-KOH [pH 7.5], 1 mM EDTA, and 330 mM sucrose). Supernatant (1 ml) was centrifuged to 300 \(\mu l \) using the centrifugal filter Microcon Ultracel YM-10 (Millipore, Bedford, MA, U.S.A.). Finally, an equal volume of 2x Laemmli buffer was added to both the pellet suspension and the concentrated supernatant. The samples were boiled for 6 min and centrifuged at 16,000 \(\times g \) for 10 min. The supernatant was used for further analysis.

Protein analysis.

Protein samples of equal volume were separated by 10% SDS-polyacrylamide gel electrophoresis (PAGE). For immunoblot analysis, proteins resolved by SDS-PAGE were transferred from the gels to polyvinylidene difluoride membrane (Bio-Rad, Hercules, CA, U.S.A.) by semi-dry electrophoretic transfer using the TRANS-BLOT SD (Bio-Rad) device. For detection of specific proteins, the following antibodies or reagents were used: Anti-c-Myc monoclonal antibody (clone 9E10; Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A.) at 1:200 dilution and goat anti-mouse HRP-conjugate (Pierce, Rockford, IL, U.S.A.); Anti-HA high-affinity monoclonal antibody (Roche, clone 11F10) at 1:500 dilution and anti-mouse HRP-conjugate (Pierce, Rockford, IL, U.S.A.); Anti-HA high-affinity monoclonal antibody (Roche, clone 11F10) at 1:500 dilution and anti-mouse HRP-conjugate (Pierce, Rockford, IL, U.S.A.).

SA measurement.

SA was analyzed by gas chromatography-mass spectrometry using deuterated SA (2-hydroxybenzoic-3,4,5,6-d4 acid; CD/D/N Isotopes, Pointe-Clara, Quebec, Canada) as the internal standard, as previously described (Tsuda et al. 2008). The data were analyzed with the same mixed-effect linear model as described above (“Quantitative RT-PCR analysis”).

Confocal microscopy.

Rosette leaves from 4- to 5-week-old Arabidopsis plants were cut into approximately 5-by-5-mm squares and mounted between slide and cover glasses with water. The samples were then excited with a 514-nm laser and signals were filtered through the YFP (543-nm) filter using an Eclipse C1si Spectral Imaging Confocal Microscope (Nikon, Tokyo). The images were collected using EZ-C1 software (Nikon) and further edited using Photoshop (Adobe Systems, Seattle).

Trypan blue staining.

Trypan blue staining was conducted in the same manner as we described previously (Tsuda et al. 2009).

Protein sample preparation.

For plant total protein extraction, plant leaf tissue was flash frozen in liquid nitrogen and ground to fine powder. Then, 2x Laemmli buffer (4% sodium dodecyl sulfate [SDS], 20% glycerol, 10% 2-mercaptoethanol, 0.004% bromphenol blue, and 0.125 M Tris-HCl, pH 6.8) was added at a ratio of 1 g of tissue to 2 ml of buffer. The samples were boiled for 6 min and centrifuged at 16,000 \(\times g \) for 10 min. The supernatant was used for further analysis.

For microsomal fractionation, 1 g of leaf tissue from 5-week-old AtRBP-DR1::Myc-8 plants was flash frozen and ground to fine powder in liquid nitrogen, followed by adding 5 ml of grinding buffer (50 mM HEPES-KOH [pH 7.5], 10 mM EDTA, 330 mM sucrose, 0.6% polyvinylpyrrolidone, 1 mM dithiothreitol, and 1× complete-mini protease inhibitor [Roche, Branchburg, NJ, U.S.A.]). The homogenate was filtered through double-layered Miracloth (Calbiochem, La Jolla, CA, U.S.A.) and the filtrate was centrifuged at 16,000 \(\times g \) for 15 min at 4°C. Supernatant (3.5 ml) was further centrifuged at 100,000 \(\times g \) for 1 h at 4°C. The pellet was treated as the microsomal fraction and resuspended with 100 \(\mu l \) of resuspension buffer (20 mM HEPES-KOH [pH 7.5], 1 mM EDTA, and 330 mM sucrose). Supernatant (1 ml) was centrifuged to 300 \(\mu l \) using the centrifugal filter Microcon Ultracel YM-10 (Millipore, Bedford, MA, U.S.A.). Finally, an equal volume of 2x Laemmli buffer was added to both the pellet suspension and the concentrated supernatant. The samples were boiled for 6 min and centrifuged at 16,000 \(\times g \) for 10 min. The supernatant was used for further analysis.

