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FeW-bOdy treatment Of the plotted versus 2 hyperangles

Quantum Hall problem
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In this talk, we:

Formulate the 2D system of
electrons on the plane in a B-field
using collective hyperspherical
coordinates

Show a correlation between
fractional quantum Hall states and
states of exceptional degeneracy

Rachel Wooten




Professor Starace wrote to me in 1977 when |
joined Ugo Fano’s research group in Chicago,
with some crucial comments and advice:

1. You are now going to be part of a close-knit
group of theorists, the “Fano School”

2. Read everything you can get your hands on;
even if you don’t understand it at first, this
will pay dividends in the future

3. Don’t be shy about coming up with your own
ideas outside of your thesis work with Fano,
and publishing it separately



Tony always made it clear that he
hoped | would one day be
outstanding in my field, and....



Tony always made it clear that he hoped | would one day
be outstanding in my field, and you can see that
yesterday | was indeed out standmg |n my fleld
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My 3 joint papers with Tony
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Parallels between high doubly excited state spectrain H™ and
Li~ photodetachment

Cheng Pani, Anthony F Staracet and Chris H Greene}

T Department of Physics and Astronomy, The University of Nebraska, Lincoln, NE 68588-
0111, USA
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PHYSICAL REVIEW A VOLUME 53, NUMBER 2 FEBRUARY 1996

Photodetachment of Li — from the Li 3s threshold to the Li 6s threshold

Cheng Pan and Anthony F. Starace
Department af Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 65588-0111

Chris H. Greene
Department af Physics and Joint Institute for Laboratory Astrophysics, The University of Colorado, Boulder, Colorado 80309-0440
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Comment on “Fano Line Shapes Reconsidered: € Starace. Winstead
Symmetric  Photoionization Peaks from Pure ?

Continuum Excitation™
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Tony with Shinichi Watanabe, 1999 ICPEAC in Japan
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Microscopic origin of the fractional QHE states
Can they emerge systematically without guessing
wavefunctions?

What are quasi-particles?
How many electrons make up a quasi-particle, and how do their
fractional charge and unusual statistics emerge?

Do properties of the non-interacting 2D free electron gas with no interactions
determine whether a given filling factor yields a measurable FQHE state?

Whereas the full many-body Schroedinger equation is a linear PDE, many-
body treatments such as mean-field theory are nonlinear. How can this linear
&2 nonlinear relationship be understood more deeply?

Since the FQHE is heralded as the prototype STRONGLY CORRELATED
SYSTEM, can insights emerge from describing the system in COLLECTIVE
COORDINATES rather than as independent electrons?



Physics is often about exploring phenomena from different
points of view, i.e. different TOOLKITS. One example is the
‘few-body hyperspherical toolkit”

First of all, note that there have been many notable successes
of hyperspherical coordinate treatments by Macek, Fano, Lin,
and others, especially in the Fano school:

Fano Group theses using hyperspherical coordinates:
Ravi Rau, 1971

Chii-Dong Lin, 1974

C H Greene, 1980

Shinichi Watanabe, 1982

Michael Cavagnero, 1988

John Bohn, 1992

Some recent successes also include the treatment of 3-body and 4-
body recombination processes and Efimov physics (CHG, Physics
Today 2010)



SINGLE PARTICLE HAMILTONIAN

1 9 arxiv:1504.07884
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N-BODY RELATIVE HAMILTONIAN
Hy = Hoy + Hiel
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group is O(2N-2)
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Hwvperspherical coordinate transformation

pr.imil  polma|  pslmal  pw 1. Ml

<The “Jacobi Tree” used to

¥i X define the hyperangular
\V coordinates
Py lm;| And the squared hyperradius is
defined by
n*]
= >/
\ k=1 F‘a
tan Ct; This can be deflned for
Jﬂ.} +1 any N-particle problem,

and it is proportional to
the trace of the moment
of inertia tensor.

arXiv:15049 . 0788
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non-interacting relative Hamiltonmian
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K 1s called the grand angular momentum operator

The eigenstates of K2 are the hyperspherical harmon-

ics, ® [M {ﬂ] where

K?3")(Q) = K(K + 2N — 2)357(92)

The final quantum number K here is called the “grand angular
momentum quantum number”, K = |M|, |M|+2, |M|+4, ....



