UNL - Department of Physics and Astronomy

Preliminary Examination - Day 1
Thursday, August 10, 2017

This test covers the topics of Quantum Mechanics (Topic 1) and Electrodynamics (Topic 2). Each
topic has 4 “A” questions and 4 “B” questions. Work two problems from each group. Thus, you
will work on a total of 8 questions today, 4 from each topic.

Note: If you do more than two problems in a group, only the first two (in the order they appear
in this handout) will be graded. For instance, if you do problems A1, A3, and A4, only Al and A3
will be graded.

WRITE YOUR ANSWERS ON ONE SIDE OF THE PAPER ONLY
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Quantum Mechanics Group A - Answer only two Group A questions

The operator R is defined by Ry/(x)=Re[y(x)].Is R alinear operator? Explain.

Find the energy levels of a spin s=3 particle whose Hamiltonian is given by

A

a :ﬁ(é 2,G52_96 2)—§§Z , where ¢ and f are constants.

x y z

A 40 keV photon collides with an electron at rest. The photon is scattered at 90°.

(a) What is the incoming photon’s wavelength?
(b) What is the kinetic energy of the recoil electron?
(c) What is the wavelength of the recoil electron?

A particle of mass m and kinetic energy E' is incident on a potential barrier of the form
V(iz)=0, <0
V() =W, >0
with Vj < E.

(a) Find the transmission and reflection coefficients T and R.

(b) Show that the obtained expressions satisfy the conservation of probability law.
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Quantum Mechanics Group B - Answer only two Group B questions

Consider a system which is initially in the normalized state

w(e,¢>=%n1<e,¢>+am<e,¢>+%Ym<e,¢>

in which a is a positive real constant.

a. Find a.
b. If L were measured, what values could one obtain, and with what probabilities?

We now measure L_and find the value —7.

c. Calculate (L ) and (Ly).
d. Calculate the uncertainties AL, and AL , and their product AL AL . You may use the

equality (L )= (Lyz) without proving it first.

The Hamiltonian for a one-dimensional harmonic oscillator is

~ f)z
H="—+imo’%*.
2m

We write its energy eigenkets as [n) (n=0,1,2,...) for energy E =(n+3)ho.

a. Suppose the system is in the normalized state | p) given by |@) =c,|0)+c, |1), and that
the expectation value of the energy is known to be 7@ . What are |c0| and |cl| ?
b. Now choose ¢, to be real and positive, but let ¢, have any phase: ¢, = |cl|ei” . Suppose

further that not only is the expectation value of the energy known to be 7@, but the ex-
pectation value of x is also known: (¢ |x|¢) = %4 /i . Calculate the phase angle 6.
me

c. Now suppose the system is in the state | @) at time t=0,i.e., |y (t =0)) =|¢) . Calculate
|w(t)) at some later time t. Use the values of ¢, and ¢, you found in parts a. and b.

d. Also calculate the expectation value of x as a function of time. With what angular fre-

quency does it oscillate? Again, use the values of ¢, and ¢, you found in parts a. and b.



Preliminary Examination - page 4

The eigenstates of a particle in a box are given by

2
Pn(x) = \/;sin ﬂ—f,n =1,2,3, ...

if the walls are at the positions x =0 and = = L.

(a) Rewrite the same eigenfunctions for the case when the walls are at the positions
x=—-L/2and x = L/2.
b) Are these functions parity eigenstates? If yes, what are the parity eigenvalues?

(
(c) Are these functions momentum eigenstates? If yes, what are the momentum eigenvalues?
(d) Calculate the expectation values of p and p? for the eigenstate n.
(e) Find the uncertainty Ap and interpret your result by representing each eigenstate as

a superposition of two exponentials.
(f) Calculate the expectation value of xp for the ground state. Could you conclude from

your answer if this operator is Hermitian?

A particle at rest with spin 1/2 and gyromagnetic ratio «y is placed in a magnetic field
B directed along z axis.

