Matter-wave Vortices

J. M. Ngoko Djiokap

Department of Physics \& Astronomy
University of Nebraska-Lincoln
Lincoln, USA
Phys. Rev. Lett. (in press)

Collaborators

1. Anthony F. Starace

Department of Physics \& Astronomy, University of Nebraska-Lincoln, USA
2. Suxing Hu

Laboratory for Laser Energetics, University of Rochester, USA
3. Lars B. Madsen

Department of Physics and Astronomy, Aarhus University, Denmark
4. Nikolai L. Manakov and Alexei V. Meremianin

Department of Physics, Voronezh State University, Russia

Outline

\square Background and Motivation
■ Electron matter-wave vortex patterns in momentum distribution by circularly-polarized attosecond pulses
$\square \mathrm{He}+(\hbar \omega-\tau-\hbar \omega) \rightarrow \mathrm{He}^{+}(1 \mathrm{~s})+\mathrm{e}^{-}$
■ Predicted using Perturbation Theory

- Demonstrated numerically by solving the 6-D TDSE
\square Sensitivity to time-delay between the pulses, their relative CEP, handedness, duration, and peak intensity
\square Connection to (i) vortices in the probability distribution, and (ii) optical vortices (wave-particle duality)

■ Conclusions

1. Background and Motivation

Background and Motivation

J.M. Ngoko Djiokap et al., Phys. Rev. Lett. 113, 223002 (2014).
\square TDSE: $i \partial_{t} \Phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, t\right)=H(t) \Phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, t\right)$
■ Linear polarization: 5-D problem as M is conserved
■ FE-DVR + Split-operator
■ Elliptical polarization: 6-D problem (M-mixing problem)
■ H.G. Muller, Laser Physics 9, 138 (1999)
■ T. K. Kjeldsen et al., Phys. Rev. A 75, 063427 (2007)
■ The electric field seen by an observer in the rotating frame is always linearly-polarized
\square At each τ : Atomic int in Lab frame - Rotate - Laser int in Rot frame - Rotate Back - Atomic int in Lab frame

N. F. Ramsey, Phys. Rev. 78, 695 (1950). Ramsey interference of laser-produced electron wave packets has been investigated

\square in the continuum

1. M. Wollenhaupt et al., PRL

89, 173001 (2002)
2. Suxing and Starace, PRA 68, 043407 (2003)

■ in the Rydberg states

1. L. D. Noordam, D. I. Duncan, and T. F. Gallagher, Phys. Rev. A 45, 4734 (1992)
2. M. Strehle, U.

Weichmann, and G.
Gerber, Phys. Rev. A 58, 450 (1998)

2. Electron matter-wave vortex patterns in momentum distribution by circularly-polarized attosecond pulses

Parameterization of the Electric Field Nebiaska

■ Electric field: $\boldsymbol{F}(t)=$
$F_{0}(t) \operatorname{Re}\left[\mathbf{e}_{1} e^{-i\left(\omega t+\phi_{1}\right)}\right]+F_{0}(t-\tau) \operatorname{Re}\left[\mathbf{e}_{2} e^{-i\left(\omega(t-\tau)+\phi_{2}\right)}\right]$
■ Polarization vector of the j th pulse:
$\mathbf{e}_{j} \equiv\left(\hat{\boldsymbol{\epsilon}}+i \eta_{j} \hat{\boldsymbol{\zeta}}\right) / \sqrt{1+\eta_{j}^{2}}$
\square Polarization plane is defined by: major axis $\hat{\epsilon}$ and minor axis $\hat{\boldsymbol{\zeta}} \equiv \hat{\mathbf{k}} \times \hat{\boldsymbol{\epsilon}}$

■ Ellipticity: $-1 \leq \eta_{j} \leq+1$
■ carrier frequency: $\omega=36 \mathrm{eV}>E_{b}=24.6 \mathrm{eV}$
\square Intensity: $I=10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ or lower

