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In this talk, we: 
• Formulate the 2D system of 

electrons on the plane in a B-field 
using collective hyperspherical 
coordinates

• Show a correlation between 
fractional quantum Hall states and 
states of exceptional degeneracy

3 particle Laughlin  1/3 state 
plotted versus 2 hyperangles

Rachel Wooten

Kevin Daily



Professor Starace wrote to me in 1977 when I 
joined Ugo Fano’s research group in Chicago, 
with some crucial comments and advice:

1. You are now going to be part of a close-knit 
group of theorists, the “Fano School”

2. Read everything you can get your hands on;  
even if you don’t understand it at first, this 
will pay dividends in the future

3. Don’t be shy about coming up with your own 
ideas outside of your thesis work with Fano, 
and publishing it separately



Tony always made it clear that he 

hoped I would one day be 

outstanding in my field, and….



Tony always made it clear that he hoped I would one day 

be outstanding in my field, and you can see that 

yesterday I was indeed out standing in my field.



Cooper, CHG, Langhoff, 
Starace, Winstead

My 3 joint papers with Tony



Tony with Shinichi Watanabe, 1999 ICPEAC in Japan



Motivations

Microscopic origin of the fractional QHE states 
Can they emerge systematically without guessing 

wavefunctions?

What are quasi-particles?
How many electrons make up a quasi-particle, and how do their 

fractional charge and unusual statistics emerge?

Do properties of the non-interacting 2D free electron gas with no interactions 
determine whether a given filling factor yields a measurable FQHE state?

Whereas the full many-body Schroedinger equation is a linear PDE, many-
body treatments such as mean-field theory are nonlinear.  How can this linear 
�� nonlinear relationship be understood more deeply?

Since the FQHE is heralded as the prototype STRONGLY CORRELATED 
SYSTEM, can insights emerge from describing the system in COLLECTIVE 
COORDINATES rather than as independent electrons?



Physics is often about exploring phenomena from different 

points of view, i.e. different TOOLKITS.  One example is the 

“few-body hyperspherical toolkit”

First of all, note that there have been many notable successes 

of hyperspherical coordinate treatments by Macek, Fano, Lin, 

and others, especially in the Fano school:

Fano Group theses using hyperspherical coordinates:

Ravi Rau, 1971

Chii-Dong Lin, 1974

C H Greene, 1980

Shinichi Watanabe, 1982

Michael Cavagnero, 1988

John Bohn, 1992

Some recent successes also include the treatment of 3-body and 4-
body recombination processes and Efimov physics  (CHG, Physics 
Today 2010)



Natural magnetic units 
we use throughout:

Length:Frequency:

Energy:

���� Single particle energy levels



���� N-body reduced mass

The 4 relative Jacobi vectors that 
characterize a 5-particle system in 2D:

Linear transformation matrix 
between the independent particle 
coordinates and the Jacobi 
relative+CM coordinates:

d=2N-2 
dimensional 

space, symmetry 
group is O(2N-2)



�The “Jacobi Tree” used to 

define the hyperangular

coordinates

And the squared hyperradius is 

defined by:

This can be defined for 

any N-particle problem, 

and it is proportional to 

the trace of the moment 

of inertia tensor.  



The final quantum number K here is called the “grand angular 
momentum quantum number”, K = |M|, |M|+2, |M|+4, …. 



In Macek’s (1968, J Phys B) adiabatic hyperspherical representation, we 
can transform the d-dimensional Schroedinger equation into motion 

along a system of coupled 1D  potential energy curves Ui(R)

This technique has given qualitative insight and quantitative predictive 
power in many other systems (e.g. universal Efimov physics for 3, 4, or 5 

particles, the few-nucleon problem, the Ps2 system, etc.)

See, e.g. Rittenhouse et al. topical review, J. Phys. B 44, 172001 (2011)

Refs: Smirnov 
& Shitkova, or 
see Avery book 



Strategy of Macek’s adiabatic hyperspherical representation:  
convert the partial differential Schroedinger equation into an 
infinite set of coupled ordinary differential equations:

To solve: 

First solve the fixed-R 
Schroedinger equation, for 
eigenvalues Un(R):

Next expand the desired solution             
into the complete set of adiabatic 
eigenfunctions

And the original T.I.S.Eqn. is transformed into the following 
set which can be truncated on physical grounds, with the 
eigenvalues interpretable as adiabatic potential curves, in 
the Born-Oppenheimer sense.



Joe Macek’s (1968 JPB) adiabatic 
hyperspherical picture gave insight into why 
only one series of autoionizing states is seen 

in He photoabsorption near the n=2 
threshold, instead of three.



Adiabatic potential curves for n+n+p, 
in collaboration with Alejandro 

Kievsky and Kevin Daily, nuclear 
physics on 106 eV scale (FBS 2015)

U((R)

MeV

3-atom hyperspherical 
potential curves for 

He+He+He on a 10-3 eV 
scale, looks very similar to 

the 3-nucleon potentials

Extensively used to 
understand universal 

Efimov physics

Universality, from nuclear scale 
energies to the chemical

Nuclear physics

Atomic physics

arXiv:1503.05978,  2015 
Few-Body Systems



Now apply this adiabatic 
hyperspherical method to the 

quantum Hall problem

How to define the “filling factor”:

Typical 

GaAs:

=HYPERSPHERICAL 
FILLING FACTOR



Potential energy curves for N noninteracting electrons in 2D in a B-field

R, hyperradius in 
cyclotron units

Potential curves for N=3, 
energy versus R in 

cyclotron units for C=0,
NO COULOMB

Channels associated 
with the lowest Landau 
level, K=-M=|M|

�

This term vanishes if 
no Coulomb 

interactions.  These  C 
are eigenvalues of the 
Coulomb interaction 
within a degenerate 

K,M-space

Antisymmetrization has been carried out, and 
most curves shown are highly degenerate



The lower hyperangular
wavefunction here has a 99% 
overlap with the 1/3 Laughlin wfn

Noninteracting states for 
K=|M|=9,11,13,15,…, corresponding 
to      LL  =   0, 1, 2, 3, … resp.

