

Matter-wave Vortices

J. M. Ngoko Djiokap

Department of Physics & Astronomy University of Nebraska-Lincoln Lincoln, USA

Phys. Rev. Lett. (in press)

Collaborators

1. Anthony F. Starace

Department of Physics & Astronomy, University of Nebraska-Lincoln, USA

2. Suxing Hu

Laboratory for Laser Energetics, University of Rochester, USA

3. Lars B. Madsen

Department of Physics and Astronomy, Aarhus University, Denmark

4. Nikolai L. Manakov and Alexei V. Meremianin

Department of Physics, Voronezh State University, Russia

- Background and Motivation
- Electron matter-wave vortex patterns in momentum distribution by circularly-polarized attosecond pulses
 - $\blacksquare \operatorname{He} + (\hbar\omega \tau \hbar\omega) \to \operatorname{He}^+(1s) + e^-$
 - Predicted using Perturbation Theory
 - Demonstrated numerically by solving the 6-D TDSE
 - Sensitivity to time-delay between the pulses, their relative CEP, handedness, duration, and peak intensity
 - Connection to (i) vortices in the probability distribution, and (ii) optical vortices (wave-particle duality)
- Conclusions

1. Background and Motivation

J.M. Ngoko Djiokap et al., *Phys. Rev. Lett.* **113**, 223002 (2014).

TDSE: $i\partial_t \Phi(\mathbf{r}_1, \mathbf{r}_2, t) = H(t)\Phi(\mathbf{r}_1, \mathbf{r}_2, t)$

Linear polarization: 5-D problem as M is conserved
 FE-DVR + Split-operator

- Elliptical polarization: 6-D problem (*M*-mixing problem)
 - H.G. Muller, Laser Physics 9, 138 (1999)
 - T. K. Kjeldsen et al., Phys. Rev. A 75, 063427 (2007)
 - The electric field seen by an observer in the rotating frame is always linearly-polarized
 - At each \(\tau\): Atomic int in Lab frame Rotate Laser int in Rot frame - Rotate Back - Atomic int in Lab frame

Angular distributions for $\xi = \pm 0.8$ vs. CEP at 2 PW/cm² Ngoko et al., Phys. Rev. Lett. **113**, 223002 (2014)

Background and Motivation

N. F. Ramsey, *Phys. Rev.* **78**, 695 (1950). Ramsey interference of laser-produced electron wave packets has been investigated

- M. Wollenhaupt *et al.*, PRL
 89, 173001 (2002)
- Suxing and Starace, PRA
 68, 043407 (2003)

- in the Rydberg states
 - 1. L. D. Noordam, D. I.

Duncan, and T. F.

- Gallagher, Phys. Rev. A **45**, 4734 (1992)
- 2. M. Strehle, U.
 Weichmann, and G.
 Gerber, Phys. Rev. A 58, 450 (1998)

2. Electron matter-wave vortex patterns in momentum distribution by circularly-polarized attosecond pulses Parameterization of the Electric Field Nebraska

- Electric field: $F(t) = F_0(t) \operatorname{Re}\left[\mathbf{e}_1 e^{-i(\omega t + \phi_1)}\right] + F_0(t \tau) \operatorname{Re}\left[\mathbf{e}_2 e^{-i(\omega(t \tau) + \phi_2)}\right]$
- **Polarization vector** of the *j*th pulse:

$$\mathbf{e}_j \equiv (\hat{\boldsymbol{\epsilon}} + i\eta_j \hat{\boldsymbol{\zeta}}) / \sqrt{1 + \eta_j^2}$$

- **Polarization plane** is defined by: major axis $\hat{\epsilon}$ and minor axis $\hat{\zeta} \equiv \hat{\mathbf{k}} \times \hat{\epsilon}$
- Ellipticity: $-1 \le \eta_j \le +1$
- carrier frequency: $\omega = 36 \text{ eV} > E_b = 24.6 \text{ eV}$
- Intensity: $I = 10^{14} \text{ W/cm}^2$ or lower

Parameterization of the Observable

- Triply differential probability (TDP) for single ionization: $d^3W/d^3\mathbf{p} = |\langle \Theta_{1s}^{(-)}(\mathbf{p}) | \Psi(T+\tau) \rangle|^2, \ \mathcal{W}_{\xi_2}^{\xi_1}(\mathbf{p}) = \mathcal{C}|A(\mathbf{p})|^2$
- 1st-order amplitude for single ionization: $A(\mathbf{p}) = -i \int_{-\infty}^{\infty} \langle \Psi_{1s\mathbf{p}}^{(-)} | \mathbf{F}(t) \cdot \mathbf{d} | i \rangle e^{i(E+E_b)t} dt$
- 1st-order amplitude in terms of vectors of the problem: $A(\mathbf{p}) = -e^{-i\phi_1}\alpha(p)A_{\gamma}(\hat{\mathbf{p}})$
 - Kinematic factor: $A_{\gamma}(\hat{\mathbf{p}}) = \hat{\mathbf{p}} \cdot (\mathbf{e}_1 + \mathbf{e}_2 e^{i\Phi})$
 - Dynamical parameter: α(p) = ⟨Ψ⁽⁻⁾_{νp}|**F**(t) · **d**|i⟩ Ê₀(E + E_b - ω)
 Relative phase: Φ = (E + E_b)τ + (φ₁ - φ₂)
- Dynamical vortex: $\alpha(p) = 0$. Kinematical vortex: $A_{\gamma}(\hat{\mathbf{p}}) = 0$ is absent in (e, 2e) amplitude [PRA 90, 062709 (2014)] Insights into AMO Physics and Related Fields, A Workshop in honor of Anthony Starace's 70th birthday, University of Nebraska-Lincoln – p. 10/20

