UNL - Department of Physics and Astronomy

Preliminary Examination - Day 1
Thursday, August 15, 2019

This test covers the topics of Thermodynamics and Statistical Mechanics (Topic 1) and Quantum Me-
chanics (Topic 2). Each topic has 4 “A” questions and 4 “B” questions. Work two problems from
each group. Thus, you will work on a total of 8 questions today, 4 from each topic.

Note: If you do more than two problems in a group, only the first two (in the order they appear
in this handout) will be graded. For instance, if you do problems A1, A3, and A4, only Al and A3
will be graded.

WRITE YOUR ANSWERS ON ONE SIDE OF THE PAPER ONLY
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Thermodynamics and Statistical Mechanics Group A - Answer only two Group A questions

Suppose you shuffle a standard deck of 52 cards and draw the top five cards from the
deck. Then you repeat the procedure. Eventually, there is a chance that drawing the top five
cards will yield the sequence ace through ten of spades in that order, as shown in the figure. As-
suming that shuffling the deck thoroughly takes you about a minute, how long do you expect it
to take, on average, before you will find this particular sequence of cards as the first five cards
in the deck?
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An ideal monoatomic gas is compressed (no heat being added or removed in the process)

so that its volume is halved. What is the ratio of the new pressure to the original pressure?

What is the efficiency of the most efficient cyclic heat engine operating between heat reser-

voirs at temperature Ty and T, where Ty > T,?

Give an example of a cycle on which maximally efficient ideal heat engine could be based.

Using the differential form of the first law of thermodynamics, show that though U is a

state function, the exchanged heat () is not a state function.
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Thermodynamics and Statistical Mechanics Group B - Answer only two Group B questions

Consider the following ideal gas expansion cases:
a. Calculate the change in entropy when one mole of an ideal gas is allowed to expand freely

into double its original volume.
b. What is the entropy change when one mole of each of two distinct non-interacting ideal

gasses are allowed to mix, starting with equal volumes and temperatures?
c¢. What entropy change is there when the valve connecting two equal-volume and -temper-
ature bulbs of the same gas is opened?

A thin-walled vessel of volume V is filled with a gas of molecular mass m and is kept at
constant temperature T. The gas slowly leaks out of the vessel through a hole of area A into sur-
rounding vacuum. Find the time required for the pressure in the vessel to drop to 1/e of its
original value.

s e . o o fskBT
Hint: the average speed of molecules at given temperature is given by: 7 = _|—="~.

You may also need the expression for the differential of a solid angle: dQ) = sin 6 d0d¢.

The phase diagram of water is shown below right on a log-log plot. This problem is fo-
cused on the melting transition (subscript “m”). The governing equation for the pressure de-
pendence of this phase transition is given by the Clausius-Clapeyron equation:

T,

1
F = 'l'i (Vliq - Vso])-

a. From the phase diagram, what can you deduce about the sign of (Vjjq — Vs01)? What ob-
servations of water and ice support this?

b. Very close to the tricritical
point, one may assume that L,

- i @)

and Ith Vsol| are independent 218 atm,

of pressure. Moreover, at the 22100 KPa|

tricritical point Ly, = 3.3 X 10° 1 atm,

J/kg and |[Viiq — Vsol| = 9.0 X 101 KPa

107° m¥kg. F is, fi

.m/ g rom this, find a asstor, i
relationship between Ty, and P 0.61 KPa

that is valid close to the tricriti-
cal point and describe its form
(i.e. linear or quadratic or expo-
nential or log or ...)

(Hint: A Taylor expansion may
be useful).
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Two identical bodies of constant heat capacity C, are used as reservoirs for a heat engine.
Their initial temperatures are Ty and T, respectively. Assuming that the bodies remain at con-
stant pressure and undergo no change of phase, derive the expression for the maximum work
obtainable from the system.
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Quantum Mechanics Group A - Answer only two Group A questions

A typical “white dwarf” star is only about as big as the Earth, but with a surface tempera-
ture of 2.5x10* K. A typical “red giant” star has a surface temperature of 3.0x 10° K and a ra-
dius about 1.0x10° times larger than that of a white dwarf.

a. Find the ratio of a white dwarf’s total intensity (power per unit area, in watts/m?,
summed over all wavelengths) radiated from the surface to that of a red giant.
b. Find the ratio of the total power output (watts) of a white dwarf to that of a red giant.

When light of a given wavelength is incident on a metallic surface, the stopping potential
for the photoelectrons is 3.2 V. If a second light source whose wavelength is double that of the

first is used, the stopping potential drops to 0.8 V. From this data, calculate

a. the wavelength of the first radiation;
b. the work function and the cutoff frequency of the metal.

