QM A1

The operator \hat{R} is defined by $\hat{R} \psi(x)=\operatorname{Re}[\psi(x)]$ (it returns the real part of $\psi(x)$).
Is \hat{R} a linear operator? Explain.

SOLUTION

\hat{R} is not linear. It's easy to find a counterexample against the hypothesis of linearity:
Investigate the function f, for which $f(x)=i$ (it always returns i, no matter what x is). Now
$\hat{R}(f(x))=\operatorname{Re}[f(x)]=\operatorname{Re}[i]=0$
but

$$
\hat{R}(i f(x))=\operatorname{Re}[i f(x)]=\operatorname{Re}[-1]=-1 \quad \nexists \quad i \hat{R} f(x)=0
$$

Find the energy levels of a spin $s=\frac{3}{2}$ particle whose Hamiltonian is given by $\hat{H}=\frac{\alpha}{\hbar^{2}}\left(\hat{S}_{x}{ }^{2}+\hat{S}_{y}{ }^{2}-2 \hat{S}_{z}{ }^{2}\right)-\frac{\beta}{\hbar} \hat{S}_{z}$, where α and β are constants.

SOLUTION

We rewrite the Hamiltonian:
$\hat{H}=\frac{\alpha}{\hbar^{2}}\left(\left\{\hat{S}_{x}{ }^{2}+\hat{S}_{y}{ }^{2}\right\}-2 \hat{S}_{z}{ }^{2}\right)-\frac{\beta}{\hbar} \hat{S}_{z}=\frac{\alpha}{\hbar^{2}}\left(\left\{\hat{S}^{2}-\hat{S}_{z}{ }^{2}\right\}-2 \hat{S}_{z}{ }^{2}\right)-\frac{\beta}{\hbar} \hat{S}_{z}=\frac{\alpha}{\hbar^{2}}\left(\hat{S}^{2}-3 \hat{S}_{z}^{2}\right)-\frac{\beta}{\hbar} \hat{S}_{z}$
We see that the Hamiltonian is diagonal in the $\left|s, m_{s}\right\rangle$ basis:
$\hat{H}\left|s, m_{s}\right\rangle=\left\{\frac{\alpha}{\hbar^{2}}\left(\hat{S}^{2}-3 \hat{S}_{z}^{2}\right)-\frac{\beta}{\hbar} \hat{S}_{z}\right\}\left|s, m_{s}\right\rangle=\left\{\frac{\alpha}{\hbar^{2}}\left(\hbar^{2} s(s+1)-3 \hbar^{2} m_{s}{ }^{2}\right)-\frac{\beta}{\hbar} \hbar m_{s}\right\}\left|s, m_{s}\right\rangle=$
$=\left\{\alpha\left(s(s+1)-3 \hbar^{2} m_{s}^{2}\right)-\beta m_{s}\right\}\left|s, m_{s}\right\rangle$
So $E=\alpha\left(s(s+1)-3 m_{s}^{2}\right)-\beta m_{s}=\alpha\left(\frac{15}{4}-3 m_{s}^{2}\right)-\beta m_{s}$
and thus
$E\left(m_{s}=-\frac{3}{2}\right)=\alpha\left(\frac{15}{4}-3 \frac{9}{4}\right)+\frac{3}{2} \beta=-\frac{12}{4} \alpha+\frac{3}{2} \beta=-3 \alpha+\frac{3}{2} \beta$
$E\left(m_{s}=+\frac{3}{2}\right)=\alpha\left(\frac{15}{4}-3 \frac{9}{4}\right)-\frac{3}{2} \beta=-\frac{12}{4} \alpha-\frac{3}{2} \beta=-3 \alpha-\frac{3}{2} \beta$
$E\left(m_{s}=-\frac{1}{2}\right)=\alpha\left(\frac{15}{4}-3 \frac{1}{4}\right)+\frac{1}{2} \beta=\frac{12}{4} \alpha+\frac{1}{2} \beta=3 \alpha+\frac{1}{2} \beta$
$E\left(m_{s}=+\frac{1}{2}\right)=\alpha\left(\frac{15}{4}-3 \frac{1}{4}\right)-\frac{1}{2} \beta=\frac{12}{4} \alpha-\frac{1}{2} \beta=3 \alpha-\frac{1}{2} \beta$
$8 M$ easy
(1.)
(a) $\lambda=\frac{h c}{E}=\frac{1240 \text { kevopm }}{40 \mathrm{keV}}=31 \mathrm{pm}$
(6)

$$
\begin{aligned}
& K_{e}=E-E^{\prime} \\
& E^{\prime}=\frac{h c}{\lambda^{\prime}}=\frac{h c}{\lambda+\lambda_{c}} \text { from Compton formula } \\
& \lambda^{\prime}-\lambda^{*}=\lambda_{c}(1-\cos \theta), \theta=9 \theta \\
& \begin{aligned}
\mathrm{K}_{\mathrm{e}}=40 \mathrm{kev}-\frac{1240 \mathrm{kev} / \mathrm{pm}}{(31+2.43) \mathrm{pm}} & =40 \mathrm{kev}-32.09 \mathrm{keV} \\
& =2.91 \mathrm{kev}
\end{aligned}
\end{aligned}
$$

