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Abstract Population size and population growth rate
respond to changes in vital rates like survival and fertil-
ity. In deterministic environments change in population
growth rate alone determines change in population size.
In random environments, population size at any time
t is a random variable so that change in population
size obeys a probability distribution. We analytically
show that, in a density-independent population, the
proportional change in population size with respect to a
small proportional change in a vital rate has an asymp-
totic normal distribution. Its mean grows linearly at a
rate equal to the elasticity of the long-term stochastic
growth rate λS while the standard deviation scales as√

t. Consequently, a vital rate with a larger elasticity
of λS may produce a larger mean change in population
size compared to one with a smaller elasticity of λS. But
a given percentage change in population size may be
more likely when the vital rate with smaller elasticity
is perturbed. Hence, the response of population size
to perturbation of a vital rate depends not only on
the elasticity of the population growth rate but also on
the variance in change in population size. Our results
provide a formula to calculate the probability that pop-
ulation size changes by a given percentage that works
well even for short time periods.
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Introduction

Population ecologists have proposed and used various
measures of response of population growth rate to
changes in vital rates. For instance, in the absence
of environmental variation, elasticity of the long-term
growth rate λ to a vital rate (Caswell 2001) quantifies
the proportional change in λ due to a small change in
a vital rate when the population is in its stable stage
distribution. Most studies using density-independent
models have focused on how population growth rate,
rather than population size, responds to changes in vital
rates. However, temporal variation in the environment
produces random fluctuations in population sizes so
that an estimate of growth rate would not predict the
variation in population size. Moreover, (unlike in de-
terministic environments), even a positive long-term
stochastic growth rate λS may result in a decrease
in population size and even extinction, with non-zero
probability (Lande and Orzack 1988). This probability
depends upon the variance in population size, so that
λS alone may not accurately capture the stochastic
dynamics. Further, in conservation/management sce-
narios, population size is often a better indicator of pop-
ulation status and managers target population size for
recovery and control. For instance, Fox and Gurevitch
(2000) states that “the concern of many conservation
programs is to increase the population size rapidly so
that stochastic events do not drive the population closer
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to extinction.” More importantly, management plans
typically operate upon short time scales (3–10 years)
(Fefferman and Reed 2006; Morris and Doak 2002), so
that prediction of change in population size is necessary
in short periods. There are other ecological scenarios
where such short-term dynamics is critical: like plant–
animal interactions (Maron et al. 2010) and the spread
of an invasive species (Ramula et al. 2008). In density-
independent stochastic models, population size N(t)
in year t has an asymptotic log-normal distribution
(Cohen 1977). As a result, the change in population size
due to an increase/decrease in a vital rate is also random
having a probability distribution. Thus, the question
arises whether one could predict the effect of changing
a vital rate on population size based on its effect on
long-term stochastic growth rate alone. In other words,
we are interested in the probability distribution of the
change in population size �N(t) (or �N(t)/N(t), the
proportional change) resulting from a change in a vital
rate.

We use recent results in stochastic elasticities
(Haridas et al. 2009) to analytically show that, in
density-independent models, the proportional change
in population size �N(t)/N(t) with respect to a small
proportional change in a vital rate is asymptotically
normally distributed. The mean of this distribution de-
pends on t and is given by t ES, where ES is the elasticity
of the long-term stochastic growth rate λS. For instance,
ES could be the elasticity to the mean or to the vari-
ance (Tuljapurkar et al. 2003) depending upon the type
of change (mean/variance) in the vital rate. In other
words, we show that the elasticity of population size to
a vital rate has a normal distribution. This result is im-
portant for two reasons: Firstly, it provides an analytical
tool to calculate the probability that the population size
increases/decreases by a specific percentage due to a
change in a vital rate. Secondly, the result shows that
the effect of perturbing a vital rate on population size
depends not only on the elasticity of λS to that vital
rate (as it is in deterministic models) but also on the
variance in the change in population size. This variance
results from the variation in original population size
generated by environmental stochasticity. Hence, in
stochastic environments, an estimate of the change in
total population size based on the elasticity of λS gives
the mean change in population size while actual change
could be less or more than this estimate. Elasticity
of λS is often used to compare the relative effect of
perturbing one vital rate over another on population
growth rate. Our results show that a vital rate with a
smaller elasticity of λS can produce a larger variance
in the change in population size. Consequently, the
probability of a given percentage change in population

size may be larger when the vital rate with smaller
elasticity of λS is perturbed as compared to the vital rate
with larger elasticity.