A beam of X-rays is scattered by electrons at rest. The wavelength of the X-rays scattered
at 60° to the beam axis is 3.5 pm.
a. What is the incident photon energy?

b. What is the electron recoil energy?

a. Find the frequency of radiation emitted by hydrogen atom for transition between
the states with the principle quantum numbers n and n — 1. Express it in terms of n and
fundamental constants.

b. Consider an electron moving on a circular orbit in the Bohr atom and prove the Bohr’s
correspondence principle: in the limit of high n the frequency of revolution of the electron

is the same as the frquency of radiation obtained in part a.
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Quantum Mechanics Group B - Answer only two Group B questions

Consider a system prepared at time ¢ =0 in the state:

1
=0y =o{ V2
-1

In the 3-dimensional state space, two observables A and B have matrix representations

0 V2 o 10 0
A=|v2 0 2| and B=|0 0 0
0 V2 0 00 -1

a. What is the probability that a measurement of A at time t =0 yields +2?
b. Suppose that, immediately afterward, B is measured. What is the probability that the

value 0 will be obtained?

Consider a particle of spin 1/2.
a. What are the eigenvalues and eigenvectors of the operator S, + 5,7

Suppose a measurement of this operator is made, and the system is found to be in the state cor-
responding to the largest eigenvalue.

b. What is the probability that a measurement of S, yields h/2?
c. What is the probability that a measurement of S yields h/27?

A particle of mass m is moving in a harmonic field with frequency . At t =0 the particle is
in the superposition state (x) = % [ (x) + 1 (x)] where P, (x), n = 0,1, ... are the oscillator

eigenstates.

a. Write the wave function at ¢ >0.

b. Find the expectation values of the energy and parity operator. Are they time-dependent?
Explain why they are or are not.

c. Calculate the expectation value of the position coordinate x.

d. Calculate the expectation value of the momentum p.

e. Show that (x) and (p) satisfy the Heisenberg equation of motion.
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An electron is moving freely in a one-dimensional infinite potentlal box with walls at
x=0and x =a. The electron is initially in the ground state (n = 1) of the box when the box
suddenly quadruples in size (its right side instantly moving from x = a to x = 4a. Calculate the

probability of finding the electron in ...

a. the ground state of the new box.
b. the first excited state of the new box.



Physical Constants

speed of light........ccc...... c=2.998%x10% m/s

Planck’s constant h=6.626x10"" Js

Planck’s constant / 27z.... h=1.055x10" J-s

Boltzmann constant k, =1.381x 107 J/K

e=1.602x10" C

elementary charge

electric permittivity ...... &, = 8.854x10™* F/m
magnetic permeability ... 2, =1.257x10° H/m
R=8.314 ]/ mol-K

N, =6.022x10* mol™

molar gas constant

Avogadro constant

Equations That May Be Helpful

TRIGONOMETRY

sin(a + f) =sina cos f + cosa sin B
sin(a — f}) =sina cos # —cosa sin 8
cos(a + ) =cosacos f—sinasin
cos(a — ) =cosa cos ff +sinasin

sin(20) =2sinfcos

c0s(20) = cos® @ —sin® @ =1-2sin”* @ = 2cos” 0 -1

sinasin f = %[cos(a - fB)—cos(a + ,B)J
cosacos ff = %[cos(a — pB) + cos(a + ﬂ)]
sinacos 8 = %[sin(a + ) +sin(a — ,B):l

cosasin f = %[sin(a + ) —sin(a - ,3)]
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electrostatic constant ... k = (47e,)™" =8.988x 10° m/F

electron mass m, =9.109x 10 kg

electron rest energy ..... 511.0 keV

Compton wavelength .. A. =h/m c=2.426 pm

................. m, =1.673x107 kg =1836m,
a, = h*/ke*m, =0.5292 A

1 hartree (=2 rydberg) ... E, = h*/m a,* =27.21 eV
gravitational constant ... G=6.674x10" m?/ kg s?

hec =1240 eV -nm
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THERMODYNAMICS

Partition function= ~ Z=3X.¢ "
Average energy = (E)= —i(ln Z)
op
. d(E)
Heat capacity = C,=N—7>
p y v dT
Y - Q
Clausius’ theorem: ZF’ <0, which becomes Z—T—‘ =0 for a reversible cyclic process of N steps.
i=1 4 i=1 4
dp 2
dT TAV

For adiabatic processes in an ideal gas with constant heat capacity, pV” = const.

dU =TdS - pdV

H=U+pV F=U-TS G=F+pV Q=F-uN

c, =[98 -7/ & c =[92) _7| % TdS:CVdTJrT[a—SJ qv
ar ), \otT), r~\ar )~ "\t ), v ),

1(ov 1(ov
K=——| — a=——
viap ), viar)

Triple product: oxX) (X .[%2] - -1
oY ), \98Z )4 \8X )y
Maxwell’s relations:

&.--®), G,=-G), &=, -G.=G),
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QUANTUM MECHANICS

CAr/n“ 2

) drme,h”
Ground-state wavefunction of the hydrogen atom: /() =——; , where a, = — is the
R
0

me
Bohr radius, using m~m,, in which m, is the electron mass.

