UNL - Department of Physics and Astronomy

Preliminary Examination - Day 1
Thursday, August 9, 2018

This test covers the topics of Thermodynamics and Statistical Mechanics (Topic 1) and Quantum Me-
chanics (Topic 2). Each topic has 4 “A” questions and 4 “B” questions. Work two problems from
each group. Thus, you will work on a total of 8 questions today, 4 from each topic.

Note: If you do more than two problems in a group, only the first two (in the order they appear
in this handout) will be graded. For instance, if you do problems A1, A3, and A4, only Al and A3
will be graded.

WRITE YOUR ANSWERS ON ONE SIDE OF THE PAPER ONLY
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Thermodynamics and Statistical Mechanics Group A - Answer only two Group A questions

Derive the expression for the efficiency, defined as the total work done over the total heat
supplied, for a Carnot cycle which uses a monoatomic ideal gas as an operating substance. Use

the equation of state for the gas PV = nRT and the internal energy U = %nRT.

Prove that the C, for an ideal gas is independent of pressure. Reminder: heat capacity at

constant pressure can be defined as C, = (9H/dT),,.

The internal energy for 1 kg of a certain gas, in joules, is givenby U = 0.17 T + C where T
is the gas temperature in kelvin, and C is a constant. The gas is heated in a rigid container (i.e. at
constant volume) from a temperature of 40°C to 316°C. Compute the amount of work and heat

flow into the system.

A large number of non-interacting particles is in equilibrium with a thermal bath of tem-
perature 300 K. The particles have only three energy levels: E, =20 meV, E,=30meV, and

E, =40 meV . Calculate the average energy of a particle.
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Thermodynamics and Statistical Mechanics Group B - Answer only two Group B questions

Consider mixing 100 g of water at 300 K with 50 g of water at 400 K. Calculate the final
equilibrium temperature if the specific heat ¢ of water per gram is 1 cal/g/K. Calculate the
change in entropy for this irreversible process.

y
A two-dimensional vector B of constant length B
B= |B| is equally likely to point in any direction specified p \.\
by the angle 8. What is the probability that the x-compo- X
nent of this vector lies between B, and B, + dB,? N
—> |<— dB,
B

Show that the work done by a gas under arbitrary changes of temperature and pressure
can be determined in terms of the coefficient of volume expansion at constant pressure a,, and

the isothermal compressibility coefficient k. As a corollary, show that for an isochoric (constant

Gr), =
oT 174 - KTt

Verify this for an ideal gas. Reminder: the involved coefficients are defined as

1[0V 1[0V
a,=-(==) and Kk =—=(=) .
P v\ar/, v\ap/

volume) process
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Consider a paramagnetic material whose magnetic particles have angular momentum quan-
tum number J which is an odd multiple of % . The z-component can take 2J+1 values
(J,=-3,-3+1,-J+2,..,3). Thisleads to 2J +1 allowed values of the z-component of a parti-
cle’s magnetic moment: 1, =—J gy, (=3 +D) gy, (=3 +2) 14y ..., I 14, , Where g, is some unit magnetic
moment*. The energy of the magnetic moment in a magnetic field pointing in the +z directionis —,B .

*Not to be confused with the magnetic permeability for which the same symbol is used!

a. Derive an expression for the partition function Z, of a single magnetic particle in a mag-

netic field B pointing in the +z direction. Write your answer in terms of hyperbolic sine
functions. You may find it convenient to use the variable b= 4,Bf , where f=1/k,T as

usual.

b. Derive an expression for the average energy of the particle in part (a). Give your answer
in terms of the hyperbolic cotangent function.
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Quantum Mechanics Group A - Answer only two Group A questions

Let v and [ be eigenstates of the electron spin operator S, with the eigen-
values f1/2 and —h/2 respectively. Find

S_,_Oé, S+ﬁ: S_OC, S—B; S_,.S_Oc,

where Sy = 5, £ 45,

A particle of mass m is moving in the one-dimensional potential
Via) = Vg @’
where Vp and a are positive constants.

a. Consider an energy eigenstate with £ < 0. Is it a parity eigenstate? If yes,
what are possible parity eigenvalues?

b. Consider now a state with £/ > 0 corresponding to the particle incident from
—o0o. Write down the general form of the particle’s wavefunction at = < —a
and x > a. Don’t calculate constant coefficients in your expressions, but
explain their meaning.