N=3



Next Laughlin diagonalizes this matrix, 
i.e. applies degenerate perturbation 
theory in all coordinates



Comparison of energy level calculations in the adiabatic 
hyperspherical approximation with the Laughlin method 

(1983 Phys. Rev. B first row) which does degenerate 
perturbation theory in all degrees of freedom

1

2

3

4

Row 1:  degenerate perturbation theory in all coordinates (as in Laughlin, 1983, 
PRL;  agrees with his numbers to all 8 digits; and  Jain et al. 2006 arXiv for N=4,5)
Row 2:  degenerate perturbation theory in the hyperangular degrees of freedom 
only, followed by exact solution in R
Row 3:  full Born-Oppenheimer calculation, treating R adiabatically, giving lower 
bound (if converged) to the ground state energy
Row 4:  full adiabatic approximation including repulsive “diagonal correction 
term” (d^2/dR^2), giving an upper bound to the ground state energy

TESTING ADIABATICITY



Energy level calculations in our hyperspherical coordinate 
picture, compared with previous calculations of quantum Hall 
effect pioneers Laughlin  (1983 PRB) and Jain(arXiv:2006)

The lower bound calculations neglect the diagonal adiabatic 
correction term, which as shown by Starace and Webster (1979) 
must bound each exact energy level from below.

The upper bound calculations conform to the usual Rayleigh-
Ritz variational principle and are guaranteed to give energies 
higher than or equal to the exact energy levels.

1/3 1/3 1/3 1/31/5Filling factor, nu    �



Potential energy landscape at fixed hyperradius for 6 particles, in a 
configuration that minimizes the classical potential energy (left)

After minimization, this (right) figure shows the potential energy as the 
6th particle is allowed to move throughout  the plane at fixed R



Minimum quantum Coulomb potential eigenvalues 
for lowst K=|M| (lowest Landau level) for 6 particles, 
showing their trend towards the classical minimum 
potential energy (magenta point) as K increases



Eigenenergies for 4 particles after 
quantizing also in the hyperradius R



K= -M=9  for N=3 

This 1/3 Laughlin 

eigenstate has a 

strong peak at an 

equilateral triangle 

configuration, 

where electrons 

can stay as far 

apart as possible, 

minimize repulsion

K= -M=10  for N=3 

This non-FQHE 

eigenstate has a 

deep minimum at an 

equilateral triangle 

configuration



On the role of exceptional degeneracy:  e.g., from group theory, 

the number of antisymmetric states for 4 particles in states with K=|M| 
turns out to be the following:

Note:  the “hyperspherical 
filling factor”, which 
agrees with the usual 

definition for integer QHE 
and the Laughlin FQHE 

states, is given by 

N=4 electrons



Connection between the high relative degeneracy 

states having known filling factors seen 

experimentally and in theory (Laughlin, Jain, etc.)

N=6 electrons



Connections between 
hyperspherical and 
conventional filling 
factors for known 

FQHE states for 3,4, 
and 6 electrons



Energy spectrum after solving for the hyperradial vibrational degree of 

freedom, as a function of magnetic field.  The B-field magnitude 

correlates with the maximum hyperradius used in the radial calculation 

according to the formula 

Rmax = 2.65*Sqrt(Bfield)



“Devil’s Staircase” showing 
lowest energy state for 6 
electrons with density, 

effective mass, and dielectric 
constant parameters 

appropriate for a typical GaAs
experiment in the fractional 

quantum Hall effect.

2/3

2/5

5/13
1

1/3

Interestingly, the 5/13 state that 

emerges from the 6 electron 

calculation (M=-39) is one state in 

particular that does not emerge 

naturally in the Jain composite 

fermion picture.  On the Haldane 

sphere (for experts) it corresponds to 

2Q=13, with 1 completely filled 

composite fermion Landau level 0 + 

a partially filled Landau level 1 that 

holds the extra quasi electrons, 

which interact to form pairs.  See 

Quinn&Quinn, SSCommun 2006

Black:  hypersph. filling 

fractions

Blue:  conventional FF



Experimental observation of 
some states that challenge the 
first-order composite fermion 
theory, in which the CF’s are 

noninteracting;
condmat/0303429



Conclusions

1. A hyperspherical mapping provides a systematic, microscopic way 
to tackle fractional quantum Hall states

2. The usual Laughlin and Jain states (and possibly others) correlate 
closely with the symmetries having an exceptional degeneracy for 
noninteracting fermions

3. Since these states are identifiable by a property of noninteracting
electrons, it should be possible to probe these exceptional 
degeneracy states in other ways, e.g. without a magnetic field, or 
with neutral, ultracold polarized fermionic (or bosonic atoms)

4. One can use the approximate separability of the hyper-radial 
coordinate to predict a class of excitation frequencies, almost 
trivially.

5. Further study is needed to understand more detailed properties of 
the eigenstates, such as the fractional nature of charge carriers, the 
nature of quasi-particles, etc.



Zee end

Thanks, Tony, for playing such a crucial 
and supportive role for me over the years, 
both personally and professionally! And 
HAPPY BIRTHDAY!!



Tony with Shinichi Watanabe, Keystone 2015

Shin also sends his happy celebratory greeting to this occasion!


