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The probability that a single 1°C hasn’t decayed after ¢ seconds is p(t) =(2)"", where T'is the
half-life. At time 30 s, this probability is p(t = 30) = (1)*"*’ =0.35355 = 35.4% .

The probability for “has decayed” is then 100% —35.4% = 64.6% . The answer is therefore

13 !
P =£ A Jp“(l -p) = 41'—39"(0.354)4(0.646)9 =22.0%, where the binomial coefficient accounts for the

indistinguishability of the 13 nuclei.
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To find the entropy S{(F.T) use

TAS = diJ + pdv
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Thus S ~ Nk, In{77'*}

B) For an adiabatic process dS = 0 = TV "*F = constant
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CM A1 KU

ANSWER

(MasteringPhysics 7.38)

IDENTIFY: For the system of two blocks, only gravity does work. Apply Ky +U; =K, + 1.

SETUP: Call the blocks 4 and B, where A is the more massive one. vy =vg =0. Let ¥ =0 for each
block to be at the initial height of that block. so v 4 =vp =0. ¥4 =-1.20m and yg; =+1.20m.

Vg =vgy =v; =3.00 m's.

EXECUTE: K ;+U| =K, +0U; gives 0 %(m({ + mB}v§ +g(1.20 m)(mp —m ), withms +mg=220kg.
Therefore %(22,0 kg)(3.00 r:n;"s)2 +(0.80 m/s’ N1.20 m)(22.0 kg — 2m ;). Solving for m gives

m,=152kg Andthen my =679 kg

EVALUATE: The final kinetic energy of the two blocks 1s 92 J. The potential energy of block 4 decreases
by 179 J The potential energy of block B increases by 80 J. The total decrease in potential energy 1s
179 J—80 J =99 ], which equals the imncrease in kinetic energy of the system.

CM A2 KU
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CM B1 SL

A mass m moves in a circular orbit of radius r, under the influence of a central force
whose potential is — km/r". Show that the circular orbit is stable under small
oscillations (that is, the mass will oscillate about the circular orbit) if n < 2.



CM B1 SL

8. Fora particle moving under the influence of a central force, the effective

potential is:
. I
Verr = V(r) iy

2.

‘A circular orbit is possible at that value of r for which 9 Vgfor = 0; and
the orbit is stable if 9° Vo /or® is positive. For this problem,

.L2 0 Veff =t kmn L2

35'

V km ’
r e ——_— "
. rm 1 Qmr? or L

and
0 Ver  kmn(n +1) , 3L*
Eye D) oy )
Setting 8Veﬁ~/m = 0, one finds that 9*Vyfor* > 0 if 3 — (n + 1) > O
1.e.n < 2.




CM B3 SL

Linear Motion of a triatomic molecule: A carbon dioxide molecule CO,, which has the
structure as shown in figure. We consider motion only in one dimension, along the x-
axis. The two end particle each of mass m, are bound to the central particle, mass M,
via a potential function that is equivalent to that of two springs of stiffness K. The
coordinates expressing the displacements of each mass are x,, x, and x;.

Find

(a) Lagrangian of the system

(b) Equation of Motion

(c) Normal Modes




CM B3 SL Solution:

In this problem we can easily guess the normal modes. They are pictured in Figures.
11.15(a)—11.15(c). If you think about it a little while you should realize that what’s
going on here is that the center of mass of the molecule is not accelerating. In mode
(c) the central mass is vibrating 180° out of phase with the two end masses. The
ratio of the vibrational amplitudes is such that the center of mass remains at rest.

3See footnote 2.

Figure 11.15 Model of a triatomic molecule and its three
normal modes for motion in a single line.



CM B3 SL

Mode (b) obeys the same condition. The central mass remains.at rest while lllle two
equal end masses vibrate 180° out of phase with each other, thp equal amplitudes,
again fixing the center of mass. Mode (a) depicts overall translation of the center of
mass at constant velocity.