(a) Write down the Schrdodinger equation describing the evolution of the particle’s wave function.
(b) Solve it assuming that at ¢ = 0 the particle is in eigenstate of S, with the eigenvalue 7/2.

(c) Calculate expectation values of S, and Sy as functions of ¢.
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Electrodynamics Group A - Answer only two Group A questions

An isolated sphere of perfectly conducting material is surrounded by air. Though normally
a good insulator, air breaks down (it becomes conductive) for electric fields beyond 3.0 kV/mm
(the so-called dielectric strength of air). The sphere’s radius is 5.0 cm. What is the maximum amount
of electrostatic energy the sphere can store before breakdown occurs? Assume the electrostatic
potential is zero at infinite distance from the sphere.

The diagram shows part of an electronic circuit. Calculate the potential at point P.

Vp="7 oV -12V 18V

| [ | |

l 400 10 mH

12 mH =

[

If the electric field generated by a static point charge were proportional to 1/r°, where r is

the distance from the charge, would Gauss’ law still be correct? Justify your answer.

The diagram shows an infinitely long chain of resistors. What is the resistance between
points A and B? Hint: If the chain’s length is increased by one unit, how does this resistance change?
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Electrodynamics Group B - Answer only two Group B questions

A flat square loop of wire of length 2a on each side carries a

stationary current I. Calculate the magnitude of the magnetic field

at the center of the square.

2a

All space is filled with a material with uniform, fixed magnetization M, except for the re-
gion 0<z<a, in which there is vacuum. The magnetization is M = Mu, where u is a unit vec-

tor in the yz plane that makes an angle 6 with the z-axis: @ =(sin8)y +(cos)z . Calculate the

magnetic field B and the auxiliary field H everywhere.

A

A small ball with mass m and
electric charge +g is hung in a horizon-
tal, uniform electric field E by a string
of negligible mass. The ball is raised to
the position shown in the figure and E
then dropped from rest. At what angle

6 will it come to rest again?

A

A

An infinitely large uniform slab of linear, isotropic dielectric material of permittivity ¢ is
parallel to the xy plane. It is exposed to an external electric field E; perpendicular to the slab

(so, in the z direction). Find the polarization P inside the slab.
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Physical Constants

speed of light........c.c...... c=2.998x10° m/s electrostatic constant ... k = (47¢,)”" =8.988x10” m/F
Planck’s constant ........... h=6.626x10"]-s electron mass .............. m, =9.109x10"" kg
Planck’s constant / 27.... 1 =1.055x10" J-s electron rest energy...... 511.0 keV

Boltzmann constant ...... k, =1.381x 102 J/K Compton wavelength .. 4. =h/m c=2.426 pm
elementary charge ......... e=1.602x10" C proton mass ..........c...... m, =1.673x10" kg =1836m,
electric permittivity ...... &, =8.854x10"? F/m T DONL e, a, =h*/ke*m, =0.5292 A
magnetic permeability ... 4, =1.257x10° H/m 1 hartree (=2 rydberg) ... E, = #*/m_a =27.21 eV
molar gas constant.......... R=8.314 J/mol-K gravitational constant ... G = 6.674x10™" m®/ kg s’
Avogadro constant ....... N, =6.022x10% mol™ HC o, hc =1240 eV -nm

Equations That May Be Helpful

TRIGONOMETRY

sinasin f = %[COS(O! — ) —cos(a + ﬂ)]
cosacos B = %[COS(OK — ) +cos(a + :H)]
sin cos 8 =1] sin(a + B) +sin(ar - f) |

cosasin ff = %[sin(a + f3) —sin(a - ﬂ)}

QUANTUM MECHANICS

/% dre i’
Ground-state wavefunction of the hydrogen atom: y/(r) =—;—-, where 4, = C— is the
' ay me

Bohr radius, using m ~m_, in which m is the electron mass.