(e) $\begin{aligned} d_{e c}=\frac{h}{\sqrt{2 m E}}=\frac{1.226}{\sqrt{E(e V)}} \mathrm{nm}=\frac{1.226}{\sqrt{2910}} & =0.0227 \mathrm{~nm} \\ & =22.7 \mathrm{pm}\end{aligned}$
(2.) v_{0}
$x<0 \quad \psi(x)=e^{i k x}+B e^{-i k x}, \quad k=\frac{\sqrt{2 m E}}{\hbar}$

$$
x>0 \quad \psi(x)=C e^{i / 1, x}, k_{1}=\frac{\sqrt{2 \ln \left(E-V_{0}\right)}}{\hbar}
$$

maten at $x=0$:
ψ
$d 4: \quad 1+B=C \quad$ or $\quad-B+C=1$
dx: $\quad i k-i k B=i k_{1} C$ or $\quad B+\frac{k_{1}}{k} C=1$

$$
\begin{gathered}
C\left(1+\frac{k_{1}}{k}\right)=2 \quad C=\frac{2 k}{k+k_{1}} \\
B=\operatorname{tac} C-1=\frac{k-k_{1}}{k+k_{1}} \\
T=\frac{k_{1}|C|^{2}}{k}=\frac{4 k_{1} k}{\left(k+k_{1}\right)^{2}} \quad R=|B|^{2}=\left(\frac{k-k_{1}}{k+k_{1}}\right)^{2}
\end{gathered}
$$

(6) $R+T=\frac{\left(k-k_{1}\right)^{2}+4 k_{1} k}{\left(k+k_{1}\right)^{2}}=1$ satisty conseruain of curreat: $j_{\text {ine }}=j$ transm. + jreplected

QM B1

Consider a system which is initially in the normalized state

$$
\psi(\theta, \phi)=\frac{1}{\sqrt{5}} Y_{1,-1}(\theta, \phi)+a Y_{1,0}(\theta, \phi)+\frac{1}{\sqrt{5}} Y_{1,1}(\theta, \phi)
$$

in which a is a positive real constant.
a. Find a.
b. If L_{z} were measured, what values could one obtain, and with what probabilities?

We now measure L_{z} and find the value $-\hbar$.
c. Calculate $\left\langle L_{x}\right\rangle$ and $\left\langle L_{y}\right\rangle$.
d. Calculate the uncertainties ΔL_{x} and ΔL_{y} and their product $\Delta L_{x} \Delta L_{y}$. You may use the equality $\left\langle L_{x}{ }^{2}\right\rangle=\left\langle L_{y}{ }^{2}\right\rangle$ without proving it first.

SOLUTION

Part a. Writing $\psi(\theta, \phi)=\sum_{m=-1}^{1} c_{m} Y_{1, m}(\theta, \phi)$ we require $\sum_{m=-1}^{1}\left|c_{m}\right|^{2}=1$, in other words
$\left|\frac{1}{\sqrt{5}}\right|^{2}+|a|^{2}+\left|\frac{1}{\sqrt{5}}\right|^{2}=\frac{2}{5}+a^{2}=1 \Rightarrow a^{2}=\frac{3}{5} \quad \Rightarrow \quad a=\sqrt{\frac{3}{5}}$

Part b. The probability to measure $L_{z}=m \hbar$ equals $\left|c_{m}\right|^{2}$, so
$P(m=-1)=\left|c_{-1}\right|^{2}=\frac{1}{5}=20 \%$
$P(m=0)=\left|c_{0}\right|^{2}=\frac{3}{5}=60 \%$
$P(m=+1)=\left|c_{+1}\right|^{2}=\frac{1}{5}=20 \%$

Part c. The wave function has collapsed to $Y_{1,-1}(\theta, \phi)=\langle\theta, \phi \mid 1,-1\rangle$. We have
$L_{x}=\frac{1}{2}\left(L_{+}+L_{-}\right)$and $L_{y}=-\frac{1}{2} i\left(L_{+}-L_{-}\right)$, so now
$L_{x}=\frac{1}{2}\left(L_{+}+L_{-}\right)$and $L_{y}=-\frac{1}{2} i\left(L_{+}-L_{-}\right)$
$\langle\psi| L_{x}|\psi\rangle=\frac{1}{2}\langle 1,-1| L_{+}|1,-1\rangle+\frac{1}{2}\langle 1,-1| L_{-}|1,-1\rangle=\frac{1}{2} C \hbar\langle 1,-1 \mid 1,0\rangle+\frac{1}{2}\langle 1,-1 \mid \varnothing\rangle=0$
$\langle\psi| L_{y}|\psi\rangle=-\frac{1}{2} i\langle 1,-1| L_{+}|1,-1\rangle+\frac{1}{2} i\langle 1,-1| L_{-}|1,-1\rangle=-\frac{1}{2} i C \hbar\langle 1,-1 \mid 1,0\rangle+\frac{1}{2} i\langle 1,-1 \mid \varnothing\rangle=0$
where C is some constant and $|\varnothing\rangle$ is the zero-length ket (for which $\langle\varnothing \mid \varnothing\rangle=0$).
Now for $\ell=1$ and $m=-1$, we have

