Back from the Future to the 1960's and then back again: From Atomic Many-Body Physics to Quantum Computing

> Göran Wendin Microtechnology and Nanoscience Chalmers University of Technology Gothenburg, Sweden

MY personal future: 2015 -....? Unconventional computing UCOMP Quantum, neuromorphic,

TonyFest, Lincoln, 22 August 2015

The future: 2015 Unconventional computing

Back from the Future to good old times, the 1960's

CHALMERS Back from the Future ...

The future: 2015 Unconventional computing

Lots of hard work in those days, exploring new avenues

Fano resonances & Giant dipole resonances (GDR) Multiphoton ionisation 1967-1987

Fano resonances & Giant dipole resonances (GDR) Multiphoton ionisation 1967-1987

Göran Wendin

Carry-le-Rouet, 1975

Back from the Future to 1975 ©

Unconventional computing Fano resonances & Giant dipole resonances (GDR) Multiphoton ionisation Well 1967-1987 back again to 2015 **Giant dipole resonances V V V** And back to the (GDR) once more. **Multiphoton ionisation Roots!!**

The future: 2015

 $1969 \rightarrow 2015$ **Reviving the Xe GDR** collective resonance Haensel et al. **Synchrotron DESY 1969** radiation

 $1969 \rightarrow 2015$

1969 → 2015 Reviving the Xe GDR collective resonance Haensel et al. DESY 1969

> Santra et al. DESY 2015 Xe 4d 2-photon 1 electron ionisation FEL 105 eV TOF Xe⁺

TonyFest, Lincoln, 22 August 2015

(a.u.)

Electron yield

CHALMERS 1 or 2 collective resonances ??

Santra et al. DESY 2015, Theory TDCIS

TonyFest, Lincoln, 22 August 2015

MC-2

Fig.2. Photoabsorption cross section for the 4d¹⁰ shell in Xe. --- Single particle approximation (first diagram); ---- RPAE (sum of diagrams to infinite order); ----- Experiment.

 $\sigma \sim \omega | < 4d | r(\omega)$ $|\epsilon f\rangle|^2$

COLLECTIVE RESONANCE IN THE 4d 10 SHELL IN ATOMIC Xe

$$\epsilon(\omega) = r/\epsilon(\omega)$$

$$\epsilon(\omega) = 1 + \sum_{n,j} \frac{C_{nj}V_{njjn}}{(\omega_{nj}^2 - \omega^2)/2\omega_{nj}}$$

TonyFest, Lincoln, 22 August 2015

11

Giant dipole resonance

Introduction of the concept of atomic Giant Dipole Resonance; Cocept borrowed from nuclear physics Collective effects from solid-state and plasma physics

CHALMERS 4d Ba RPAE + 5p-relaxation 1975

4d-f singles + 4d5p-fp doubles → "TDCISD"

Journal of Physics B: Atomic and Molecular Physics Volume 11 Number 24 1978

Perturbation theory in a strong-interaction regime with application to 4d-subshell spectra of Ba and La

G Wendin and A F Starace

CHALMERS Screening in multi-photon ionisation

VOLUME 56, NUMBER 12

PHYSICAL REVIEW LETTERS

24 MARCH 1986

Screening Effects in Multielectron Ionization of Heavy Atoms in Intense Laser Fields

Göran Wendin and Lars Jönsson

Institute of Theoretical Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden

and

Anne L'Huillier

Service de Physique des Atomes et des Surfaces, Centre d'Etudes Nucléaires de Saclay, F-91191 Gif-sur-Yvette, France (Received 28 October 1985)

Multielectron ionization of Xe is described in terms of multistep processes, driven by a laser field which is screened by the motion of the outer 5p shell. In stepwise multiple ionization of the 5p shell, screening is successively reduced. The *effective local intensity* will therefore *increase* during the stripping of the outer shell. In the 4d inner-shell region the effective intensity is very low. Finally we point out difficulties connected with the tentative identification of recently observed 4d-Auger spectra.