Is this state a parity eigenstate? If yes, what are possible parity eigenvalues?

Is this state a momentum eigenstate?
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A wavefunction in one dimension is given by

) —C for —a<x<3a
x =
v 0 elsewhere

where C and a are positive constants. Calculate the expectation value of the parity operator.

The spherical harmonics are orthonormal; we have

gﬁygjm 0,9)Y, . (0,$)dQ2=5,,5

00" mm'

where dQ) is an infinitesimal amount of solid angle, and the integral is taken over all solid an-
gle. Use this expression to demonstrate that Y, ; and Y, , are orthogonal.
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Quantum Mechanics Group B - Answer only two Group B questions

A 200-keV photon collides with an electron at rest. The photon is scattered
at 90°.

a. What is the photon energy after the collision?

b. What is the kinetic energy of the electron after the collision?

c. What is the angle between the photon’s momentum and the electron’s
momentum after the collision?

d. How accurate would the result for the angle be if the electron were treated

nonrelativistically?

NOTE: In this problem, we encounter infinitely large matrices, We will write these by only specifying the 4 by 4 block in

22?7 ? 1000 -
22?7 ? 0100

the upper left corner, asin |2 2 2 ? . For instance, the identity operator is written as I={0 0 1 0
2?2 ? 0001

The stationary states of the harmonic oscillator are defined by H |n) =(n+3)ho|n).

The annihilation operator 4 of the harmonic oscillator is defined by 4= ﬁ(fc + ;ﬁ] (with
me

N

B’ =mao [ h). The operation of the annihilation operator is a|n) = \/; |n—1). Thus, in the |n) ba-

01 0 0
00 2 0
sis, the annihilation operator’s matrixis a=|5 o NE)
0 0 0 0

Explain why 2" =4", where T means matrix transposition.
Find the matrix for a'.
Find the matrix for x.

VISR

Find the matrix for p.
Find the matrix for xp.
Explain why px =[(xp)"]*, where T means matrix transposition.

Find the matrix for px.

F o oo

Find the matrix for [x,p] and comment on your answer.
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The harmonic oscillator ground-state wavefunction is given by

v = () e

e
where a = mw/h (m is mass, and w is frequency).

(a) Find the expectation values of z and %

(b) Find the wavefunction in the momentum space;

(¢) Find the expectation values of p and p?;

(d) Calculate the uncertainties Az and Ap and show that they satisfy Heisenberg’s

uncertainty principle.

Consider a two-state quantum system. In the orthonormal and complete set of basis kets
|1) and |2), the Hamiltonian operator for the system is represented by (@ >0):

H=10ho | 1)(1| -3ho | 1X2 | -3ho | 2)(1|+2ho | 2)(2]|.

Let us consider another orthonormal and complete basis, |) and | £), such that H |la)=E, |a)
and H | B)=E, | p) (with E, <E,). Let the action of some operator A on the basis kets |a) and
| B) be given by

Alay=2ia|B) and A|B)=-2ia|a)-3a|p),
where a isreal and a>0.

4. Show that A is Hermitian, and find its eigenvalues.

Answer the next two independent parts based on the information given above:

PART I - Suppose an A-measurement is carried out at time t =0 on an arbitrary state, and the
largest possible value is obtained.

b. Calculate the probability P(t) that another measurement made at some later time ¢ will
yield the same value as the one measured at t=0.

c. Calculate the time dependence of the expectation value (A) . Plot (A)(t) as a function of

time. What is the minimum value of (A) ? At what time is it first achieved?

PART II - Suppose that the average value obtained from a large number of A-measurements
on identical quantum states at a given time is —a/4 .

d. Construct the most general normalized ket (just before the A-measurement) for the sys-
tem consistent with this information. Express your answer as C|a)+D| ).