Or for general NV, where Ny = N — 1:
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and in hypersphencal form

: Refs: Smirnov
r 1~

HEW 1—[ sinkeay, cosMeila, PREEDIMlco520,)) & Shitkova, or
_ see Avery book

=1

where the P are Jacobi polynomials and the K are K = |mil,

sub-hyperangular ’quantum numbers’, defined recursively as

K, =2n;1 + Ky + |my].

In the lowest Landau level, the equations simplify in that all of
the 7, = 0 such that the Jacobi polynomials are all unity.

In Macek’s (1968, J Phys B) adiabatic hyperspherical representation, we
can transform the d-dimensional Schroedinger equation into motion
along a system of coupled 1D potential energy curves U.(R)

This technique has given qualitative insight and quantitative predictive
power in many other systems (e.g. universal Efimov physics for 3, 4, or 5
particles, the few-nucleon problem, the Ps, system, etc.)

See, e.g. Rittenhouse et al. topical review, J. Phys. B 44, 172001 (2011)



Strategy of Macek’s adiabatic hyperspherical representation:
convert the partial differential Schroedinger equation into an
infinite set of coupled ordinary differential equations:

1 r]j ‘k :
TO solve: ﬁ

— ~+ -+ V(R.0.¢)
2pn gR? 2 uR?

{JFIE:E{;FIE

First solve the fixed-R
Schroedinger equation, for
eigenvalues U (R):

A? 15
~+ S+ VI(R.6.¢)
2R BuR~

& (R:Q)=U,(R)P,(R:Q))

Next expand the desired SOIUtON e /s (R () ) = E F,-(R)D (R:Q)
into the complete set of adiabatic | ” |

eigenfunctions
And the original T.I.S.Eqn. is transformed into the following

set which can be truncated on physical grounds, with the
eigenvalues interpretable as adiabatic potential curves, in
the Born-Oppenheimer sense. /
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Joe Macek’s (1968 JPB) adiabatic
hyperspherical picture gave insight into why
only one series of autoionizing states is seen

in He photoabsorption near the n=2
threshcld, instead of three.

O rP =
3 1| 2\3 12\ \3
& -1-0- -0k
§ v/
bﬂ.
|
-2:0- | ~2:01- !
0 5 [0 0 5 |10
R (au.} R (au)

Figure 1. Graphs of — U ,(R)/R? against R for *S®, *S¢, 'P° and °P° cases. The Oth
curve (ground state) is not shown. Positions of the lowest member of the Rydberg
series of autoionizing states for each curve are marked by a horizontal line,



Universality, from nuclear scale 10
energies to the chemical - ‘He+'He+'He
50 |
Adiabatic potential curves for n+n+p, -
in collaboration with Alejandro X ‘ -
Kievsky and Kevin Daily, nuclear S oof m——
physics on 106 eV scale (FBS 2015) = _ \
b dHe2+4He
¢ N =50
_ Atomic physics
Adiabatic Energy versus hyperradius
20 \ S 2lo | 4IOR S5 6|0 | slo 100
S T
0
—207 Nuclear physics ’ 3-atom hyperspherical
U((R) potential curves for
MeV arXiv:1503.05978, 2015 7 sc:f;I;l:;ll(-lsevoe?ya;i?rﬁleto
& Few-Body Systems _ the 3-nucleon potentials
’ : o( - 15 20 Extensively used to
— L\ 7 perva (S ({:M\ understand universal
Efimov physics
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Now apply this adiabatic
hyperspherical method to the
quantum Hall problem
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How to define the “filling factor”

AT 2
) i {HE} ] - [_wllr — 1}TL,
¢p = h/ein S.1. units - INre = E“
fundamental flux quantum
Typical 5 = 2.4 3 10 em 2 AN
Gans: | e N(N —1)
| 2K
the v = 1 quantum
=HYPERSPHERICAL

Hall state is found at a m: wgnetic field near B = 10T and
the v = 1/3 state occurs around the much higher field