$$\mathbf{E} \cdot \mathbf{r}(\omega) = \mathbf{E} \cdot \mathbf{r} - \sum_{n,j} \frac{\langle j \mid 1/r_{12} \mid n \rangle \langle n \mid \mathbf{E} \cdot \mathbf{r}(\omega) \mid j \rangle}{(\omega_{nj}^2 - \omega^2)/2\omega_{nj}}$$

CHALMERS Screening in multi-photon ionisation

$$t_{\varepsilon i}^{c}(\omega) = \sum_{n} \frac{\langle \varepsilon | \mathbf{E} \cdot \mathbf{r}(\omega) | n \rangle \langle n | \mathbf{E} \cdot \mathbf{r}(\omega) | i \rangle}{\omega_{ni} - \omega}$$

$$\mathbf{E} \cdot \mathbf{r}(\omega) = \mathbf{E} \cdot \mathbf{r} - \sum_{n,j} \frac{\langle j | 1/r_{12} | n \rangle \langle n | \mathbf{E} \cdot \mathbf{r}(\omega) | j \rangle}{(\omega_{nj}^{2} - \omega^{2})/2\omega_{nj}}$$

$$\mathbf{E} \cdot \mathbf{r}(\omega) = \mathbf{E} \cdot \mathbf{r} - \sum_{n,j} \frac{\langle j | 1/r_{12} | n \rangle \langle n | \mathbf{E} \cdot \mathbf{r} | j \rangle}{(\omega_{nj}^{2} - \omega^{2})/2\omega_{nj}} / \boldsymbol{\epsilon}(\omega)$$

$$\boldsymbol{\epsilon}(\omega) = 1 + \sum_{n,j} \frac{C_{nj} V_{njjn}}{(\omega_{nj}^{2} - \omega^{2})/2\omega_{nj}}$$
Effective driving field/dipole op.

All e-ph vertices screened

CHALMERS Xe 5p 2-photon 1-electron ionisation

with Anne L'Huillier & Lars Jönsson

TonyFest, Lincoln, 22 August 2015

CHALMERS Xe 5p 2-photon 1-electron ionisation

2.5

3.0

CHALMERS Canonical 3-step Harmonic Generation (HHG)

1. Quasi-static Ponderomotive field ionisation

HHG resonant enhancement

HHG enhancement due to 4d-f collective resonance

Stefan Pabst and Robin Santra

Wendin: 4d-f collective resonance enhancement

Left: Frolov, ..., Starace, PRL, 2009.

TonyFest, Lincoln, 22 August 2015

From Atomic Many-Body Physics to Quantum Computing

CHALMERS Quantum computing challenges

- Coherence
- Superposition
- Parallelism
- Entanglement
- Scaling up
- Beating Nature

QC solves problems by generating and interpreting **dynamics of quantum wave patterns** in registers of quantum bits (qubits;) – "quantum matter"

Schrödinger cat problem: Keeping a large quantum memory alive "forever"

Needs sophisticated technology High-fidelity gate operations Quantum Error Correction (QEC)

CHALMERS Status of Quantum computing

What are different types of quantum computers?

Only small systems for proof-of-concept exist - "toy QC":

- NMR (12 qubits)
- Ion traps (14 qubits)
- Superconducting Transmon qubits-circuit-QED (9 qubits)
- Spins in diamond NV centers (6 qubits)
- Photonics (6 qubits?)

NOTE: The incoherent(?) D-Wave 1100 flux-qubit machine is not a QC – probably represents a QA (quantum annealer)

Hybrid cavity/circuit QED

Processing - memory – communication

Picture adapted from Peter Zoller et al. (2005)

Applications

* What are the applications and implications of quantum computing?

Short/medium term:

Optimisation, quantum annealing for Ising models Simulation of problems in Physics beyond the reach of classical computers

Long-term: Analog computing: simulation, Ising models, Chemistry, ... Digital computing: Big data, search, machine learning Simulation of problems in Chemistry and Materials science

Computational Complexity

MC-2

Computational Complexity

Figure 2: Borrowed from Scott Aaronson, Sci. Am. 2005

Unconventional computing

Unconventional Computation -- UCOMP

Hypercomputation = beyond Turing quantum computing,

optical computing, analogue computing, chemical computing, reaction-diffusion systems, molecular computing, biocomputing, embodied computing, amorphous computing, self-assembling and self-organising computers, mem-computing

Can UCOMP solve NP-hard problems ??

