
 
UNL - Department of Physics and Astronomy 

 

Preliminary Examination - Day 1 
Thursday, August 9, 2018 

 
 
This test covers the topics of Thermodynamics and Statistical Mechanics (Topic 1) and Quantum Me-
chanics (Topic 2).  Each topic has 4 “A” questions and 4 “B” questions.  Work two problems from 
each group.  Thus, you will work on a total of 8 questions today, 4 from each topic.  
 
Note: If you do more than two problems in a group, only the first two (in the order they appear 
in this handout) will be graded. For instance, if you do problems A1, A3, and A4, only A1 and A3 
will be graded. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WRITE YOUR ANSWERS ON ONE SIDE OF THE PAPER ONLY 
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Thermodynamics and Statistical Mechanics Group A - Answer only two Group A questions 
 
 
 
 
 
 A1    Derive the expression for the efficiency, defined as the total work done over the total heat 

supplied, for a Carnot cycle which uses a monoatomic ideal gas as an operating substance. Use 
the equation of state for the gas 𝑃𝑃𝑃𝑃 = 𝑛𝑛𝑛𝑛𝑛𝑛 and the internal energy 𝑈𝑈 = 3

2
𝑛𝑛𝑛𝑛𝑛𝑛. 

 
 
 
 A2   Prove that the 𝐶𝐶𝑝𝑝 for an ideal gas is independent of pressure. Reminder: heat capacity at 
constant pressure can be defined as 𝐶𝐶𝑝𝑝 = (𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ )𝑝𝑝. 

 
 
 
 A3   The internal energy for 1 kg of a certain gas, in joules, is given by 𝑈𝑈 = 0.17 𝑇𝑇 + 𝐶𝐶 where T 

is the gas temperature in kelvin, and C is a constant. The gas is heated in a rigid container (i.e. at 
constant volume) from a temperature of 40°C to 316°C. Compute the amount of work and heat 
flow into the system. 

 
 
 
 
 A4    A large number of non-interacting particles is in equilibrium with a thermal bath of tem-
perature 300 K. The particles have only three energy levels: 1 20 meVE = ,  2 30 meVE = , and 

3 40 meVE = . Calculate the average energy of a particle. 
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Thermodynamics and Statistical Mechanics Group B - Answer only two Group B questions 
 
 
 

 
 B1   Consider mixing 100 g of water at 300 K with 50 g of water at 400 K. Calculate the final 
equilibrium temperature if the specific heat c of water per gram is 1 cal/g/K. Calculate the 
change in entropy for this irreversible process. 

 
 
 

 
 

 B2   A two-dimensional vector B of constant length 

B = B  is equally likely to point in any direction specified 

by the angle 𝜃𝜃. What is the probability that the 𝑥𝑥-compo-
nent of this vector lies between 𝐵𝐵𝑥𝑥 and 𝐵𝐵𝑥𝑥 + 𝑑𝑑𝐵𝐵𝑥𝑥? 

 

 

 

 

B3   Show that the work done by a gas under arbitrary changes of temperature and pressure 
can be determined in terms of the coefficient of volume expansion at constant pressure 𝛼𝛼𝑝𝑝 and 
the isothermal compressibility coefficient 𝜅𝜅𝑇𝑇. As a corollary, show that for an isochoric (constant 
volume) process 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉

=
𝛼𝛼𝑝𝑝
𝜅𝜅𝑇𝑇

 

Verify this for an ideal gas. Reminder: the involved coefficients are defined as 

𝛼𝛼𝑝𝑝 = 1
𝑉𝑉
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑝𝑝

  and  𝜅𝜅𝑇𝑇 = − 1
𝑉𝑉
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇

.  

 
 



  Preliminary Examination - page 4 
 

 
 

 B4   Consider a paramagnetic material whose magnetic particles have angular momentum quan-
tum number J  which is an odd multiple of 1

2 . The z-component can take 2 1+J  values 
( , 1, 2 ,... ,= − − + − +zJ J J J J ).  This leads to 2 1+J  allowed values of the z-component of a parti-
cle’s magnetic moment: 0 0 0 0, ( 1) , ( 2) ,... ,µ µ µ µ µ= − − + − +z J J J J , where 0µ  is some unit magnetic 
moment*. The energy of the magnetic moment in a magnetic field pointing in the +z direction is µ− z B . 
 