$$
\begin{aligned}
& \left\langle L^{2}\right\rangle=\ell(\ell+1) \hbar^{2}=2 \hbar^{2}=\left\langle L_{x}{ }^{2}+L_{y}{ }^{2}+L_{z}{ }^{2}\right\rangle=\left\langle L_{x}{ }^{2}\right\rangle+\left\langle L_{y}{ }^{2}\right\rangle+\left\langle L_{z}{ }^{2}\right\rangle=2\left\langle L_{x}{ }^{2}\right\rangle+\left\langle L_{z}{ }^{2}\right\rangle=2\left\langle L_{x}{ }^{2}\right\rangle+(-\hbar)^{2} \\
& \Rightarrow\left\langle L_{x}{ }^{2}\right\rangle=\left\langle L_{y}{ }^{2}\right\rangle=\frac{1}{2} \hbar^{2}
\end{aligned}
$$

so that
$\left(\Delta L_{x}\right)^{2}=\left\langle\left(L_{x}-\left\langle L_{x}\right\rangle\right)^{2}\right\rangle=\left\langle L_{x}^{2}\right\rangle-\left\langle L_{x}\right\rangle^{2}=\frac{1}{2} \hbar^{2}-0 \Rightarrow \Delta L_{x}=\frac{1}{2} \sqrt{2} \hbar$, and, similarly, $\Delta L_{y}=\frac{1}{2} \sqrt{2} \hbar$
We find $\Delta L_{x} \Delta L_{y}=\left(\frac{1}{2} \sqrt{2} \hbar\right)\left(\frac{1}{2} \sqrt{2} \hbar\right)=\frac{1}{2} \hbar^{2}$

The Hamiltonian for a one-dimensional harmonic oscillator is

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2} .
$$

We write its energy eigenkets as $|n\rangle(n=0,1,2, \ldots)$ for energy $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$.
a. Suppose the system is in the normalized state $|\varphi\rangle$ given by $|\varphi\rangle=c_{0}|0\rangle+c_{1}|1\rangle$, and that the expectation value of the energy is known to be $\hbar \omega$. What are $\left|c_{0}\right|$ and $\left|c_{1}\right|$?
b. Now choose c_{0} to be real and positive, but let c_{1} have any phase: $c_{1}=\left|c_{1}\right| e^{i \theta}$. Suppose further that not only is the expectation value of the energy known to be $\hbar \omega$, but the expectation value of x is also known: $\langle\varphi| x|\varphi\rangle=\frac{1}{2} \sqrt{\frac{\hbar}{m \omega}}$. Calculate the phase angle θ.
c. Now suppose the system is in the state $|\varphi\rangle$ at time $t=0$, i.e., $|\psi(t=0)\rangle=|\varphi\rangle$. Calculate $|\psi(t)\rangle$ at some later time t. Use the values of c_{0} and c_{1} you found in parts a. and b.
d. Also calculate the expectation value of x as a function of time. With what angular frequency does it oscillate? Again, use the values of c_{0} and c_{1} you found in parts a. and b.

SOLUTION

Part a.

$\hbar \omega=\langle\varphi| H|\varphi\rangle=\left|c_{0}\right|^{2} E_{0}+\left|c_{1}\right|^{2} E_{1}=\left|c_{0}\right|^{2} \frac{1}{2} \hbar \omega+\left|c_{1}\right|^{2} \frac{3}{2} \hbar \omega=\hbar \omega\left(\frac{1}{2}\left|c_{0}\right|^{2}+\frac{3}{2}\left|c_{1}\right|^{2}\right)$
$\Rightarrow \frac{1}{2}\left|c_{0}\right|^{2}+\frac{3}{2}\left|c_{1}\right|^{2}=1$
Normalization: $\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1$, so we have
$\left\{\begin{array}{l}\frac{1}{2}\left|c_{0}\right|^{2}+\frac{3}{2}\left|c_{1}\right|^{2}=1 \\ \left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1\end{array} \Rightarrow\left|c_{0}\right|=\left|c_{1}\right|=\frac{1}{2} \sqrt{2}\right.$

Part b.

Recall $\hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right)$, so we have

$$
\hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right)
$$

$\frac{1}{2} \sqrt{\frac{\hbar}{m \omega}}=\langle\varphi| x|\varphi\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\langle\varphi| \hat{a}|\varphi\rangle+\sqrt{\frac{\hbar}{2 m \omega}}\langle\varphi| \hat{a}^{\dagger}|\varphi\rangle=$
$=\sqrt{\frac{\hbar}{2 m \omega}}\left(\langle 0| c_{0}{ }^{*}+\langle 1| c_{1}{ }^{*}\right) \hat{a}\left(c_{0}|0\rangle+c_{1}|1\rangle\right)+\sqrt{\frac{\hbar}{2 m \omega}}\left(\langle 0| c_{0}{ }^{*}+\langle 1| c_{1}{ }^{*}\right) \hat{a}^{\dagger}\left(c_{0}|0\rangle+c_{1}|1\rangle\right)$
Now