We illustrate our results using stochastic population
models for two species: Cucurbita pepo (wild squash),
a monoecious annual species native to south-central
USA and northern Mexico (Wilson 1993; Cowan and
Smith 1993), and Fumana procumbens, a perennial
woody shrub species found in the baltic island of Öland
(Bengtsson 1993). Though the change in population
size attains a normal distribution only in the long-
term, we show, using these examples, that our results
can yield good approximations for relatively short (15–
25 years) time periods.

Elasticity of population size in random environments

Dynamics of a density-independent stage-structured
population in random environments can be described
by the equation

P(t) = A(t) P(t − 1), (1)

where P(t) is the k × 1 vector of population numbers
in k stages at time t and A(t) is the random k × k
projection matrix. Throughout this work, we assume
that the underlying environmental process (which may
be serially autocorrelated, e.g., as a Markov chain) is
stationary and mixing and that the demographic matri-
ces satisfy demographic weak ergodicity (Tuljapurkar
1990).

Let N(t) be the total population size in year t which
is given by |P(t)|, the sum of elements of the population
vector P(t). Let λ(t) = N(t)/N(t − 1) be the population
growth rate in year t. Then, we can write

N(t) = λ(t)N(t − 1). (2)

Iterate Eq. 2, starting from t = 1, and then take loga-
rithms to get

log(N(T)) =
T∑

t=1

log(λ(t)) + log(N(0)), (3)

where N(0) is the initial population size and N(T) is
the population size in year T. The long-term stochastic
growth rate log λS is given by

log λS = lim
T→∞

(1/T)

T∑

t=1

log(λ(t)). (4)
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The asymptotic variance of log(N(T)) is T σ 2, where

σ 2 = lim
T→∞

(1/T) Var(log(N(T))), (5)

where Var(log(N(T))) denotes the variance of
log(N(T)). Consider a small proportional change in
a vital rate represented by a matrix element A(i, j)(t).
Let A(i, j)(t) change to A(i, j)(t) → A(i, j)(t) + ε C(i, j)(t)
in every year t = 1 . . . T., where ε is small. Typical
choices for C(i, j)(t) are either of A(i, j)(t) or μ(i, j) or
A(i, j)(t) − μ(i, j), where μ(i, j) is the mean of A(i, j)(t)
(Tuljapurkar et al. 2003). Let population size at time T
changes from N(T) to N(T) + �N(T) as a result of this
perturbation in rate A(i, j)(t) in every year t = 1 . . . T.
Then, the elasticity of population size at time T with
respect to the vital rate A(i, j)(t) is defined as �N(T)/N(T)

ε

when ε is small.
A heuristic approach to understand the distribution

of �N(T)/N(T) is as follows: Recall that log(N(T))

is asymptotically normally distributed with mean
T log λS and a variance T σ 2 (Cohen 1977) and sim-
ilarly log(N(T) + �N(T)) is also asymptotically nor-
mally distributed. When �N(T) is small, log(N(T) +
�N(T)) − log(N(T)) ≈ �N(T)/N(T), which suggests
that �N(T)/N(T) is approximately normally dis-
tributed (being the difference of two normal ran-
dom variables). However, log(N(T)) and log(N(T) +
�N(T)) are not statistically independent, and hence,
this argument is not valid to derive the normality of
�N(T)/N(T). In the next section, we use stochastic
elasticities (Haridas et al. 2009) to analytically derive
the distribution of elasticity of population size.

Main results

To derive the elasticity of total population size to a
vital rate A(i, j)(t), we make use of Eq. 3. This equation
suggests that the elasticity of population size depends
on the elasticities of the annual growth rate λ(t), t =
1, . . . , T. Let M(T) denote the elasticity of total pop-
ulation size. Then (see online Appendix A),

(I) The elasticity of total population size to a vital
rate eventually grows at a rate given by the long-
term elasticity of λS, i.e., M(T) ≈ T ES for large T,
where ES stands for the long-term elasticity of λS

to the vital rate A(i, j)(t). This could be the elasticity
to the rate or its mean or variance, depending on
the perturbation (Tuljapurkar et al. 2003).