Protein analysis.

Protein samples of equal volume were separated by 10% SDS-polyacrylamide gel electrophoresis (PAGE). For immunoblot analysis, proteins resolved by SDS-PAGE were transferred from the gels to polyvinylidene difluoride membrane (Bio-Rad, Hercules, CA, U.S.A.) by semi-dry electrophoretic transfer using the TRANS-BLOT SD (Bio-Rad) device. For detection of specific proteins, the following antibodies or reagents were used: Anti-c-Myc monoclonal antibody (clone 9E10; Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A.) at 1:200 dilution and goat anti-mouse HRP-conjugate (Pierce, Rockford, IL, U.S.A.); Anti-HA high-affinity monoclonal antibody (Roche, clone 11F10) at 1:500 dilution and goat anti-rat immunoglobulin G-h+4 HRP conjugated (Bethyl, Montgomery, TX, U.S.A.) at 1:500 dilution; anti-GST polyclonal antibody (no. 27-4577-01; GE Healthcare, Piscataway, NJ, U.S.A.) at 1:1,000 dilution; and rabbit anti-goat AP-conjugated (Sigma A4187). For the detection, SuperSignal West Femto Maximum Sensitivity Substrate (Pierce) was used for HRP detection and BCIP/NBT Liquid Substrate System (Sigma, St. Louis) was used for AP detection. Images were recorded using a CCD-camera. Ponceau S (Sigma) staining was used according to its manual.

ADP-ribosylation assay.

The plasmid pETDEST15-GST::AtRBP-DR1 was used to transform E. coli BL21 (DE3), and GST::AtRBP-DR1 expression was induced in the resulting transformant with 1 mM isopropyl-thio-galactopyranoside for 3 h. The lysates containing induced GST::AtRBP-DR1 were used for the in vitro ADP-ribosylation assay as described previously (Fu et al. 2007).
ACKNOWLEDGMENTS

We thank J. Dangel of the University of North Carolina at Chapel Hill for anti-RIN4 antibody, M. Sanders and T. Anderson from the College of Biological Sciences Imaging Center of University of Minnesota for technical assistance in confocal imaging, X. Sun for help with co-transfection, and G. Bethke for critical reading of the manuscript. This work was supported by grant IOS-0419648 (Arabidopsis 2010 program) to J. Glazebrook and F. Katagiri, grant MCB-0918908 to F. Katagiri from the National Science Foundation, grant DE-FG02-05ER15670 from the Department of Energy Biosciences to J. Glazebrook, grant 1R01Al069146-01 A2 to J. R. Alfano from National Institutes of Health, and grants MCB-0715951 (Plant Genome Research program) to J. D. Cohen from the National Science Foundation. Y. Qi was a recipient of a Hamm Memorial Graduate Student Fellowship and a PBS Doctoral Dissertations Fellowship from the University of Minnesota. M. Sato was a recipient of a Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists.

LITERATURE CITED

AUTHOR-RECOMMENDED INTERNET RESOURCES

Ohio State University Arabidopsis Biological Resource Center:
www.abrc.osu.edu/

Salk Institute Genomic Analysis Laboratory:
signal.salk.edu/cgi-bin/tDNAexpress

ExPasy Proteomics server ScanProsite website:
ca.expasy.org/tools/scanprosite/