*Not to be confused with the magnetic permeability for which the same symbol is used! 

 
a. Derive an expression for the partition function 1Z  of a single magnetic particle in a mag-

netic field B pointing in the +z direction. Write your answer in terms of hyperbolic sine 
functions. You may find it convenient to use the variable 0µ β=b B  , where B1 /β = k T  as 
usual. 
 

b. Derive an expression for the average energy of the particle in part (a). Give your answer 
in terms of the hyperbolic cotangent function. 
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Quantum Mechanics Group A - Answer only two Group A questions 
 
 
 
 
 
 
 A1     
 
 
 
 
 
 
 

 

 

 A2    
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 A3    A wavefunction in one dimension is given by 

 for 3
( )

  0 elsewhere
C a x a

xψ
 − − < <

= 


   

where C  and a  are positive constants. Calculate the expectation value of the parity operator. 

 
 
 
 
 
 
 A4   The spherical harmonics are orthonormal; we have 

 , ,( , ) ( , )m m mmY Y dθ φ θ φ δ δ∗
′ ′ ′ ′Ω =∫   



  

where dΩ  is an infinitesimal amount of solid angle, and the integral is taken over all solid an-
gle. Use this expression to demonstrate that 1,0Y   and 1,1Y  are orthogonal.  
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Quantum Mechanics Group B - Answer only two Group B questions 
 
 
 B1     

 
 
 
 
 
 
 
 
 
 
 
 B2   NOTE: In this problem, we encounter infinitely large matrices, We will write these by only specifying the 4 by 4 block in 

the upper left corner, as in 

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

 
 
 
 
 
 
 
 



 

. For instance, the identity operator is written as 

1 0 0 0
0 1 0 0

ˆ 0 0 1 0
0 0 0 1

I

 
 
 
 =
 
 
 
 



 

.  

 

The stationary states of the harmonic oscillator are defined by 1
2

ˆ ( )H n n nω| 〉 = + | 〉 .  

The annihilation operator â  of the harmonic oscillator is defined by ˆ ˆ ˆ
2

ia x p
m

β
ω

 
= + 

 
 (with 

2 /mβ ω=  ). The operation of the annihilation operator is ˆ 1a n n n| 〉 = | − 〉 . Thus, in the n| 〉  ba-

sis, the annihilation operator’s matrix is  

0 1 0 0

0 0 2 0
ˆ 0 0 0 3

0 0 0 0

a

 
 
 
 =  
 
 
 
 



 

 

 
a. Explain why † Tˆ ˆa a= , where T means matrix transposition. 
b. Find the matrix for †â .  
c. Find the matrix for x̂ .  
d. Find the matrix for p̂ . 
e. Find the matrix for ˆ ˆxp . 
f. Explain why Tˆ ˆ ˆ ˆ[( ) ]*px xp= , where T means matrix transposition.  
g. Find the matrix for ˆ ˆpx . 
h. Find the matrix for ˆ ˆ[ , ]x p  and comment on your answer. 
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 B3     
 

 

 

 

 

 

 

 B4   Consider a two-state quantum system. In the orthonormal and complete set of basis kets 
1| 〉 and 2| 〉 , the Hamiltonian operator for the system is represented by ( 0ω > ):  

 

ˆ 10 1 1 3 1 2 3 2 1 2 2 2H ω ω ω ω= | 〉〈 | − | 〉〈 | − | 〉〈 | + | 〉〈 |    . 
 

Let us consider another orthonormal and complete basis, α| 〉  and β| 〉 , such that 1Ĥ Eα α| 〉 = | 〉  

and 2Ĥ Eβ β| 〉 = | 〉  (with 1 2E E< ). Let the action of some operator Â  on the basis kets α| 〉  and 
β| 〉  be given by 

 

ˆ ˆ2    and   2 3  ,A ia A ia aα β β α β| 〉 = | 〉 | 〉 = − | 〉 − | 〉   
 

where a  is real and 0a > . 
 

a. Show that Â  is Hermitian, and find its eigenvalues. 
 