B = 29T,

FILLING FACTOR



Potential energy curves for N noninteracting electrons in 2D in a B-field

(K+J:— %)(K+i-\T_ ) C}L“Lf] 1
2 1IR? 8
Antisymmetrization has been carried out, and \ This term vanishes if

most curves shown are hlghly degenerate no Coulomb
10— 71— .\ \ — — interactions. These C

L‘TKHJ;(R) = -|- LJM

Potentlal curves for N 3 \ are eigenvalues of the

energy versus R in Coulomb interaction
cyclotron units for C=0, within a degenerate
NO COULOMB K,M-space

e? 1
]  Amedg hw,

Channels associated
with the lowest Landau

EH=0.hwc level, K=-M=|M|

|||I|||I||I|I"|""“ R, hyperradius in
0 2 4 6 8 0 & cyclotron units




N=3, M=-9, k=0 Noninteracting states for
K=|M|=9,11,13,15,..., corresponding
to LL = 0,1,2,3, ... resp.

]

Non-interacting three-body system in magnetic units.

o |
oS 3t * shows single-particle energy spacing
E i * each potential supports an infinite number of bound states
= 2' * location of minima indicate “size” of bound state —
D <] ] \

Single particle
Landau spacing

K=9

1} hyperangular
[ quantum number

0_
0 2 12 14
Weakly-interacting three-body system in magnetic units.
+ colored to distinguish different K-manifolds
* shows single-particle energy spacing is larger than that of interactions
N=3 * indicates K-manifolds are, in general, degenerate
Single particle
Landau spa cin g
- < '.
- Spliting due to - _-%" i The lower hyperangular
| weak interactions T wavefunction here has a 99%
0 2 4 6 & 10 12 14 overlap with the 1/3 Laughlin wfn



PHYSICAL REVIEW B VOLUME 27, NUMBER 6 15 MARCH 1983

Quantized motion of three two-dimensional electrons in a strong magnetic field

R. B. Laughlin
University of California, Lawrence Livermore National Laboratory, Livermore, California 94550

We have found a simple, exact solution of the Schrodinger equation for three two-
dimensional electrons in a strong magnetic field, given the assumption that they lie in a sin-
gle Landau level. We find that the interelectronic spacing has characteristic values, not
dependent on the form of the interaction, which change discontinuously as pressure is ap-
plied, and that the system has characteristic excitation energies of approximately 0.03e?/a,,

where g, is the magnetic length.
3386 R. B. LAUGHLIN 27

TABLE I. Coulomb matrix elements across the states |m,n } defined by Eq. (18) in units of (3/V2)/(e?/a,). Quan-

tum numbers m,n are indicated in parenthesis. M =3m +2n is the total angular momentum. There are no states of
M=0,1,2,or4.
M =3 (1,0) 5.6790797x 10! o ] ] ]
M =5 (1,1) 4.9783743x 10" Next Laughlin diagonalizes this matrix,
ﬁ ='§; ﬁg; ﬁg: g;gX:g': i.e. applies degenerate perturbation
= s R hod - . .
M =9 (3,0 3.4017834 10~ 130614011072 g

(1,3) 1.306 1401 x 10~* 4.0872620x 10!



TESTING ADIABATICITY

Comparison of energy level calculations in the adiabatic
hyperspherical approximation with the Laughlin method
(1983 Phys. Rev. B first row) which does degenerate
perturbation theory in all degrees of freedom

| N/ 3.9 3.15 4.18 5.30

|1 AE. Perturbation Theory 0.716527 | 0.55248 | 1.30573 | 2.02725
2 AFE, Degenerate fixed-K 0.704637 | 0.54792 | 1.28552 | 1.99742
3 \Z, Born-Oppenheimer (lower bound®) | 0.70198 | 0.54722 | 1.28086 | 1.99226
'4 AFE, Adiabatic (upper bound) 0.70204 | 0.54723 | 1.28092 | 1.99230

Row 1: degenerate perturbation theory in all coordinates (as in Laughlin, 1983,
PRL; agrees with his numbers to all 8 digits; and Jain et al. 2006 arXiv for N=4,5)
Row 2: degenerate perturbation theory in the hyperangular degrees of freedom
only, followed by exact solution in R

Row 3: full Born-Oppenheimer calculation, treating R adiabatically, giving lower
bound (if converged) to the ground state energy