There is a widespread(?) view that you can solve NPhard problems with UCOMP.

E.g. the Adleman's DNA solution of the Travelling Salesman (TSP) problems in 1994 indeed solved a small NP-hard problem.

TSP an NP-hard problem, but it is all about SCALING and hard instances.

One way or another, ultimately you will need exponential resources (time or space).

Even for Quantum Computers.

Solve NP-hard problems?

So, there is a widespread view that you can solve NPhard problems with UCOMP

Solve NP-hard problems? ... hardly!!

But then there is also

Wendin's Laws of Computing: 🕲

"1st Law":

"You don't solve NP-hard problems unless you have an ORACLE giving you a solution to be verified."

"2nd Law":

"You don't have any ORACLE, and you will never get one".

"3rd Law":

Nature is physical and does not solve NP-hard problems

The Problem:

- Nature is physical and does not solve NP-hard problems
- Many physical problems are NP-hard (e.g. the exact ground state wave function of a molecule, or the exact Kohn-Sham density functional.
- The Brain (?)

How come we exist ... ??

- I guess Nature is
- An analog "computer/simulator"
- Optimising things
- Providing approximate solutions
- Evolution does the rest

CHALMERS Qubit register - both memory and processor

Quantum computing means performing operations directly on the qubit memory:

Driving individual qubits with

- static electric & magn. fields
- Microwave transmission lines
- lasers

Coupling pairs of qubits by

- hardwired circuits
- Driving/biasing fields switched on and off

Reading out the state of a selection of qubits (memory) by

- switching on and off coupling to measurement devices

Digital QC: Gate operations, protocols, algorithms **Analog QC:** Optimization – toward minimum in energy landscape

CHALMERS Qubit register - both memory and processor

Digital QC: Gate operations, protocols, algorithms

Analog QC: Optimization – toward minimum in energy landscape

$$\begin{split} \hat{H}(t) &= \hat{H}_{syst}(t) + \hat{H}_{noise}(t) + \hat{H}_{ctrl}(t) \\ \hat{H}_{syst}(t) &= -\frac{1}{2} \sum_{\nu i} \Delta_i(t) \ \sigma_{zi} \ + \sum_i g_i(t) \ \sigma_{xi} \ (a+a^+) \\ &+ \frac{1}{2} \sum_{i,j;\nu} \lambda_{\nu,ij}(t) \ (\sigma_{+i}\sigma_{-j} + \sigma_{-i}\sigma_{+j}) \end{split}$$

$$|\psi(t)\rangle = \hat{U}(t,t_0)|\psi(t_0)\rangle = e^{-\frac{i}{\hbar}\int_{t_0}^t \hat{H}(t')dt'}|\psi(t_0)\rangle$$

CHALMERS Qubit memory register of spins (like e.g. in NMR)

 $|\psi\rangle = a_1 |0\rangle + a_2 |1\rangle$ (vector sum)

N-(qu)bit register: 2^N configurations (e.g. 1 Byte, 2⁸ = 256 states)

Classically: One at a time: 0..00, or 0..01, or 0..10, .. or 1..11

Quantum: Superposition of all 2^{N} configurations \rightarrow $|\psi\rangle = a_1 |0..00\rangle + a_2 |0..01\rangle + a_3 |0..10\rangle + ... + a_{(2^{N}-1)} |1..11\rangle$ (1 coher. state – 1 vector !!)

⇒ Coherence, superposition, parallelism, entanglement
 ⇒ Non-classical correlations - "spooky action at a distance"

Coupled transmon qubits

3 Tmon-cQED Circuit/cavity QED Resonator coupling

2 Tmons (Xmon), Capacitive coupling

Martinis group, UCSB (2014)

TonyFest, Lincoln, 22 August 2015

CHALMERS Quantum computing results (2015)

First steps toward QEC with the Surface Code

Martinis group, UCSB (2014)

CHALMERS The Surface Code Architecture, UCSB

TonyFest, Lincoln, 22 August 2015