$$
\begin{aligned}
& \hat{a}|\varphi\rangle=\hat{a}\left(c_{0}|\sigma\rangle+c_{1}|1\rangle\right)=c_{1} \hat{a}|1\rangle=c_{1}|0\rangle \\
& \hat{a}^{+}|\varphi\rangle=\hat{a}^{+}\left(c_{0}|0\rangle+c_{1}|1\rangle\right)=\left(c_{0} \hat{a}^{+}|0\rangle+c_{1} \hat{a}^{\dagger}|1\rangle\right)=\left(c_{0}|1\rangle+(\ldots)|2\rangle\right) \\
& \frac{1}{2} \sqrt{\frac{\hbar}{m \omega}}=\langle\varphi| x|\varphi\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\langle\varphi| \hat{a}|\varphi\rangle+\sqrt{\frac{\hbar}{2 m \omega}}\langle\varphi| \hat{a}^{\dagger}|\varphi\rangle= \\
& =\sqrt{\frac{\hbar}{2 m \omega}}\left(\langle 0| c_{0}^{*}+\langle 1\rangle c_{1}^{*}\right)\left(c_{1}|0\rangle\right)+\sqrt{\frac{\hbar}{2 m \omega}}\left(\left\langle 0 \mid c_{0}^{*}+\langle 1| c_{1}^{*}\right)\left(c_{0}|1\rangle+(\ldots)+2\right\rangle\right)= \\
& =\sqrt{\frac{\hbar}{2 m \omega}}\left(c_{0}^{*} c_{1}+c_{0} c_{1}^{*}\right)=\sqrt{\frac{\hbar}{2 m \omega}} \frac{1}{2} \sqrt{2}\left(c_{1}+c_{1}^{*}\right) \text { because } c_{0}=\frac{1}{2} \sqrt{2} \in \square
\end{aligned}
$$

We get

$$
\begin{aligned}
& \frac{1}{2} \sqrt{\frac{\hbar}{m \omega}}=\sqrt{\frac{\hbar}{2 m \omega}} \frac{1}{2} \sqrt{2}\left(c_{1}+c_{1}^{*}\right) \Rightarrow 1=\left(c_{1}+c_{1}^{*}\right)=\left|c_{1}\right| e^{i \theta}+\left|c_{1}\right| e^{-i \theta}=\frac{1}{2} \sqrt{2}(\not 2 \cos \theta) \\
& \Rightarrow \cos \theta=\frac{1}{2} \sqrt{2} \Rightarrow \theta=\frac{1}{4} \pi\left(=45^{\circ}\right)
\end{aligned}
$$

Part c.

$|\psi(t)\rangle=c_{0} e^{-i E_{0} t / \hbar}|0\rangle+c_{1} e^{-i E_{1} t / \hbar}|1\rangle=\frac{1}{2} \sqrt{2} e^{-i \frac{1}{2} \omega t}|0\rangle+\frac{1}{2} \sqrt{2} e^{i \pi / 4} e^{-i \frac{3}{2} \omega t}|1\rangle$

Part d.

We had seen $\langle\varphi| x|\varphi\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left(c_{0}{ }^{*} c_{1}+c_{0} c_{1}{ }^{*}\right)=\sqrt{\frac{\hbar}{2 m \omega}} 2 \operatorname{Re}\left(c_{0}{ }^{*} c_{1}\right)$, so now
$\langle\psi(t)| x|\psi(t)\rangle=\sqrt{\frac{\hbar}{2 m \omega}} 2 \operatorname{Re}\left(\frac{1}{2} \sqrt{2} e^{\frac{1}{i} \omega t} \frac{1}{2} \sqrt{2} e^{\frac{1}{4} i \pi} e^{-\frac{3}{2} i \omega t}\right)=\sqrt{\frac{\hbar}{2 m \omega}} \operatorname{Re}\left(e^{\frac{1}{2} i \omega t} e^{\frac{1}{4} i \pi} e^{-\frac{3}{2} i \omega t}\right)=$
$=\sqrt{\frac{\hbar}{2 m \omega}} \cos \left(-\omega t+\frac{1}{4} \pi\right)=\sqrt{\frac{\hbar}{2 m \omega}} \cos \left(\omega t-\frac{1}{4} \pi\right)$
The angular frequency of oscillation is ω.
a. For the simple harmonic oscillator, $H\left|\psi_{n}\right\rangle=\left(n+\frac{1}{2}\right) \hbar \omega$

$$
\begin{aligned}
\hbar \omega & =\langle\phi| H|\Phi\rangle=\left(\left\langle\psi_{0}\right| c_{0}^{*}+\left\langle\psi_{1}\right| c_{1}^{*}\right) H\left(c_{0}\left|\psi_{0}\right\rangle+c_{1}\left|\psi_{1}\right\rangle\right) \\
& =\left|c_{0}\right|^{2}\left\langle\psi_{0}\right| H\left|\psi_{0}\right\rangle+\left|c_{1}\right|^{2}\left\langle\psi_{1}\right| H\left|\psi_{1}\right\rangle \quad \text { by orthogonality } \\
& =\left|c_{0}\right|^{2}\left(\frac{1}{2} \hbar \omega\right)+\left|c_{1}\right|^{2}\left(\frac{3}{2} \hbar \omega\right) \\
\Rightarrow 1 & =\frac{1}{2}\left|c_{0}\right|^{2}+\frac{3}{2}\left|c_{1}\right|^{2}
\end{aligned}
$$