Row 4: full adiabatic approximation including repulsive “diagonal correction
term” (dA2/dRA2), giving an upper bound to the ground state energy



Filling factor, nu - 1/3 1/5 1/3 1/3 1/3
N—M 3.9 3.15 4,18 5.30 6.45
AE' Haldane sphere, fit, extrapolation 0.71656 0.5526 1.310 2.04 Az 3
AFE, Planar calculations [47, 48] 0.716527 0.55248 1.30573 2.02725 2.86015
AE, Perturbation Theory 0.716527 0.55248 1.30573 2.02725 2.86015
AF, Degenerate fixed-K 0.704637 0.54792 1.28552 1.99742 2.81994
AF, Born-Oppenheimer (lower bound*) 0.70198 0.54722 1.28086 1.99226* -
AFE, Adiabatic (upper bound) 0.70204 0.54723 1.28092 1.99230 —

Energy level calculations in our hyperspherical coordinate
picture, compared with previous calculations of quantum Hall
effect pioneers Laughlin (1983 PRB) and Jain(arXiv:2006)

The lower bound calculations neglect the diagonal adiabatic

correction term, which as shown by Starace and Webster (1979)

must bound each exact energy level from below.

The upper bound calculations conform to the usual Rayleigh-
Ritz variational principle and are guaranteed to give energies
higher than or equal to the exact energy levels.



Potential energy landscape at fixed hyperradius for 6 particles, in a
configuration that minimizes the classical potential energy (left)

After minimization, this (right) figure shows the potential energy as the
6t particle is allowed to move throughout the plane at fixed R




Minimum quantum Coulomb potential eigenvalues
for lowst K=|M| (lowest Landau level) for 6 particles,
showing their trend towards the classical minimum
potential energy (magenta point) as K increases

Coulomb Eigenvalue
t ) o W
L L =N Ln =41
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Eigenenergies for 4 particles after
quantizing also in the hyperradius R

A |QH

N=4. k=1/2
113/
10 20 30 a0 50
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=-M=9 for N=3
This 1/3 Laughlin
eigenstate has a
strong peak at an
equilateral triangle
configuration,
where electrons
can stay as far
apart as possible,
minimize repulsion

K= -M=10 for N=3
This non-FQHE
eigenstate has a
deep minimum at an
equilateral triangle
configuration




On the role of eXceptional degeneracy: e.g., from group theory,
the number of antisymmetric states for 4 particles in states with K=|M|
turns out to be the following:

ME 1 1 2m|M| g (o (T IM] | M|
L R 1 —1}|H|+—[mms[ ]—9(—1;-- [—I—sm[ ]+-l-|:ns[ ]+3]—1]
8 16" ) 288 3 3 3

2 1 2 1 2 1 2 1

1 3 2 5 3 [ 4 9 5

Note: the “hyperspherical
filling factor”, which
agrees with the usual

definition for integer QHE

—
[ 5,1
T T T T T T

N=4 electrons

-~ I
5 | and the Laughlin FQHE
3 10 states, is given by
=

3! 2K

-l
| b2

—
| mal
I—'l

P
| =



Connection between the high relative degeneracy

states having known filling factors seen

theory (Laughlin, Jain, etc.)

experimentally and in

105' 1 1I 22 i 2 2 i 22_ i_

. P 3 ?—; > 1113 7 1517 9

- __...‘1. o A a4 *® ".‘-'--j

o> 0.95 : S . i .
(b . e . ®

[®) . * i

2 o085 - :

. N=6 electrons |

0.75L oo ' ' '

15 45 75 105 135



1 1

N —M VOF VHS ooz — 753)
3 j ! ! E Connections between
15 1 0 hyperspherical and
1 6 1 1 0 conventional filling
. 2 1 _1
; ; 7 factors for known
2 2 - FQHE states for 3,4,
30 5 ; 0 and 6 electrons
G 15 1 1 0
27 2 2 —36
33 7 %
45 : - 0
T:J i: ]Lj; ﬂ][]

TABLE 1. Sample list of identified N-body quantum Hall
states in the lowest Landau level. M is the total relative
azimuthal quantum number of Laughlin and Jain states iden-
tified by exact numerical diagonalization in a spherical geom-
etry [6]. rop gives the filling factor of identified QH states
according to the Jain composite fermion picture, including a
correction that accounts for the finite size shift associated with
the spherical geometry. 1y s is the calculated hyperspherical
filling factor, given by Eq.(34). The final column gives a finite
size correction to the hyperspherical filling factor.