Two Identical Pulses

- Two identical pulses: $\mathbf{e}_1 = \mathbf{e}_2 \equiv \mathbf{e} \text{ or } \xi_1 = \xi_2 \equiv \xi = +1$
 - **TDP is:** $\mathcal{W}_{\xi}^{\xi}(\mathbf{p}) = \frac{3W_p}{2\pi} \sin^2 \theta \cos^2(\Phi/2)$
 - For CP pulses in the polarization plane ($\theta = \pi/2$), the TDP is independent of φ
 - Relative phase: $\Phi = (E + E_b)\tau + (\phi_1 \phi_2)$
 - Harris *et al.*, Opt. Commun. **106**, 161 (1994).

Oppositely Circularly-Polarized Pulses

- Oppositely circularly-polarized pulses: e₁^{*} = e₂, or
 ξ₁ = -ξ₂ = ±1
 TDP is: W^{ξ₁}_{ξ₂}(p, θ, φ) = ^{3W_p}/_{2π} sin² θ cos²(Φ/2 ξ₁φ)
 - Optical fringe intensity: $I = I_0(01^*)\cos^2(k^2r^2 + \varphi)$, Harris *et al.*, Opt. Commun. **106**, 161 (1994).
 - Relative phase: $\Phi = (E + E_b)\tau + (\phi_1 \phi_2)$
 - Two-start (n = 0, 1) Fermat (or Archimedean) spirals (or helixes) are defined by the maximum and zero values of the TDP:

$$\varphi_n^{max}(p) = \xi_2 \left[\pi n - (\tau E_b + \phi_{12})/2 - \tau p^2/4 \right],$$
$$\varphi_n^{zero}(p) = \xi_2 \left[\pi/2 + \pi n - (\tau E_b + \phi_{12})/2 - \tau p^2/4 \right]$$

Oppositely Circularly-Polarized Pulses: Sensitivity to the relative CE phase

For $\tau = 0$, superposing two oppositely circularly-polarized pulses gives a linearly-polarized pulse.

TDP in the polarization plane: $\mathcal{W}_{\xi_2}^{\xi_1}(p,\theta,\varphi) \propto \cos^2(\phi_{12}/2 - \xi_1\varphi)$; Optical fringe intensity: $I = I_0(01^*)\cos^2(k^2r^2 + \varphi)$

For $\phi_{12} \neq 0$, a change in sign of ξ_1 will change the angular distribution, unlike when $\phi_{12} = 0$.

Oppositely Circularly-Polarized Pulses: Sensitivity to the handedness of the pulses

For $\tau = 500 \ as$, $\phi_{12} = -\pi/2$, $T = 344 \ as$

- $\blacksquare \mathcal{W}_{\xi_2}^{\xi_1}(p,\theta,\varphi) \propto \cos^2[(E+E_b)\tau/2 + \phi_{12}/2 \xi_1\varphi]$
- The handedness of the vortex patterns depends upon the ordering of the pulses. There is a circular dichroic effect.
- The two spiral arms of the vortex pattern are clearly visible.

Oppositely Circularly-Polarized Pulses: Sensitivity to the time delay

Time delays of several hundred attoseconds are necessary to observe well-defined vortex patterns.

Dramatic example of wave-particle duality.

Oppositely Circularly-Polarized Pulses:

Sensitivity to Time delay

- For electron energy $E = \omega E_b$, the angular distribution $\mathcal{W}_{\xi_2}^{\xi_1}(p,\theta,\varphi) \propto \cos^2[(E+E_b)\tau/2 + \phi_{12}/2 - \xi_1\varphi]$ is periodic with period $\tau_n = n\pi/\omega$, where *n* is even.
- Photoelectron angular distributions for $\tau = \tau_0$ and τ_{10} are (or nearly) identical.
- Ability to control the direction of ionization of electrons, by adjusting the time delay \(\tau\).

Oppositely Circularly-Polarized Pulses: Sensitivity to pulse bandwidth

- The spiral pattern widths decrease as the pulse bandwidths decrease
- The spiral arms of the vortex pattern for the 6-cycle pulses are compressed compared to 3-cycle pulses.
- For longer pulses, the two spiral arms are clearly discernible for the shorter \(\tau\), whereas for longer \(\tau\) it cannot be discerned as the ring-like spiral pattern is tightly-wound.

3. Conclusions

- Electron matter-wave vortex patterns can be produced by photoionization by oppositely circularly-polarized pulses, with full control of the time-delay and relative CEPs.
- In the polarization plane, our two-start spiral or helical vortex pattern has a counterpart in optics: wave-particle duality.
- Experimental observation of these patterns requires the large bandwidth characteristic of few-cycle attosecond pulses.
- He atom and other light s-atoms such as H, Li, and Be are ideal targets.
- Being a linear process, it requires low peak pulse intensities.
- Circularly-polarized attosecond pulse operating at low intensity is a reality. Velocity-map-imaging technique can be used to measure the photoelectron momentum distributions.

Acknowledgments

Happy 70th to Tony!!!

DOE, Office of Science, Div. of Chem. Sciences, Grant No. DE-FG03-96ER14646.

■ NSF Stampede (TACC) under Grant No. TG-PHY-120003

HCC supercomputers (Sandhills and Tusker) at the University of Nebraska-Lincoln