W, (1) =R, (1Y, (1)

2 —r/a,
R, (r)=—=e"""

3/2
0
1 Y _t2q
R .(1)=————+— 0
21( ) 31/2(2a0)3/2 ao
1 mk’e*

"ont 2K
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Particle in one-dimensional, infinitely-deep box with wallsat x=0 and x=a:

, TR
2

Stationary states y, =(2/a)"* sin(nzx / a), energy levels E, =n

Angular momentum: [L,, L ]=iAL, et cycl.

L, [,m)y=n(t+m+1)(£—m)|L,m+1)
L |6,my=n(¢+m)(L—m+1)|6,m—1)

Ladder operators:

Creation, annihilation operators:

g fmefs P o el B
2h mo 2h mo

Aty =n+1|n+1) alny=n|n-1y

Table Spherical harmonics and their.expressions in Cartesian coordinates.

Yim (6, 0) Yim(x,y,2)

Y00(@, 9) = ; Yoo(x,y,2) = JL_

11000, 0) = \/_ cos 6 Y10(x, y,2) = \/;f

Y1,410, 9) = qt\/geﬂ?’ sin @ Y1410, ,2) = Fy/ g 22

Y2000, 9) = \/%(3 cos?0 —1) Yao(x, y,2) = % 32_r;r_2

V2,410, 9) = F/ 12 ¢ sin O cos 0 Vo1(x,y,2) = F,/ 15 G

Ts20,9) = |/ 2% sin0 Tysa(x,y,2) = T T2F
H_. =-yS-B
Pauli matrices: axz(o 1] , O =(0 _i} , Gz:[l OJ

10 Y i 0 0 -1

Compton scattering: A'—A=A.(1-cosd)
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ELECTROSTATICS
#E-ﬁda:@ E=-VV IE'deZV(rl)_V(rg) V(r)= q(r )'
s € 5 dre, |r—r|

b

Work done W = —I qE-de=q[V(b)-V(a)] Energy stored inelec. field: W =1¢, I E*dr=Q%/2C
a v

Relative permittivity: ¢ =1+ g,

Bound charges

p,=-V-P

o,=Pn

Capacitance in vacuum

Parallel-plate: C= gog
. ab
Spherical: C=dre,—
—-a
Cylindrical: C=2rm¢, _ L (for alength L)
In(b/ a)
MAGNETOSTATICS
Relative permeability: x =1+ y
Lorentz Force: F=gE +q(vxB) Current densities: = I] -dA, 1= IK -de
Biot-Savart Law: B(r) = :_0 j Idf;; R (R is vector from source point to field point r)
7T

Infinitely long solenoid: B-field inside is B= g nl (nis number of turns per unit length)
Ampere’s law: qSB de= I

Magnetic dipole moment of a current distribution is given by m =1 I da.
Force on magnetic dipole: ~ F=V(m-B)

Torque on magnetic dipole: T=mxB

B-field of magnetic dipole:  B(r) = i%[?;(m T)F— m]
4rr
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Bound currents

J,=VxM
K, =Mxn

Maxwell’s Equations in vacuum

1. VE=Z Gauss’ Law
50
2. V:B=0 no magnetic charge
3. VxE= —g—]f Faraday’s Law
OE , . , :
4. VxB=yJ+e,u, r Ampere’s Law with Maxwell’s correction

Maxwell’s Equations in linear, isotropic, and homogeneous (LIH) media

1. V-D=p, Gauss’ Law
2. V:B=0 no magnetic charge
3. VxE= —% Faraday’s Law
oD , . / :

4. VxH=]J, + = Ampere’s Law with Maxwell’s correction
Induction

. o o,
Alternative way of writing Faraday’s Law: (j)E Al =~ i

Mutual and self inductance: ®,=M,I,, and M,,=M,,; ®=LI
Energy stored in magnetic field: W=21y™ I B*dr=1LI" = %q-)A 1de
\%4
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- L VECTOR DERIVATIVES VECTOR IDENTITIES
Cartesian. dl=dxX+dyV+dzi; dr=dxdydz
Triple Products
e, o, ot
Gradient : Vi = —X+—¥+—12
ax dy~ | oz () A-BxC)=B-(CxA)=C-(AxB)
Divergence: V-v = o % 3 @) AxBxC)=BA C) - CA-B)
dx ay dz
Product Rules