Further, let e(i, j)(t) denote the elasticity of growth
rate λ(t) with respect to the vital rate (Haridas et al.

2009) perturbed in years 1 . . . t. Then (see online
Appendix A)

M(T) =
T∑

t=1

e(i, j)(t), (6)

and

(II) The proportional change in total population size
with respect to a vital rate has an asymptotic
normal distribution whose mean is linear in the
long-term elasticity ES of λS and has a variance
T σ 2

e . That is, the elasticity of total population size
M(T) ≈ Normal(T ES, T σ 2

e ).

Note that Haridas et al. (2009) discussed the estimation
of elasticities of λS but did not show the relationship
between response of population size to elasticities of λS.

Implications

• From result (I), it follows that the elasticity of
long-term stochastic growth rate λS is given by the
slope of the regression line between the elasticity of
population size and time (see Fig. 1c). Recall that
log λS itself is often estimated as the slope of the
logarithmic population sizes against time (Dennis
et al. 1991; Chevin 2010).

• Result (II) provides an easy tool to calculate the
probability that the proportional change in popu-
lation size is larger (smaller) than a target value,
say α. For instance, if ε is the magnitude of the
proportional change in the vital rate, note that
Pr(�N(T)/N(T) ≥ α) = Pr(M(T) ≥ α/ε) and

Pr(M(T) ≥ α/ε) = 1 − �

(
α/ε − T ES√

Tσe

)
. (7)

Here �(.) denotes the cumulative distribution func-
tion of the standard normal distribution.

• An important consequence of result (II) is that the
response of population size to perturbation of a
vital rate depends not just on the elasticity of the
long-term growth rate but also on the variance (in
fact, on the distribution of M(T)) of the change
in population size. Hence, a vital rate having a
larger elasticity of the long-term growth rate λS,
if perturbed, produces a larger mean proportional
change in population size as compared to a vital
rate with a smaller elasticity of long-term growth
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Fig. 1 a Elasticity (ES
(3,1)) of

population growth rate λS for
C. pepo with respect to matrix
element A(3,1)(t) as computed
from the proportional
changes in total population
size. Results from two
independent simulations,
each from t = 1 to t = 300,
are shown. b Histogram of the
elasticity of population size
resulting from perturbation of
A(3,1)(t). c Mean of the
elasticity of population size as
a function of time. d Standard
error of the elasticity of
population size as a function
of time. Results are from 500
simulations where each
simulation is of 10,000 time
steps
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rate. But the probability that the change in popula-
tion size is bigger than a specific target value may
be larger when the vital rate with smaller elasticity
of λS is perturbed (Figs. 4b and 5b). This is because
the probability of such an event also depends (see
Eq. 7) on the variance of the percentage change in
population size.

• While the mean ES of the normal distribution for
M(T)/T is the elasticity of λS (long-term growth
rate of the original population), the variance σ 2

e is
not the elasticity of the long-term variance of the
original population. Rather, it is the variance of the
elasticity of the population size with respect to the
vital rate and can be estimated from demographic
data as described in Haridas et al. (2009).

• Note that if elasticities of two vital rates are equal
(as is the case with some vital rates in certain life-
histories; see Claessen 2005), then the vital rates
produce exactly the same long-term proportional
changes in population size. Therefore, the long-
term variance in M(T) will be the same for both
vital rates.

• The sensitivity of population size (absolute change
in population size) with respect to perturbations
of a vital rate A(i, j)(t), t = 1, . . . , T is given by
�N(T)/�A(i, j)(T) which is equal to the prod-
uct of the elasticity of population size M(T) and
N(T)/A(i, j)(T). Hence, the distribution of sensi-
tivity depends upon distribution of the vital rate

and, in general, the sensitivity has to be evaluated
numerically.