Energy spectrum after solving for the hyperradial vibrational degree of
freedom, as a function of magnetic field. The B-field magnitude
correlates with the maximum hyperradius used in the radial calculation

according to the formula Energy vs. Magnetic field

o 012 <=0

(@) “an
3

- K=45 ——

E 011

s = —
- S —
X 0.1 - KM=9-3 i
X o =
< it

I M=12-10 ——
c 0.09 i B——
— ,i::'id:114?,"-1121 —

I M=15-13 ——
; M=16-14 ——
o 0.08 r 2
S
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2

© 0.07 + -
L | | | | | | |

0 5 10 15 20 25 30 35 40

Rmax = 2.65*Sqrt(Bfield) Magnetic field (Tesla)



“Devil’s Staircase” showing
lowest energy state for 6
electrons with density,
effective mass, and dielectric
constant parameters
appropriate for a typical GaAs
experiment in the fractional
quantum Hall effect.

Interestingly, the 5/13 state that
emerges from the 6 electron
calculation (M=-39) is one state in
particular that does not emerge
naturally in the Jain composite
fermion picture. On the Haldane
sphere (for experts) it corresponds to
2Q=13, with 1 completely filled
composite fermion Landau level 0 +
a partially filled Landau level 1 that
holds the extra quasi electrons,
which interact to form pairs. See
Quinn&Quinn, SSCommun 2006
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Fractional Quantum Hall Effect of Composite Fermions

W. Pan'?, H.L. Stormer®?, D.C. Tsui!, L.N. Pfeiffer!, K.W. Baldwin?, and K.W. West*
! Department of Electrical Engineering, Princeton University, Princeton, New Jersey 0854
2National High Magnetic Field Laboratory, Tallahassee, Florida 32310
* Department of Physics and Department of Applied Physics, Columbia University, New York, New York 10027
*Bell Labs, Lucent Technologies, Murray Hill, New Jersey 07974
(January 13, 2014)

In a GaAs/AlGaAs quantum well of density 1 x 10" em™

% we observed a fractional quantum Hall

effect at v = 4/11 and 5/13, and weaker states at v = 6/17,4/13,5/17, and 7/11. These sequences
of fractions do not fit into the standard series of integral quantum Hall effects (IQHE) of composite
fermions (CF) at v = p/(2mp £ 1). They rather can be regarded as the FQHE of CF's attesting to
residual interactions between these composite particles. In tilted magnetic fields the »» = 4/11 state

1.5 1

1.0 +

0.5+

T~ 35 mK

10

45
1317

|
|

7

0.0

19
T T LA L LA R B
6 7 8 9 10 11 12 13 1

MAGNETIC FIELD [T]

4

Experimental observation of
some states that challenge the
first-order composite fermion

theory, in which the CF’s are

noninteracting;
condmat/0303429



Conclusions

1. A hyperspherical mapping provides a systematic, microscopic way
to tackle fractional qguantum Hall states

2. The usual Laughlin and Jain states (and possibly others) correlate
closely with the symmetries having an exceptional degeneracy for
noninteracting fermions

3. Since these states are identifiable by a property of honinteracting
electrons, it should be possible to probe these exceptional
degeneracy states in other ways, e.g. without a magnetic field, or
with neutral, ultracold polarized fermionic (or bosonic atoms)

4. One can use the approximate separability of the hyper-radial
coordinate to predict a class of excitation frequencies, almost
trivially.

5. Further study is needed to understand more detailed properties of
the eigenstates, such as the fractional nature of charge carriers, the
nature of quasi-particles, etc.

15 ~Fo



Thanks, Tony, for playing such a crucial
and supportive role for me over the years,

both personally and professionally! And
HAPPY BIRTHDAY!!
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Tony with Shinichi Watanabe, Keystone 2015

Shin also sends his happy celebratory greeting to this occasion!