Physical Constants
speed of light..........c....... c=2.998x10° m/s
Planck’s constant ........... h=6.626x10"J-s

Planck’s constant / 27.... h=1.055x10" J-s
Boltzmann constant ...... k, =1.381x107% J/K
elementary charge ......... e=1.602x10" C
electric permittivity ...... &, =8.854x10™"" F/m
magnetic permeability ... 4, =1.257x10"° H/m
molar gas constant.......... R=8.314 ] /mol-K

Avogadro constant ....... N, =6.022x10% mol™

Equations That May Be Helpful

TRIGONOMETRY

sin(a + ) =sina cos f + cosasin
sin(a — f) =sina cos  — cosa sin 3
cos(a + ) =cosacos f—sinasin S

cos(a — ) =cosacos B +sinasin

sin(26) =2sinfdcos

cos(20) = cos® @ —sin® @ =1-2sin* @ =2cos* -1

sinasin f = %[cos(a — ) —cos(a + ﬂ)]
cosacos ff = %[cos(a — f)+cos(a + ﬂ)}
sina cos ff = %[sin(a + ) +sin(a — /3’)]

cosasin ff = %[Sin(a + ) —sin(a - ﬁ)}
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electrostatic constant ... k = (47¢,)”" =8.988x10” m/F
electron mass ............... m, =9.109x10~" kg
electron rest energy...... 511.0 keV

Compton wavelength .. 4. =h/m_c=2.426 pm

proton mass ................. m, =1.673x10"" kg =1836m,

............................. a, =1/ ke*m, =0.5292 A

1 hartree (=2 rydberg) ... E, =7*/m a,* =27.21 eV
gravitational constant ... G = 6.674x10™" m®/ kg s
.................................... hc =1240 eV -nm
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HYPERBOLIC FUNCTIONS

X -X

e —e
2
e* +e

sinh(x) =

-X

cosh(x) =

sinh(x)

cosh(x)
1

tanh(x)

tanh(x) =

coth(x) =

THERMODYNAMICS

Partition function= ~ Z=X¢ "
0
Average energy = (E)= —%(ln Z)
. d(E)
Heat capacity = C,=N——
at capacity v 0T
- Q - Q
Clausius’ theorem: Z?Z <0, which becomes Z—Z =0 for a reversible cyclic process of N steps.
i=1 4 i=1 4
dp A
dT  TAV

For adiabatic processes in an ideal gas with constant heat capacity, pV’ = const.

dU =TdS — pdV

H=U+pV F=U-TS G=F+pV Q=F-uN

C, = Q) (% c =[92) _r[ & TdS=C,dT+T 95\ v
ar ), \oT), vo\dr ), \aT), v ).

k=—L[V a_l(ﬂj
- vl ), ~viear),

Triple product: XN (X [2) -1
oY ),\ oz ), \oX

Y
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Maxwell’s relations:

=), G,=&, G.=-G, -G.=&,

Data for water

specific heat C =4186J/(kg-K)
heat of fusion L. =334 k]/kg
heat of vaporization L, =2256 k]/kg

QUANTUM MECHANICS

~r/ay

Ground-state wavefunction of the hydrogen atom: y/(r) =—;—, where 4, =
'tay me

47zgoh2 .
— is the

Bohr radius, using m ~m_, in which m is the electron mass.

A 1 mk*e*

1)=R (Y (r E =——

V/nlm( ) nl( ) lm( ) n 7/12 2h2
2

R, (1) =—5¢
aO

—r/ay

1 r —r/2a,

R, (r)= 372(2q,)"" a

Particle in one-dimensional, infinitely-deep box with wallsat x=0 and x=a:
242

, Th

Stationary states y, =(2/a)"?sin(nzx/ a), energy levels E =n o
ma

Angular momentum: [Lx,Ly]:ihLZ et cycl.

L, | 6,my=nJ(¢ +m+1)({ —m) |, m+1)
L | 6,m)=hJ(£+m)(£—m+1)|£,m—1)

Ladder operators:
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Creation, annihilation operators:

at = f@ P f— (M@l s i P
2h mao 2h mao

Aty ="n+1|n+1) alny=n|n-1)

Probability current density: J(x)= i v v _ 1//ai = EIm v v .
2mi ox ox m ox

Table Spherical harmonics and their.expressions in Cartesian coordinates.