Change in expected population size

An associated quantity of interest is the change in
the expected population size E(N(t)). The propor-
tional change in expected population size is given by
�E(N(t))/E(N(t)). Hence, the elasticity of the ex-
pected population size is different from the expected
value of the elasticity of population size (which is ≈
t ES, as derived above). When vital rates are serially
independent and identically distributed over years, we
know (Cohen 1977) that log(E(N(t))) grows at a rate
given by t log λ0, where λ0 is the largest eigenvalue of
the average matrix E(At). This means that the elas-
ticity of the expected population size E(N(t)) to a
vital rate A(i, j)(t) is ≈ t eμ(i, j) , where eμ(i, j) is the classical
deterministic elasticity of λ0 to the mean μ(i, j) of the
vital rate A(i, j)(t). In general, no comparison is possible
between the two except to say that they will be similar
in magnitude when temporal variation is small. When
vital rates are serially correlated, log(E(N(t))) grows at
a rate given by t log μ, which could be different from
t log λ0 (Cohen 1977; Tuljapurkar 1990). In this case,
one needs to calculate elasticities of log μ, which can
be evaluated exactly when vital rates vary according to
a Markov chain (Tuljapurkar et al. 2003).
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Illustration: two examples

We use demographic data from two plant species to
illustrate our analytical results. The purpose of these
examples is mainly to explain the results rather than to
understand specific biological details of these species.

Example 1 Wild squash, C. pepo

In our first example, we consider a stochastic ma-
trix model for the population dynamics of C. pepo
(wild squash), a monoecious annual species native
to south-central USA and northern Mexico (Wilson
1993). Experimental populations were established in
an abandoned farm field in Mississippi, and germi-
nation, seedling survival, and gourd production were
monitored to derive demographic transition matrices.
We used three life-history stages: dormant gourds,
dormant seeds in the seed bank, and adult plants. A
more detailed description on the experiments and data
analysis to estimate the transition rates between these
life-history stages can be found in Prendeville (2010).
In 2006, precipitation was below average causing large
reduction in recruitment while 2007 was a normal year.
The corresponding transition matrices are

A1 =

⎛

⎜⎜⎜⎝

2006 Gourds Seeds Adults

Gourds 0.047 0.00 0.075

Seeds 0.044 0.036 0.087

Adults 0.12 0.033 0.477

⎞

⎟⎟⎟⎠

and

A2 =

⎛

⎜⎜⎜⎝

2007 Gourds Seeds Adults

Gourds 0.047 0.00 0.36

Seeds 0.045 0.025 0.73

Adults 0.37 0.069 4.09

⎞

⎟⎟⎟⎠ .

To construct the stochastic model, we assumed that
matrix A1 occurs with probability 0.33 and matrix A2
occurs with probability 0.67. Information on the fre-
quency of good and bad years is not available, so our
choice of these frequencies was made on two criteria:
First, it makes sure that long-term growth rate λS is
> 1 (population size is increasing over time). Secondly,
for computational purposes, we wanted populations
to grow sufficiently slow to prevent an overflow of
population sizes. We first used Eq. 1 to simulate 500
population trajectories each of length 10,000 time steps,
starting with one individual in each stage and using

projection matrices A1 and A2. Simulations were then
repeated with each A(i, j)(t) now replaced by A(i, j)(t) +
ε A(i, j)(t), where ε = 0.0001. The parameter ε denotes
the small proportional increase in the value of A(i, j)(t).
Note that this change produces a proportional increase
(of magnitude ε) in the mean and variance of A(i, j)(t)
without changing its coefficient of variation. We cal-
culated �N(t)/N(t)

ε
for 10,000 time steps for each of 500

simulations. As predicted by result (I), these ratios
(after dividing by t) converged to the elasticity of λS

with respect to A(i, j)(t) (Fig. 1a, showing convergence
for A(3,1)(t), transition rate from adult stage to gourd
stage). In addition, by generating age structure vec-
tors and reproductive value vectors, we used methods
in Tuljapurkar et al. (2003) to confirm the value of
ES

(3,1)(= 0.025). The elasticity of population size had a
normal distribution (Fig. 1b) whose mean (= t ES

(3,1))
increases linearly with time t (Fig. 1c), while the stan-
dard error scales as

√
t (Fig. 1d), in agreement with

result (II).
To illustrate how increasing the variance in a vital

rate affects population size, we replaced A(3,1)(t) by
A(3,1)(t) + ε (A(3,1)(t) − μ(3,1)) and proceeded as before.
Note that this change produces a proportional increase
(of magnitude ε) in the variance of A(3,1)(t) without
changing its mean. Increasing the variance decreased
long-term population size, and consequently, elastici-
ties of population size and that of λS (ESσ

(3,1)) were both
negative (Fig. 2a). Increasing the variance in matrix
element A(2,3)(t) (representing transition from “adults”
to “seeds”) produced similar but relatively smaller
effects (in magnitude), as compared to ESσ

(3,1) (Fig. 2a).
Variance in elasticity of population size was larger
when variance in A(2,3)(t) was increased as compared
to increased variance in A(3,1)(t) (Fig. 2b).