1 mk*e*

l//nlm(r) = Rnl(r)Ylm(f) En = —? 2’12

2
Rm(") :Fe r/a,

0

1 r —r/2a,
P=———e—e "
21( 31/2(2(10)3/2 ao

Particle in one-dimensional, infinitely-deep box with walls at x =0 and x=a:

232
: : h

Stationary states v, =(2/a)"*sin(nzx / a), energy levels E, =n* Z 5

ma
1/4
Harmonic oscillator: ,(x) = (%) e—ax?/2
) _ 21/2¢3/4 —ax?)2 i _mw
Y1 (xX) = = xe where a = —

with (o (Olxly () = 2a) ™2

Angular momentum: [L,, L ]=ihL, et cycl.

L, [€,my=hJ(£+m+1)(£—m) | &,m+1)
L_|€,m)=hy(£+m)(C—m+1)| £, m—1)

Ladder operators:

Creation, annihilation operators:
ot (G g B fOL Sy P
2h maw 2h mw
a'|ny="n+1|n+1) i|ny=n|n-1)

. ) h Nel7 oy' | h L Oy
Probabilit tdensity: J(x)=——|y ' — -y —— |=—Im|y" — |.
ility current density: J(x) Zmi[w o v o J - (w ™



Preliminary Examination - page 11

Table Spherical harmonics and their.expressions in Cartesian coordinates.

Yim (6, 9) Vi, y,2)
Yoo0,9) = 7= Yoo(x, 7,2) = 7=

N0, p) = |/ cos 0 Yio(r,y,2) = /2 £

V1,610, 0) = ¥,/ g ¢ sin 6 Via1(t, y,2) = Fy/ g 2
Y2000, ) = /12 (Beos?6 — 1) Yaol, y,2) = o 1o 25
V2,410, 9) = F -81—;5; e*? sin 0 cos 0 Y2 41(x,y,2) = ¢\/:12_§Q%ﬁg

0 . 2249
V2,420, 9) = |/ 355 ¥ sin’ 0 Yo, u2(x, 7,2) = Fyf o T

H, . =-75B

. . 0 1 0 —i 1 0
Pauli matrices: o = , o = . , O =
{10 Yl 0 =0 -1

Compton scattering: A'—=A=A.(1-cos0)
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VECTOR DERIVATIVES
Cartesian.  dl=dx%+dy§+dzs dr=dxdydz

Gradient : Vi = §m+c~>+m~m
' T oax wvw 3z

duy  duy  du;
oy . Vv = — o —= 4 —=
Divergence v P 3y Py

dv, dv v, v, dv, v
“ward Vxvy = | —m—-—2L)g4+|Z2-L}3+{2L-=-2)2
Gt ¥ A&. 2 v b A ac ax)) T \ax oy )*

— % o %~+%~_m-
gpaciass = T 2

Spherical.  dl=dri+rdff +rsin6dg$; dr=rlsin6drdfde

ar . 131 » 1 91 .

Gradient : Vr = ﬂ...rﬂﬁm.rwaummlm%

Divergence: V-v = lexis:ﬂmw@uwa.ésiﬁ_nmw

Curl - Vxv = ..v,m_nz ﬁmmm?m:m:‘vlmu_m

kS W Tw .w..w - %aﬁiu_m.r m mué& - W.WT

s 1= () 8 ) L
Cylindrical. dl=ds3+s5d¢¢ +di% dr =sdsdddz

Gradienr : vV = NIMw+ m%ﬂh%.f«w.mw

Divergence: V.v = meluahcuv+wmw+ww

) 13 [ at 1 9% 8%
Laplacian : V3 = s AL
i Ahwuv te ag? i a2

VECTOR IDENTITIES

Triple Products
I A-BxC)=B-(CxA)=C-{AxB)
2) AxBxC)=BA-C-C(A-B)
Product Rules
Q) V= f(Vg)+2(Vf)
4 VA-B)=Ax(VxB)+Bx (VxA)+ (A V)B4 (B-V)A
() V-(fA=F(V-A)+A-(Vf)
6 V- (AxB)=B-(VxA)—-A-(VxB)
M Vx(fA=f(VXxA)—Ax(Vf)
(8) VXAxB)=®B-V)A—(A-V)B+A(V-B) - B(V-A)
Second Derivatives
@) V-(VxA)=0
(10} Vx(VH=0

() Vx(VXA)y=V(V-A)—V2A

FUNDAMENTAL THEOREMS

Gradient Theorem :  [P(Vf}-dl = f(b) - f(a)
Divergence Theorem: f(V-A)dr = §A -da

Curl Theorem : J(VxA)-da=FA-dl



CARTESIAN AND SPHERICAL UNIT VECTORS

(sin @ cos @)t + (cos O cos ¢)é —sing (T)
(sin@sin @)t + (cos O sin ¢)é +cos ¢ cf)

2 =cosOt—sinf O

X
b §

INTEGRALS
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2
e —13
2a
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2
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dx | 2b"?

j(x LBy 2y = ln(x+\/x2+b2)

I(x2 +b*) N dx

[ +b%)*2dx =

[ +b%) 2 dx

J- xdx

x% +b?
J' dx
x(x* +b%)

d

= %arctan(x / b)

X
b\ x* + b

= —sel: ATCHAN(% [ )
X+

2b°
%ln(x2 + bz)

—1—1n X
2b? g B
1 ax—"b

——In
2ab ax+b

L artanh| 2*
ab b