Yim(©, 9) Yim(x,,2)

Yoo (@, ¢) = m Yoo(x,y,z) = «/E

11000, 0) = \/_ cos 6 Yio(x, y,2) = \/:f

V1,210, 9) = %E\/geﬂ?’ sin @ Yi,21(x,y,2) = Fy/ i 22

Y20(0, ¢) = % (3cos?0 — 1) Yao(x, y,2) = \/;%:%ﬁ

Yo410,9)=F e*? sin 6 cos 0 Y2.41(x, y,z)::':\/ﬁg"%ixﬁ

1220, 0) = \/_x 10 sin’ 0 Voaa(, ,7) = T L
H, .=-7SB
Pauli matrices: GX:(O 1} , O =(0 _l) , o-zz(l OJ

10 Y li0 0 -1

Compton scattering: A'—A4=A.(1-cos?)
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- L VECTOR DERIVATIVES VECTOR IDENTITIES
Cartesian. dl=dxX+dyV+dzi; dr=dxdydz
Triple Products
e, o, ot
Gradient : Vi = —X+—¥+—12
ax dy~ | oz () A-BxC)=B-(CxA)=C-(AxB)
Divergence: V-v = o % 3 @) AxBxC)=BA C) - CA-B)
dx ay dz
Product Rules

Curl : Vxv = AQIEVm.TﬁQIEVm.TAgIFVW

Laplacian - vy = Xr ¥ o @ VA-B=Ax(VxB)+Bx(VxA) (A -V)B|(B-V)A

@) V() =f(Ve)+e(Vf)

X A (5) V-(fA)=f(V-A)+A-(V])
Spherical. dl =dri+rdif +rsin6dg¢; dr =r’sinfdrddde
6 V- (AxB)=B-(VxA) - A-(VxB)
ar _m-m+ 1 or .

Gradient : Vi = Sttt rmeas? (N V% (fA) = F(V x A) — A x (Vf)
" . vy = AP0 1 3 1 _dvg #) Vx(AxB)=(B-V)A-(A-V)B+AV-B) - B(V-A)
Divergence: V-v = ..u?.? =L+E.Emmm?_=m§v+nmﬁm 3
Second Derivatives

Curl : 4<||_!m.m;|¢k,
urt: XV = o e -5 |F 9 V- (VxA)=0

1T 1 du, @ 17a av, 7 » (10) Vx(Vf)=0

t; Tua ) mqﬁ:i“_u+ r TLS& N aT

(1) Vx(VxA)=V(V-A)— VA

1a i 1 a Bt 1 @
Laplacian : V% o= —— 2 — | sing- —
apacien ! Zor A_. ?v F Zsno a0 T.&%u Y iinZo 997

Cylindrical.  dl =ds§+sdpd +dzé; dr =sdsdpdz FUNDAMENTAL THEOREMS
- _ar, Mo . b, ‘ )
Gradient : Vi = M:u_.wa.“.+m|mun r
Gradient Theorem :  ['(V[)-dl= f(b) - f(a)
Divergence: V.v = Mwaheu+w§+we_h
rgence : = sReWtI Y Divergence Theorem : [(V - A)dr = fA-da

. 1dv dug . duy, A, ). I8 vy ] . Curl Theorem - VxA)-da=¢FA.dl
Carl ; v = |-=-2 S ACE F L R R J(VxA)-da=§
Curl v T& QLT.,TN ?T_;?:Eu gu_n

19 ot 1 0% o
Laplacian : Vi = - (s )+5—5+3
“aplacian 5 s A &v t et
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CARTESIAN AND SPHERICAL UNIT VECTORS

X = (sin 6 cos ¢)i + (cos O cos #)0 —sin g
y = (sin@sin @)t + (cos fsin $)0 + cos ¢ (T)
2=cosOt—sind O
INTEGRALS
f(x) J‘O-f(X) dx ]g -
o 1+bx*
2 A I
e Y . \/? jx”e'hxdx: i
2vVa ! b
x(e—axz 1 I(x2+b2)'l/2dx= ln(x+\/x2+b2)
2a j(xz +b*)dx = 1arc’cam(x/b)
x2€—ax2 \/? b
--------------- 3/2 ~ x
4a (x> +0*) Py = ———
2 I b2\x? +b?
Y3e—ax 1
"""""""" 242 5 b2+arctan(x/ b)
2 bZ —Zd — X"+
x4(€—ax2 3 \é/;z j(x T 20’
8a J- jcdx2 _ l]n(x2+b2)
5 _axZ 1 x“+b 2
X"€@ 77 s _3 dx 1 i xZ
5 ! jx(x2+b2) DY T
6 ,—ax 15Vrn
X €@ 77 e 16 7/2 J‘ dx —Lln ax—>b
‘ “ a*x* —b* 2ab  \ax+b

- lartamh &
ab b