To check the validity of the normal approximation
in result (II), we perturbed the variance in A(3,1)(t)
and A(2,3)(t) and calculated probabilities of reduction
in population size using the normal approximation
and compared it with simulations. Figure 3 illustrates
that the normal approximation (see Eq. 7) works well
even for short-term predictions. The relatively lower
accuracy for the approximation for very short time
periods (like t = 10, Fig. 3) is due to strong transient
effects.

Further, we used the normal distribution in result
(II) to compare the effects of increasing variance of
A(3,1)(t) with that of A(2,3)(t) by calculating the prob-
abilities Prob(�N(t)

N(t) > α) (Fig. 2c). Interestingly, larger
reductions in total size were more likely when the
variance in A(2,3)(t) was increased in comparison to
increased variance in A(3,1)(t), even though the variance
elasticity of A(2,3)(t) was smaller (in magnitude) than
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Fig. 2 a Histograms of the
elasticities of population size
at t = 12,000 for C. pepo due
to increasing variance in the
rate A(3,1)(t) (light) and
A(2,3)(t) (dark). b Standard
error of the elasticity of
population size as a function
of time. c Probability (y-axis)
that the reduction in total size
is more than a fixed
percentage α (x-axis) when
increasing the variance in
A(2,3)(t) (dark) and A(3,1)(t)
(light). Results are from 500
simulations where each
simulation is of 12,000 time
steps
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that of A(3,1)(t) (Fig. 2a, c). This feature is further
illustrated in the next example.

Example 2 F. procumbens

Bengtsson (1993) studied the population dynamics
of F. procumbens, a perennial woody shrub species
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Fig. 3 Probability (y-axis) that the reduction in total size is
more than a fixed percentage α (x-axis) when increasing the
variance in A(2,3)(t) and A(3,1)(t) for C. pepo. Shown are values
obtained from the normal approximation (Eq. 7) as well as from
simulations

found in the baltic island of Öland. The population
model consisted of six life-history stages: seedlings,
juveniles with ≤ 2 shoots/branches, juveniles with > 2
shoots/branches, adults reproducing ≤ 3 fruits pro-
duced, adults reproducing > 3 fruits produced, and
non-reproductive adults. Bengtsson (1993) reported
demographic projection matrices for 6 years (1985–
1986 to 1990–1991; Table 7, Bengtsson 1993). To in-
corporate the effects of environmental variation on
demographic rates, we assumed that each matrix occurs
equally likely (with probability = 1/6) every year. Sim-
ulations were done exactly as in the previous example.

First, we verified that the normal approximation
does well as in the previous example (not shown).
When the vital rate A(4,1)(t) (transition rate from
seedling stage to adults reproducing ≤ 3 fruits) was
perturbed, so that its mean and variance increased by
the same percentage, population size increased (Fig. 4a,
light). We observed a similar effect when vital rate
A(4,2)(t) (transition rate from juveniles with ≤ 2 shoots
to adults reproducing ≤ 3 fruits) was perturbed (Fig. 4a,
dark), but the mean of this change was larger than cor-
responding mean after perturbing A(4,1)(t). However, a
larger percentage change in total population size was
more probable when A(4,1)(t) was perturbed (Fig. 4b,
where probabilities are calculated at t = 10,000). Popu-
lation size decreased when the variance of A(4,6)(t) was
increased keeping its mean unchanged (Fig. 5a). We
compared this effect with that of increasing the variance
of A(3,1)(t). Two features are noticeable: Firstly, though
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Fig. 4 a Histograms of the
elasticities of population size
at t = 10,000 for F.
procumbens due to increasing
vital rates A(4,1)(t) (light) and
A(4,2)(t) (dark). b Probability
(y-axis) that the proportional
increase in total population
size is more than a fixed
percentage α (x-axis) when
perturbing A(4,1)(t) (light)
and A(4,2)(t) (dark). Results
are from 500 simulations
where each simulation is of
10,000 time steps
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the elasticity of λS with respect to variance of A(3,1)(t)
was negative (which means that λS is reduced when
variance is increased), there was a non-zero probability
that population size increased due to increasing vari-
ance (Fig. 5a, light histogram, when t = 40,000). Sec-
ondly, the probability of low to moderate percentage
decrease in population size was larger when variance
in A(4,6)(t) was increased while higher reduction was
more likely when variance in A(3,1)(t) was increased
(Fig. 5b). Hence, even though the elasticity ESσ