We could go on and solve the problem using this guess. However, we will not,
We will solve it using the general method introduced in the last example, in which
we assume that the normal modes are not known. We will ultimately generate a
secular equation that, in this example, will be of third order in w?. (There are three
coordinates, hence three normal modes and frequencies in the solution.) It turns out
that this particular third-order equation will be very easy to solve. Upon obtaining
the frequencies of each normal mode, we will then insert them into any one of the
equations relating the amplitudes of the displacement coordinates to each other (the
matrix equivalent of the secular equation in w?), thus obtaining the normal modes.

The Lagrangian of the system is

L=T-YV
M K K
= (%Ix% + Ex% + ga\%) e [E(XZ —~ M Fra = x2)z]
and Lagrange’s three equations of motion read
mx; + KX| _KXZ =0
—K:tl + Mi, + ZKJQ —KX3 =0 (1133)
_KXZ -+ I?’L)'C'3 + KV3 =0

If a solution of the form x; = A; cos w?, x; = A; cos wf, x3 = Az cos wf exists, then

(—mw? + K)A, — KA, =0
— KA, +(—Mw? + 2K)A, —KA; =0 (11.34)
— KA, +(—mo? + K)A; =0
The secular equation is, thus,
—mw? + K -K 0
-K - Mw? + 2K -K =0 (11.35)
0 -K —-mw? + K

which, upon expanding the determinant and collecting terms, fortuitously becomes
the product of three factors

w(—mw? + K)(—mMo? + KM + 2Km) = 0

Equating each of the three factors to zero gives the three normal frequencies of the

system:
172 12
K
(l)a=0 (ub=(—) W, = 5-}-25
m m M

Let us discuss the modes corresponding to these three roots.

(a) The first mode is no oscillation at all but is pure translation of the system as a



CM B3 Srl;hole. If we set w = 0 in Equations 11.34, we find that A; = A, = Aj; for this
ode.
(b) Setting ® = w, in Equations 11.34 gives A, = 0 and A; = —As3. In this mode
the center particle is at rest while the two end particles vibrate in opposite di-
rections (antisymmetrically) with the same amplitude.

(c) Finally, setting w = w, in Equations 11.34 we obtain the following relations:
A, = Az and A, = —2A,(m/M) = —2A3(m/M). Thus, in this mode the two
end particles vibrate in unison while the center particle vibrates oppositely with
a different amplitude. The three modes are illustrated in Figure 1 [.13.

It is interesting to note that the ratio w /w, 1s independent of the constant

K, namely,
” " 112
% = (1 o)
Wy M

In the carbon dioxide molecule the mass ratio m/M 1is very nearly 16: 12 for ordi-
nary CO; (Cy2 and O, atoms). Thus, the frequency ratio
(")C

16 1/2 11 1/2
(1+2x ) = (4) s
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(b)

(c)

whole. If we set w = 0 in Equations 11.34, we find that A; = A, = A; for this
mode.

Setting @ = w,, in Equations 11.34 gives A, = 0 and A; = —Aj;. In this mode
the f:enter particle is at rest while the two end particles vibrate in opposite di-
rections (antisymmetrically) with the same amplitude.

Finally, setting ® = w, in Equations 11.34 we obtain the following relations:
A, = Asand A, = —2A;(m/M) = —2A;(m/M). Thus, in this mode the two
end particles vibrate in unison while the center particle vibrates oppositely with
a different amplitude. The three modes are illustrated in Figure 1 [ 13

It is interesting to note that the ratio w./w; 18 independent of the constant

K, namely,
" ( m)1/2
— =1+ 2=
Wy M

In the carbon dioxide molecule the mass ratio m/M is very nearly 16:12 for ordi-
nary CO; (C,, and 0,6 atoms). Thus, the frequency ratio

172 1/2
” 16 11
— =14+ 2 X — = |— = 1.915
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