Parameterization of the Observable

- Triply differential probability (TDP) for single ionization:

$$
d^{3} W / d^{3} \mathbf{p}=\left|\left\langle\Theta_{1 s}^{(-)}(\mathbf{p}) \mid \Psi(T+\tau)\right\rangle\right|^{2}, \mathcal{W}_{\xi_{2}}^{\xi_{1}}(\mathbf{p})=\mathcal{C}|A(\mathbf{p})|^{2}
$$

\square 1st-order amplitude for single ionization:

$$
A(\mathbf{p})=-i \int_{-\infty}^{\infty}\left\langle\Psi_{1 s \mathbf{p}}^{(-)}\right| \boldsymbol{F}(t) \cdot \boldsymbol{d}|i\rangle e^{i\left(E+E_{b}\right) t} d t
$$

\square 1st-order amplitude in terms of vectors of the problem: $A(\mathbf{p})=-e^{-i \phi_{1}} \alpha(p) A_{\gamma}(\hat{\mathbf{p}})$
\square Kinematic factor: $A_{\gamma}(\hat{\mathbf{p}})=\hat{\mathbf{p}} \cdot\left(\mathbf{e}_{1}+\mathbf{e}_{2} e^{i \Phi}\right)$
■ Dynamical parameter:

$$
\alpha(p)=\left\langle\Psi_{\nu \mathbf{p}}^{(-)}\right| \boldsymbol{F}(t) \cdot \boldsymbol{d}|i\rangle \hat{F}_{0}\left(E+E_{b}-\omega\right)
$$

\square Relative phase: $\Phi=\left(E+E_{b}\right) \tau+\left(\phi_{1}-\phi_{2}\right)$
$■$ Dynamical vortex: $\alpha(p)=0$. Kinematical vortex: $A_{\gamma}(\hat{\mathbf{p}})=0$ is absent in $(e, 2 e)$ amplitude [PRA 90, 062709 (2014)]

Two Identical Pulses

■ Two identical pulses: $\mathbf{e}_{1}=\mathbf{e}_{2} \equiv \mathbf{e}$ or $\xi_{1}=\xi_{2} \equiv \xi=+1$
\square TDP is: $\mathcal{W}_{\xi}^{\xi}(\mathbf{p})=\frac{3 W_{p}}{2 \pi} \sin ^{2} \theta \cos ^{2}(\Phi / 2)$
■ For CP pulses in the polarization plane ($\theta=\pi / 2$), the TDP is independent of φ

- Relative phase: $\Phi=\left(E+E_{b}\right) \tau+\left(\phi_{1}-\phi_{2}\right)$

■ Harris et al., Opt. Commun. 106, 161 (1994).

- Oppositely circularly-polarized pulses: $\mathbf{e}_{1}^{*}=\mathbf{e}_{2}$, or $\xi_{1}=-\xi_{2}= \pm 1$
■ TDP is: $\mathcal{W}_{\xi_{2}}^{\xi_{1}}(p, \theta, \varphi)=\frac{3 W_{p}}{2 \pi} \sin ^{2} \theta \cos ^{2}\left(\Phi / 2-\xi_{1} \varphi\right)$
\square Optical fringe intensity: $I=I_{0}\left(01^{*}\right) \cos ^{2}\left(k^{2} r^{2}+\varphi\right)$,
Harris et al., Opt. Commun. 106, 161 (1994).
- Relative phase: $\Phi=\left(E+E_{b}\right) \tau+\left(\phi_{1}-\phi_{2}\right)$

■ Two-start ($n=0,1$) Fermat (or Archimedean) spirals (or helixes) are defined by the maximum and zero values of the TDP:

$$
\begin{aligned}
\varphi_{n}^{\max }(p) & =\xi_{2}\left[\pi n-\left(\tau E_{b}+\phi_{12}\right) / 2-\tau p^{2} / 4\right] \\
\varphi_{n}^{z e r o}(p) & =\xi_{2}\left[\pi / 2+\pi n-\left(\tau E_{b}+\phi_{12}\right) / 2-\tau p^{2} / 4\right]
\end{aligned}
$$