(4,6) of
λS was larger in magnitude than ESσ

(3,1), we see that

perturbing variance of A(3,1)(t) was more likely to result
in large percentage reduction in population size.

Discussion

It is of fundamental importance in ecology and evo-
lution to understand fluctuations in population size
caused by changes in vital rates. In the absence of den-
sity dependence, we show that the proportional change
in population size resulting from a small proportional

Fig. 5 a Histograms of the
elasticities of population size
at t = 40,000 for F.
procumbens due to increasing
the variance in vital rates
A(3,1)(t) (light) and A(4,6)(t)
(dark). b Probability (y-axis)
that the proportional
reduction in population size is
more than a fixed percentage
α (x-axis) when increasing the
variance in A(4,6)(t) (dark)
and A(3,1)(t) (light). Results
are from 500 simulations
where each simulation is of
40,000 time steps
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change in a vital rate has a long-term normal distribu-
tion. The mean of this distribution grows linearly with
time at a rate given by the elasticity of the long-term
stochastic growth rate λS with respect to the vital rate.
Observe that, in deterministic environments, the elas-
ticity of the population growth rate alone determines
the response of population size to changes in vital rates.
The normal approximation provides a tool to estimate
the probability of a percentage increase/decrease in
total population size due to changes in a vital rate.
In our examples, we show that the normal approxi-
mation works well for relatively short time intervals
(15–25 years) making it a valuable tool for short-term
predictions on the fluctuations of population size.

Our results show that the response of population
size to perturbations depends not only on the change
in long-term population growth rate but also on the
variance in this response. In the two examples analyzed,
we showed that perturbing a vital rate with lower elas-
ticity of the long-term growth rate λS is often more
likely to produce a given percentage change in the
population size as compared to perturbing a vital rate
with a larger elasticity of λS. We also showed (in F.
procumbens) that perturbing a vital rate can increase
population size for several years (beyond the transient
stage) even though it reduces the long-term popula-
tion growth rate λS. Our analysis shows the role of
variation in change in population size in determining
if population size increases/decreases due to changes
in vital rates. Note that this variance depends upon
the variance of annual elasticities as well as their serial
autocorrelations (Eq. 6). It will also be of interest to
know how the current variance in population size (σ 2)
affects variance in change of population size (σ 2

e ).
In evolutionary genetics, long-term population

growth rate is used as the geometric mean fitness
measure: At a diploid locus, the long-term population
growth rate of a rare heterozygote determines whether
it can successfully “invade” a large population in a
fluctuating environment, and a polymorphism of two
alleles can be maintained if the long-term growth rate
of the heterozygote exceeds that of either homozygote
(Gillespie 1973). Our results suggest that conditions
for fixation and polymorphism should also include the
variance in change in gene frequencies in addition to
the long-term growth rate. Such variance effects would
be especially important in short-term changes and also
in autocorrelated environments (Vasseur and Yodzis
2004), which can exacerbate variation in population
growth rates and sizes.

Our results have implications for population man-
agement in varying environments. We show that pre-
dictions on the effects of vital rate perturbations on

the change in population size based on elasticities of
long-term growth rate alone might be erroneous since
change in population size also depends on the variance.
Management actions aim to target population parame-
ters, and in order to choose the most effective manage-
ment strategy, it is critical to know how population size
responds to perturbing particular vital rates. In particu-
lar, a manager may want to know how likely a particular
management action will cause the population size to
exceed or to remain below a target value. One could
readily estimate these probabilities using the normal
approximation we derived here.
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