Normalization of $|\phi\rangle$ implies $\langle\Phi \mid \phi\rangle=1 \Rightarrow\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1$

$$
\begin{aligned}
& \Rightarrow 1=\frac{1}{2}\left|c_{0}\right|^{2}+\frac{3}{2}\left(1-\left|c_{0}\right|^{2}\right)=\frac{3}{2}-\left|c_{0}\right|^{2} \\
& \Rightarrow\left|c_{0}\right|^{2}=\frac{1}{2} \text { and }\left|c_{1}\right|^{2}=\frac{1}{2}
\end{aligned}
$$

Therefore $\left|c_{0}\right|=\frac{1}{\sqrt{2}}$ and $\left|c_{1}\right|=\frac{1}{\sqrt{2}}$
b. Recall $x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{+}\right)$

$$
\begin{aligned}
& \frac{1}{2} \sqrt{\frac{\hbar}{m w}}=\langle\phi| \times|\phi\rangle=\sqrt{\frac{\hbar}{2 m w}}\left[\left\langle\psi_{0}\right| c_{0}^{*} c_{1} a\left|\psi_{1}\right\rangle+\left\langle\psi_{1}\right| c_{1}^{*} c_{0} a^{+}\left|\psi_{0}\right\rangle\right] \\
&=\sqrt{\frac{\hbar}{2 m w}}\left[c_{0}{ }^{*} c_{1}+c_{1}^{*} c_{0}\right] \\
&=\frac{1}{\sqrt{2}} \sqrt{\frac{\hbar}{2 m w}}\left[c_{1}+c_{1}^{*}\right] \quad \text { since } c_{0} \text {. real and } \rho o s \Rightarrow c_{0}=\frac{1}{\sqrt{2}} \\
& \Rightarrow \quad 1=c_{1}+c_{1}^{*}=\frac{1}{\sqrt{2}} e^{i \theta_{1}}+\frac{1}{\sqrt{2}} e^{-i \theta_{1}}=\frac{1}{\sqrt{2}} 2 \cos \left(\theta_{1}\right) \\
& \Rightarrow \cos \left(\theta_{1}\right)=\frac{\sqrt{2}}{2} \Rightarrow \theta_{1}=\pi / 4
\end{aligned}
$$

c.

$$
\begin{aligned}
& |\psi(t)\rangle=e^{-i H+/ \hbar}|\psi(0)\rangle=\frac{1}{\sqrt{2}} e^{-i \omega t / 2}\left|\psi_{0}\right\rangle+\frac{1}{\sqrt{2}} e^{-3 i \omega t / 2+i \pi / 4}\left|\psi_{1}\right\rangle \\
& \langle\psi(t)| x|\psi(t)\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left[\frac{1}{2} e^{-i \omega t+i \pi / 4}+\frac{1}{2} e^{i \omega t-1 \pi / 4}\right]=\sqrt{\frac{\hbar}{2 m \omega}} \cos \left(\omega t-\frac{\pi}{4}\right)
\end{aligned}
$$

The angular frequency of oscillation is ω.
©M lony.
(1.)

$$
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{\partial \pi n x}{L}
$$

(a) $\quad x \rightarrow x+\frac{L}{2}$

$$
\psi_{n}(x)=\sqrt{\frac{L}{L}} \sin \left[\frac{\pi n}{L}\left(x+\frac{L}{2}\right)\right)=\sqrt{\frac{2}{L}} \sin \left(\frac{\pi n x}{L}+\frac{\pi n}{L}\right)
$$

(1) $=(-1)^{k} \sqrt{\frac{L}{L}} \sin \frac{2 \pi k x}{L} \quad$ if $n=2 k, k=1,2, \ldots$
(2) $(-1)^{k} \sqrt{\frac{2}{L}} \cos \frac{\pi(2 k+1) x}{L}$ if $n=2 k+1, k=0,1, \ldots$
(6) yes, function (1) has $P=-1$
function (2) has $P=+\mathbb{1}$
(e) no, $-i \hbar \frac{d}{d x}$ does not veturn the Same
(d) $-\int \psi_{n}$ it $\frac{d \psi_{n}}{d x} d x=0 \quad$ since integrand is odd

$$
\left\langle p^{2}\right\rangle=-\hbar^{2} \int \psi_{n} \frac{d^{2} \psi_{n}}{d x^{2}} d x=\hbar^{2}\left(\frac{\pi n}{L}\right)^{2} \int \psi_{n}^{2} d x=\hbar^{2}\left(\frac{\pi n}{L}\right)^{2}
$$