Curl : Vxv = AQIEVm.TﬁQIEVm.TAgIFVW

Laplacian - vy = Xr ¥ o @ VA-B=Ax(VxB)+Bx(VxA) (A -V)B|(B-V)A

@) V() =f(Ve)+e(Vf)

X A (5) V-(fA)=f(V-A)+A-(V])
Spherical. dl =dri+rdif +rsin6dg¢; dr =r’sinfdrddde
6 V- (AxB)=B-(VxA) - A-(VxB)
ar _m-m+ 1 or .

Gradient : Vi = Sttt rmeas? (N V% (fA) = F(V x A) — A x (Vf)
" . vy = AP0 1 3 1 _dvg #) Vx(AxB)=(B-V)A-(A-V)B+AV-B) - B(V-A)
Divergence: V-v = ..u?.? =L+E.Emmm?_=m§v+nmﬁm 3
Second Derivatives

Curl : 4<||_!m.m;|¢k,
urt: XV = o e -5 |F 9 V- (VxA)=0

1T 1 du, @ 17a av, 7 » (10) Vx(Vf)=0

t; Tua ) mqﬁ:i“_u+ r TLS& N aT

(1) Vx(VxA)=V(V-A)— VA

1a i 1 a Bt 1 @
Laplacian : V% o= —— 2 — | sing- —
apacien ! Zor A_. ?v F Zsno a0 T.&%u Y iinZo 997

Cylindrical.  dl =ds§+sdpd +dzé; dr =sdsdpdz FUNDAMENTAL THEOREMS
- _ar, Mo . b, ‘ )
Gradient : Vi = M:u_.wa.“.+m|mun r
Gradient Theorem :  ['(V[)-dl= f(b) - f(a)
Divergence: V.v = Mwaheu+w§+we_h
rgence : = sReWtI Y Divergence Theorem : [(V - A)dr = fA-da

. 1dv dug . duy, A, ). I8 vy ] . Curl Theorem - VxA)-da=¢FA.dl
Carl ; v = |-=-2 S ACE F L R R J(VxA)-da=§
Curl v T& QLT.,TN ?T_;?:Eu gu_n

19 ot 1 0% o
Laplacian : Vi = - (s )+5—5+3
“aplacian 5 s A &v t et
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CARTESIAN AND SPHERICAL UNIT VECTORS

X = (sin @ cos gt + (cos @ cos $)0 — sin ¢ (T)
y =(sin@sin @)t + (cosfsin ¢)é +cos¢ (j)
z

=cosfr—siné 0O

INTEGRALS
() Cf(x)dx :
/ ) [——dx=m /20"
o 1+bx
e_axz ﬁ T n_—bx _ 1’1!
............... x'e Mdx =—
2% 0 bn+
x(e—axz 1 I(x2+b2)'l/2dx = ln(x+\/x2+b2)
............... S )
g a2 N f(x2+b2)'ldx = Earctan(x/b)
O e 4ol _f(x2 D)y =
3 a2 1 P+
e Y — N
242 ——— +arctan(x / b)
2 bz 24 - X +
Agad ¥z Ja oy 2w
, Ba [25 =i +)
5 —ax 1 ot
x @ ............... a3 dx ~ 1 1 xZ
e i P
6 —axz 15\/; H ) *
‘.X' € 77 i 16a7/2 I dx _ Lln ax—b
a’x’ -b’ 2ab  \ax+b

= —iartanh L
ab b