Oppositely Circularly-Polarized Pulses:

 Sensitivity to the relative CE phase- For $\tau=0$, superposing two oppositely circularly-polarized pulses gives a linearly-polarized pulse.
- TDP in the polarization plane:

$$
\begin{aligned}
& \mathcal{W}_{\xi_{2}}^{\xi_{1}}(p, \theta, \varphi) \propto \cos ^{2}\left(\phi_{12} / 2-\xi_{1} \varphi\right) ; \text { Optical fringe } \\
& \text { intensity: } I=I_{0}\left(01^{*}\right) \cos ^{2}\left(k^{2} r^{2}+\varphi\right)
\end{aligned}
$$

\square For $\phi_{12} \neq 0$, a change in sign of ξ_{1} will change the angular distribution, unlike when $\phi_{12}=0$.

■ For $\tau=500 \mathrm{as}, \phi_{12}=-\pi / 2, T=344$ as

$\square \mathcal{W}_{\xi_{2}}^{\xi_{1}}(p, \theta, \varphi) \propto \cos ^{2}\left[\left(E+E_{b}\right) \tau / 2+\phi_{12} / 2-\xi_{1} \varphi\right]$
\square The handedness of the vortex patterns depends upon the ordering of the pulses. There is a circular dichroic effect.

- The two spiral arms of the vortex pattern are clearly visible.

Oppositely Circularly-Polarized Pulses:

Sensitivity to the time delay

■ Time delays of several hundred attoseconds are necessary to observe well-defined vortex patterns.

■ Dramatic example of wave-particle duality.

Oppositely Circularly-Polarized Pulses:

Sensitivity to \mathcal{T} ime delay

\square For electron energy $E=\omega-E_{b}$, the angular distribution $\mathcal{W}_{\xi_{2}}^{\xi_{1}}(p, \theta, \varphi) \propto \cos ^{2}\left[\left(E+E_{b}\right) \tau / 2+\phi_{12} / 2-\xi_{1} \varphi\right]$ is periodic with period $\tau_{n}=n \pi / \omega$, where n is even.
$■$ Photoelectron angular distributions for $\tau=\tau_{0}$ and τ_{10} are (or nearly) identical.

■ Ability to control the direction of ionization of electrons, by adjusting the time delay τ.

Oppositely Circularly-Polarized Pulses: Sensitivity to pulse bandwidtfr

\square The spiral pattern widths decrease as the pulse bandwidths decrease
\square The spiral arms of the vortex pattern for the 6-cycle pulses are compressed compared to 3-cycle pulses.
\square For longer pulses, the two spiral arms are clearly discernible for the shorter τ, whereas for longer τ it cannot be discerned as the ring-like spiral pattern is tightly-wound.

3. Conclusions

\square Electron matter-wave vortex patterns can be produced by photoionization by oppositely circularly-polarized pulses, with full control of the time-delay and relative CEPs.

■ In the polarization plane, our two-start spiral or helical vortex pattern has a counterpart in optics: wave-particle duality.

■ Experimental observation of these patterns requires the large bandwidth characteristic of few-cycle attosecond pulses.
\square He atom and other light s-atoms such as H, Li, and Be are ideal targets.

■ Being a linear process, it requires low peak pulse intensities.
■ Circularly-polarized attosecond pulse operating at low intensity is a reality. Velocity-map-imaging technique can be used to measure the photoelectron momentum distributions.

■ Happy 70th to Tony!!!

■ DOE, Office of Science, Div. of Chem. Sciences, Grant No. DE-FG03-96ER14646.
$■$ NSF Stampede (TACC) under Grant No. TG-PHY-120003
$■$ HCC supercomputers (Sandhills and Tusker) at the University of Nebraska-Lincoln