(e) $\Delta p=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}=\frac{\hbar \pi n}{L}$
because ψ_{n} is a superposition of momentun eigenstates with $p= \pm \frac{\hbar \pi n}{L}$
(f)

$$
\begin{array}{r}
\frac{2}{L} \int_{-\frac{L}{2}}^{L / 2} \cos \frac{\pi x}{L}\left(-x i \hbar \frac{d}{d x}\right) \cos \frac{\pi x}{L} d x=\frac{2 i \hbar}{L} \frac{\pi}{L} \int x \cos \frac{\pi x}{L} \sin \frac{\pi x}{L} d x \\
=\frac{i \hbar \pi}{L^{2}} \int_{-L / 2}^{4 / 2} x \sin \frac{2 \pi x}{L} d x=\frac{i \hbar \pi}{L^{2}}\left[-\left.x \frac{L}{2 \pi} \cos \frac{2 \pi x}{L}\right|_{-L / 2} ^{L / 2}\right. \\
\left.+\frac{L}{2 \pi} \int_{-4 / 2} \cos \frac{2 \pi x}{L} d x=\frac{i \hbar \pi}{L^{2}} \int-\frac{L^{3}}{4 \pi}(1) \cdot b+\left.\left(\frac{L}{2 \pi}\right)^{2} \sin \frac{2 \pi x}{L}\right|_{-L / 2} ^{L / 2}\right] \\
=\frac{i \hbar}{L} \rightarrow x p \text { is monturition }
\end{array}
$$

(a) it $\frac{\partial}{\partial t}\binom{x_{1}}{x_{2}}=-\frac{\hbar}{2} \operatorname{ros}\binom{x_{2}}{x_{1}}$
(6)

$$
\begin{aligned}
& i{\dot{x_{1}}}=-\frac{1}{2} \gamma B x_{2} \rightarrow\binom{x_{1}}{y_{2}}=e^{i \omega t}\binom{a}{b} \\
& i \dot{y}_{2}=-\frac{1}{2} \gamma \beta x_{1} \\
& -\omega a=-\frac{1}{2} \gamma B b \\
& -\omega b=-\frac{1}{2} \gamma B a \rightarrow \omega^{2}=\left(\frac{1}{2} \gamma B\right)^{2} \\
& \omega= \pm \frac{1}{2} \gamma B
\end{aligned}
$$

for $\omega=-\frac{1}{2} \gamma^{\prime} B \quad a=6$

$$
\omega=-\frac{1}{2} j+B \quad b=-a
$$

general solution $X=c_{1} e^{i \omega t} \frac{1}{\sqrt{2}}\binom{1}{1}+c_{2} e^{-i \omega t} \frac{1}{\sqrt{2}}\binom{1}{-1}$ out $t=0 \quad y=(6) \rightarrow c_{1}=C_{2}=\frac{1}{\sqrt{2}}$

$$
x=\frac{1}{2} e^{i \omega t}\binom{1}{i}+\frac{1}{2} e^{-i \omega t}\binom{1}{-1}=\binom{\cos \omega t}{i \sin \omega t}
$$

$$
\begin{aligned}
(c)\left\langle S_{z}\right\rangle & =\frac{h}{2}\left(a^{*} b^{*}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{a}{b}=\frac{\hbar}{2}\left(|a|^{2}-|6|^{2}\right)= \\
& =\frac{\hbar}{2}\left(\cos ^{2} \omega t--\sin ^{2} \omega t\right)=\frac{\hbar}{2} \cos 2 \omega t \\
\left\langle S_{y}\right\rangle & =\frac{\hbar}{2}\left(a^{*} b^{*}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{a}{b}=\left(-i a^{*} b+i b^{*} a\right) \frac{\hbar}{2}= \\
& =2 \operatorname{Im}\left(a^{*} b\right) \frac{\hbar}{2}=27 m(\cos \omega t i \sin \omega t) \frac{\hbar}{2}=\sin 2 \omega+\frac{\hbar}{2}
\end{aligned}
$$

An isolated sphere of perfectly conducting material is surrounded by air. Though normally a good insulator, air breaks down (it becomes conductive) for electric fields beyond $3.0 \mathrm{kV} / \mathrm{mm}$ (the so-called dielectric strength of air). The sphere's radius is 5.0 cm . What is the maximum amount of electrostatic energy the sphere can store before breakdown occurs? Assume the electrostatic potential is zero at infinite distance from the sphere.

SOLUTION

For a charge q on the sphere we have
$E=k \frac{q}{R^{2}} \Rightarrow q=\frac{E R^{2}}{k}$
$V=k \frac{q}{R}=E R$
So now $U=\frac{1}{2} q V=\frac{1}{2} \frac{E R^{2}}{k} E R=2 \pi \varepsilon_{0} E^{2} R^{3}=2 \pi\left(8.85 \times 10^{-12}\right)\left(3 \times 10^{6}\right)^{2}\left(5 \times 10^{-2}\right)^{3}=0.063=63 \mathrm{~mJ}$

The diagram shows part of an electronic circuit. Calculate the potential at point P.

SOLUTION

Left two inductors:
$\frac{1}{L_{\text {eff }}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}=\frac{1}{6}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4} \Rightarrow L_{\text {eff }}=4.0 \mathrm{mH}$
From the 10 mH inductor we find $\frac{d i}{d t}=\frac{\Delta V}{L}=\frac{18-(-12)}{10 \times 10^{-3}}=3000 \mathrm{~A} / \mathrm{s}$
So $\Delta V=0-V_{\mathrm{P}}=L_{\text {eff }} \frac{d i}{d t}=4 \times 10^{-3} * 3000=12 \mathrm{~V} \Rightarrow V_{\mathrm{P}}=-12 \mathrm{~V}$

E\&M AB
2. If the electric field generated by a static point charge is proportional to $1 / r^{3}$, where r is the distance to the charge, will Guass' law still be correct? Justify your answer.