Answer the next two independent parts based on the information given above: 
 
PART I - Suppose an Â -measurement is carried out at time 0t =  on an arbitrary state, and the 
largest possible value is obtained. 
   

b. Calculate the probability ( )P t  that another measurement made at some later time t  will 
yield the same value as the one measured at 0t = . 

c. Calculate the time dependence of the expectation value Â〈 〉 . Plot ˆ ( )A t〈 〉 as a function of 
time. What is the minimum value of Â〈 〉 ? At what time is it first achieved? 

   

PART II - Suppose that the average value obtained from a large number of Â -measurements 
on identical quantum states at a given time is / 4a− .  
 

d. Construct the most general normalized ket (just before the Â -measurement) for the sys-
tem consistent with this information. Express your answer as C Dα β| 〉 + | 〉 .   
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Physical Constants 
 

speed of light .................. 82.998 10  m/sc = ×   electrostatic constant  ... 1 9
0(4 ) 8.988 10  m/Fk πε −= = ×   

Planck’s constant  ........... 346.626 10  J sh −= × ⋅   electron mass  ............... 31
el 9.109 10  kgm −= ×   

Planck’s constant / 2π .... 341.055 10  J s−= × ⋅   electron rest energy...... 511.0 keV    

Boltzmann constant  ...... 23
B 10  J1 K1.38 /k −= ×   Compton wavelength  .. C el/ 2.426 pmh m cλ = =  

elementary charge ......... 191.602 10  Ce −= ×   proton mass  ................. 27
p el1.673 10 kg 1836m m−= × =   

electric permittivity  ...... 12
0 8.854 10  F/mε −= ×   1 bohr ............................. 2 2

0 el/ 0.5292 Åa ke m= =   

magnetic permeability ... 6
0 1.257 10  H/mµ −= ×   1 hartree (= 2 rydberg)  ... 2 2

h el 0/ 27.21 eVE m a= =   

molar gas constant .......... 8.314  J / mol KR = ⋅   gravitational constant  ... 11 3 26.674 10  m / kg sG −= ×   

Avogadro constant  ....... 3
A

2 16.022 10  molN −×=   hc .................................... 1240 eV nmhc = ⋅    
 

 

 

Equations That May Be Helpful 

 
 
TRIGONOMETRY 
 

2 2 2 2

1
2

1

sin( ) sin cos cos sin
sin( ) sin cos cos sin
cos( ) cos cos sin sin
cos( ) cos cos sin sin

sin(2 ) 2sin cos
cos(2 ) cos sin 1 2sin

sin sin cos( ) cos( )

co

2cos 1

s cos

α β α β α β
α β α β α β
α β α β α β
α β α β α β

θ θ θ
θ θ

α β α β α β

θ

α β

θ θ

+ = +
− = −
+ = −
− = +

=

= − = − =

 = − − + 
=

−

2

1
2

1
2

cos( ) cos( )

sin cos sin( ) sin( )

cos sin sin( ) sin( )

α β α β

α β α β α β

α β α β α β

 − + + 
 = + + − 
 = + − − 
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HYPERBOLIC FUNCTIONS 
 

sinh( )
2

cosh( )
2

sinh( )tanh( )
cosh( )

1coth( )
tanh( )

x x

x x

e ex

e ex

xx
x

x
x

−

−

−
=

+
=

=

=

 

 

THERMODYNAMICS 

Partition function =  iE
iZ e β−= Σ   

Average energy = ( )lnE Z
β
∂

〈 〉 = −
∂

 

Heat capacity = V
d EC N
dT
〈 〉

=    

Clausius’ theorem: 
=

≤∑
1

0
N

i

i i

Q
T

, which becomes 
=

=∑
1

0
N

i

i i

Q
T

 for a reversible cyclic process of N steps.   