Guns' law breaks.

The integral form of Gums' law is $\oiint_{S} \vec{E} \cdot d \vec{A}=\frac{Q}{\varepsilon_{0}}$. If $E=k \frac{1}{r^{3}}$ and integrate over a spherical surface, then $\oiint_{S} \vec{E} \cdot d \vec{A}=k \cdot \frac{1}{r^{3}} \cdot 4 \pi r^{2}=\frac{4 \pi k}{r}$. This integral varies with r and even. vanishes at $r \rightarrow \infty$, which isn't physical.

E\&M A4

1. A circuit consisting of infinite resistors is as shown in the figure. Please find the resistance between A and B in terms of R_{1} and \dot{R}_{2}.

If the first R_{1} and R_{2} are cut off , the remaining circuit has a resistance $R_{C D}=R_{A B}$.
Thus,

$$
\begin{aligned}
R_{A B} & =R_{1}+\frac{1}{\frac{1}{R_{2}}+\frac{1}{R_{C D}}} \\
& =R_{1}+\frac{R_{2} R_{C D}}{R_{2}+R_{C D}} \\
R_{A B}-R_{1} & =\frac{R_{2} R_{A B}}{R_{2}+R_{A B}} \\
R_{A B}^{2} & -R_{1} R_{A B}-R_{1} R_{2}=0 \\
R_{A B} & =\frac{R_{1}+\sqrt{R_{1}^{2}+4 R_{1} R_{2}}}{2} \quad\left(R_{A B}>R_{1}\right)
\end{aligned}
$$

E\&M B1

A flat square loop of wire of length $2 a$ on each side carries a stationary current I. Calculate the magnitude of the magnetic field at the center of the square.

SOLUTION

This field is 4 times the field of one side. The field of one side is the field at a point a distance a away from wire.
$d B($ for one side $)=\frac{\mu_{0}}{4 \pi} \frac{I d \boldsymbol{\ell} \times \hat{\mathbf{r}}}{r^{2}}=\frac{\mu_{0}}{4 \pi} \frac{1}{r^{2}} I d y \sin \phi=\frac{\mu_{0}}{4 \pi} \frac{1}{y^{2}+a^{2}} I d y \frac{a}{\sqrt{y^{2}+a^{2}}}=\frac{\mu_{0} I a}{4 \pi} \frac{d y}{\left(y^{2}+a^{2}\right)^{3 / 2}}$
$B($ of one side $)=\frac{\mu_{0} I a}{4 \pi} \int_{-a}^{a} \frac{d y}{\left(y^{2}+a^{2}\right)^{3 / 2}}=\frac{\mu_{0} I a}{4 \pi} 2 \int_{0}^{a} \frac{d y}{\left(y^{2}+a^{2}\right)^{3 / 2}}=\frac{\mu_{0} I a}{2 \pi}\left[\frac{y}{a^{2}\left(y^{2}+a^{2}\right)^{1 / 2}}\right]_{0}^{a}=\frac{\mu_{0} I a}{2 \pi}\left[\frac{a}{a^{2}\left(a^{2}+a^{2}\right)^{1 / 2}}\right]=$
$=\frac{\mu_{0} I}{2 \pi} \frac{1}{\left(2 a^{2}\right)^{1 / 2}}=\frac{\mu_{0} I}{2 \pi} \frac{1}{\sqrt{2} a}=\frac{\mu_{0} I}{2 \sqrt{2} \pi a}$
$B_{\text {tot }}=4 * \frac{\mu_{0} I}{2 \sqrt{2} \pi a}=\frac{\sqrt{2}}{\pi} \frac{\mu_{0} I}{a}$

The integral must be provided in the cheat sheet:

$$
\begin{aligned}
& \ln [5]=\text { Integrate }\left[\frac{1}{\left(y^{2}+a^{2}\right)^{3 / 2}}, y\right] \\
& \text { Out }[5]=\frac{y}{a^{2} \sqrt{a^{2}+y^{2}}} \\
& \ln [6]=\text { Integrate }\left[\frac{1}{\left(y^{2}+a^{2}\right)^{3 / 2}},\{y,-a, a\}\right] \\
& O u t[6]=\frac{\sqrt{2} \sqrt{a^{2}}}{a^{3}}
\end{aligned}
$$

EM Hard

E\&M B2

All space is filled with a material with uniform, fixed magnetization \mathbf{M}, except for the region $0<z<a$, in which there is vacuum. The magnetization is $\mathbf{M}=M \hat{\mathbf{u}}$, where $\hat{\mathbf{u}}$ is a unit vector in the $y z$ plane that makes an angle θ with the z-axis: $\hat{\mathbf{u}}=(\sin \theta) \hat{\mathbf{y}}+(\cos \theta) \hat{\mathbf{z}}$. Calculate the magnetic field \mathbf{B} and the auxiliary field \mathbf{H} everywhere.

SOLUTION

There are no free current densities, so if there's a B field it must be due to bound currents.
The bound volume current density $\mathbf{J}_{\mathrm{b}}=\nabla \times \mathbf{M}=\mathbf{0}$ because \mathbf{M} is uniform. The bound surface current density is $\mathbf{K}_{\mathrm{b}}=\mathbf{M} \times \hat{\mathbf{n}}=M\left(\begin{array}{c}0 \\ \sin \theta \\ \cos \theta\end{array}\right) \times\left(\begin{array}{c}0 \\ 0 \\ \pm 1\end{array}\right)=M\left(\begin{array}{c} \pm \sin \theta \\ 0 \\ 0\end{array}\right)$ for the surface at $z=0$ (plus sign) and the surface at $z=a$ (minus sign). It follows from symmetry and Ampère's law that these bound currents give rise to a uniform magnetic field $\mathbf{B}=-\left(\mu_{0} M \sin \theta\right) \hat{\mathbf{y}}$ inside the gap; outside the gap, $\mathbf{B}=\mathbf{0}$.

The auxiliary field follows from $\mathbf{B}=\mu_{0}(\mathbf{H}+\mathbf{M}) \Rightarrow \mathbf{H}=\frac{\mathbf{B}}{\mu_{0}}-\mathbf{M}$
(1) In the gap: $\mathbf{H}=\frac{\mathbf{B}}{\mu_{0}}-\mathbf{M}=-\frac{\left(\mu_{0} M \sin \theta\right)}{\mu_{0}} \hat{\mathbf{y}}-\mathbf{0}=-(M \sin \theta) \hat{\mathbf{y}}$
(2) Outside the gap: $\mathbf{H}=\frac{\mathbf{B}}{\mu_{0}}-\mathbf{M}=\mathbf{0}-\mathbf{M}=-(M \sin \theta) \hat{\mathbf{y}}-(M \cos \theta) \hat{\mathbf{z}}$

To verify this result we can use the magnetostatic charge density. For instance, for the bottom surface we have $\sigma_{M}=\mathbf{M} \cdot \hat{\mathbf{n}}=M_{z}=M \cos \theta$. From Gauss's law for magnetostatics, we have $\prod_{S} \mathbf{H} \cdot d \mathbf{a}=q_{M, \text { encl }}$. Applying this to a pillbox of area A enclosing part of the surface, calling the auxiliary field inside/outside gap, $\mathbf{H}_{\mathrm{i}} / \mathbf{H}_{\mathrm{o}}$, we find
$\mathbf{H}_{\mathrm{i}} \cdot \hat{\mathbf{z}} A+\mathbf{H}_{\mathrm{o}} \cdot(-\hat{\mathbf{z}}) A=A \sigma_{M} \Rightarrow H_{\mathrm{i}, z}-H_{\mathrm{o}, \mathrm{z}}=\sigma_{M}=M \cos \theta$.
This agrees with our result $\mathbf{H}_{\mathrm{i}}=-(M \sin \theta) \hat{\mathbf{y}}$ and $\mathbf{H}_{\mathrm{o}}=-(M \sin \theta) \hat{\mathbf{y}}-(M \cos \theta) \hat{\mathbf{z}}=\mathbf{H}_{\mathrm{i}}-(M \cos \theta) \hat{\mathbf{z}}$

$$
\Rightarrow \quad \mathbf{H}_{\mathrm{i}}-\mathbf{H}_{\mathrm{o}}=(M \cos \theta) \hat{\mathbf{z}}
$$

E\&M B3
3. In the lab, a ball with mass m and electric charge $+q$ is hung in a horizontal uniform electric field E by a string of negligible mass. If the ball is raised to the position shown in the figure and dropped from still, what's the largest angle that it will swing to?

$$
\begin{aligned}
& F_{c}=q E \\
& F_{g}=m g \\
& \vec{F}=\vec{F}_{c}+\vec{F}_{g}
\end{aligned}
$$

The combination of electric field and gravity works as an "effective gravity" in the direction of \vec{F} with strength

In this case, the ball will swing to a position symmetric with the initial position about the axis along \vec{F}.

$$
\alpha=\arctan \frac{F_{g}}{F_{c}}=\arctan \frac{m g}{q E}
$$

the largest angle that the ball will reach is

$$
2 \alpha=2 \cdot \arctan \frac{m g}{g E}
$$

4. A slab of isotropic dielectric material of permittivity ε is infinite in the plane and is exposed to an external electric field \mathbf{E}_{0} perpendicular to the slab plane. Find the polarization density \mathbf{P} inside the slab.

$$
\begin{aligned}
& \frac{\downarrow_{0}}{\downarrow E^{\prime}} \\
& D_{\perp} \text { is continnows } \\
& \varepsilon_{0} \vec{E}_{0}=\varepsilon \vec{E}^{\prime} \\
& \therefore \overrightarrow{E^{\prime}}=\frac{\varepsilon_{0}}{\varepsilon} \vec{E}_{0} \\
& \because \vec{P}=\varepsilon_{0} \vec{E}^{\prime}+\vec{P} \\
& \therefore \vec{P}=\varepsilon_{0} \vec{E}_{0}-\varepsilon_{0} \vec{E}^{\prime} \\
& =\left(\varepsilon_{0}-\frac{\varepsilon_{0}^{2}}{\varepsilon}\right) \vec{E}_{0}
\end{aligned}
$$