Δ
dp
dT T V

λ
=   

 
For adiabatic processes in an ideal gas with constant heat capacity, const.pV γ =  

 
dU TdS pdV= −   

–   H U pV F U TS G F pV F Nµ= + = = + Ω = −   
 

V p V
V V p p T

Q S Q S SC T C T TdS C dT T dV
dT T dT T V
δ δ         ∂ ∂ ∂

= = = = = +         ∂ ∂ ∂         
  

1 1

pT

V V
V p V T

κ α
   ∂ ∂

= − =   ∂ ∂  
 

 

Triple product: 1
Z X Y

X Y Z
Y Z X

     ∂ ∂ ∂
= −     ∂ ∂ ∂  

⋅
  

⋅   
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Maxwell’s relations: 

�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑆𝑆

= −�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉

  ,       �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑆𝑆

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑝𝑝

 ,        �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉

 ,        − �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑝𝑝

 

 
Data for water 
specific heat  4186 J/(kg K)C = ⋅  

heat of fusion  F 334 kJ/kgL =  

heat of vaporization V 2256 kJ/kgL =  

 

 

 
QUANTUM MECHANICS  
 

Ground-state wavefunction of the hydrogen atom: 
0/

1/2 3/2
0

( )
r ae
a

ψ
π

−

=r , where 
2

0
0 2

4
a

me
πε

=


 is the 

Bohr radius, using elm m≈ , in which elm  is the electron mass. 
 

0

0

2 4

2 2

/
10 3/2

0

/2
21 1/2 3/2

00

1ˆ( ) ( ) ( )
2

2( )

1( )
3 (2 )

nlm nl lm n

r a

r a

mk eR r Y E
n

R r e
a

rR r e
aa

ψ

−

−

= = −

=

=



r r

 

 
Particle in one-dimensional, infinitely-deep box with walls at 0x =   and x a= :    

Stationary states 1/2(2 / ) sin( / )n a n x aψ π= , energy levels 
2 2

2
22nE n

ma
π

=
  

 

Angular momentum:  [ , ]     .x y zL L i L et cycl=   
 

 

Ladder operators: 
, ( 1)( ) , 1

, ( )( 1) , 1

L m m m m

L m m m m
+

−

| 〉 = + + − | + 〉

| 〉 = + − + | − 〉

    

    
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Creation, annihilation operators: 
 

†

†

ˆ ˆˆ ˆ ˆ ˆ   
2 2

ˆ ˆ1 1 1

p pm ma x i a x i
m m

a n n n a n n n

ω ω
ω ω

   
= − = +   

   

| 〉 = + | + 〉 | 〉 = | − 〉

 

 

 

 

Probability current density: ( ) Im
2

J x
mi x x m x

ψ ψ ψψ ψ ψ
∗

∗ ∗   ∂ ∂ ∂
= − =   ∂ ∂ ∂  

  .  

 

 
 

magH γ= − ⋅S B   

 

Pauli matrices:  
0 1 0 1 0

  ,    ,  
1 0 0 0 1x y z

i
i

σ σ σ
     −

= = =     −     
  

 
 
Compton scattering: C(1 cos )λ λ λ θ′ − = −   
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CARTESIAN AND SPHERICAL UNIT VECTORS 

ˆ ˆˆ ˆ(sin cos ) (cos cos ) sin
ˆ ˆˆˆ (sin sin ) (cos sin ) cos

ˆˆˆ cos sin

θ φ θ φ φ

θ φ θ φ φ

θ θ

= + −

= + +

= −

x r θ φ
y r θ φ
z r θ

 

 

INTEGRALS  

 

 

 
 

    

( )

( )

2 2 1/2 2 2

2 2 1

2 2 3/2

2 2 2

2 2

1/2
2

0

1

2 2 2
3

2 2
2 2

2

2 2 2 2 2

2

0

( ) ln

1( ) arctan( / )

( )

arctan( / )
( )

2
1 ln
2
1 ln

(

1 / 2
1

!

) 2

bx
n

nx

x b x x b

x b x b
b

xx b
b x b

bx x b
x bx b

b

x b
x b

x
x

dx b
bx

ne dx
b

dx

dx

dx

dx

xdx

dx
x b b x b

a x
dx

π
∞

∞
−

−

−

−

−

+

+ = + +

+ =

+ =
+

+
++ =

= +
+

=
+

 
=  

=

+ + 

∫

∫

∫

∫

∫

∫

∫

∫

22

1 ln
2

1 artanh

ax b
ab ax b

ax
a

b

b b

 −
=  − + 

 
= −  

 

∫

 


