QM A1l

The operator R is defined by ﬁw(x) =Re[w(x)] (it returns the real part of y(x)).

Is R a linear operator? Explain.

SOLUTION

R is not linear. It’s easy to find a counterexample against the hypothesis of linearity:
Investigate the function f, for which f(x)=i (it always returns i, no matter what x is). Now

R(f(x))=Re[ f(x)]=Re[i]=0
but

R(i f(x))=Reli f(x)]=Re[~1]=~1 iRf(x)=0



QM A2

Find the energy levels of a spin s=3 particle whose Hamiltonian is given by

H :%(é 245228 2)—£§ ,where ¢ and S are constants.
A x y z B Z
SOLUTION

We rewrite the Hamiltonian:

= (82487} -237)- 08 — ({882} -282) 25 | (5 -382) - 28

We see that the Hamiltonian is diagonal in the |s,m_) basis:

S

H|s,m) ={%(§2 —3§22)—§§Z}|s,ms> ={%(h2s(s+1)—3h2m52)—§hms}|s,m )=
= {a(s(s+1) —3h2m52)—ﬂms} |s,m_)

So E=a(s(s+1)-3m) - m, =a(2-3m>)- pm,

and thus
E(m =-3)=a(£-3%)+ip=-Lg+if="3a+2
Em, =+3)=a(§-33)-3f=—2a-1p=3a-1p

E(m =-Y)=a(£-31)+1p=La+1p=3a+1p
1 3%

Em, = +3)=a(f-31)-4f=ta-1p=3a-1p
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QM B1

Consider a system which is initially in the normalized state
1
w(0,9)=—=Y, ,(0,9) +aY,,(0,4) +—=Y,,(0,9)
\/g 1,-1 1,0 \/_ 11

in which a is a positive real constant.

a. Find a.

b. If L were measured, what values could one obtain, and with what probabilities?
We now measure L_and find the value —7.

c. Calculate (L ) and (Ly).
d. Calculate the uncertainties AL, and AL, and their product AL AL, . You may use the

equality (L )= (Lyz) without proving it first.

SOLUTION

1
Part a. Writing y(0,¢) = Z ¢, Y, (0,4) we require Z |c | =1, in other words

=2+0’=1 = a’=2 = az\/g

Part b. The probability to measure L_=m# equals |cm *,s0

P(m=-1)=|c,| =1=20%
P(m=0)=c,|" =2=60%

P(m=+1)=|c [ =1=20%




Part c. The wave function has collapsed to Y, ,(0,4)=(8,4|1,-1). We have
L =1(L,+L) and L, = —1i(L, —L_), so now

L,=%(L,+L) and L, =—1i(L, -L)

WL |y)=21-1|L, [1,-1)+X1,-1|L |1,-1)=1Ch(1,-1]1,0) +1(1,-1|@) =0
WL, lw)=—2i(1,~1| L |1,-1) +1i1,~1| L_|1,~1) = ~1iCh(1,~1|1,0) + 1i(1,~1| @) =0

where C is some constant and | &) is the zero-length ket (for which (&) =0).

Now for /=1 and m=-1, we have
(Ly=0(0+1)n* =20" =(L > + Ly2 +L2y=(L*)+ (Ly2> +(L=2(L*)+(L*)=2(L>)+(-h)’
= (L% =(Ly2> =1p

so that

(AL =((L, ~(L))") =(L)~(L)*=1#*~0 = AL =22, and, similarly, AL =127

We find AL AL =(1N2 )2 1) =11°



QM B2

The Hamiltonian for a one-dimensional harmonic oscillator is
n ~2
A=t . I me®3* .
2m
We write its energy eigenkets as |n) (n=0,1,2,...) for energy E =(n+3)ha.
a. Suppose the system is in the normalized state | p) given by |¢@) =c,|0)+c, |1), and that

the expectation value of the energy is known to be 7@ . What are |CO| and |C1| ?

b. Now choose c, to be real and positive, but let ¢, have any phase: c, = |C1|e“9 . Suppose

turther that not only is the expectation value of the energy known to be %o, but the
expectation value of x is also known: (¢|x|¢) = %‘ /i . Calculate the phase angle 6.
mae

c. Now suppose the system is in the state | ) at time t=0, i.e., |y (t =0)) =| ) . Calculate
|y (t)) at some later time ¢ . Use the values of ¢, and ¢, you found in parts a. and b.

d. Also calculate the expectation value of x as a function of time. With what angular fre-

quency does it oscillate? Again, use the values of ¢, and ¢, you found in parts a. and b.

SOLUTION

Part a.
2 2 2 2 2 2
_ _ — 1 3 — 1 3
ho=(p | H1g)=lc[ E, +|e[ E =lel] 1ho+]e [ $1o=no( e[ +3]e[ )
2 2
1 3 _
= E|C0| +E|C1| =1
. . 2 2
Normalization: |c0| +|c1| =1, so we have

2 2
c,| +3lc,| =1
2170 2171 /

2 2
o]+l =1



Partb.

Recall x = (@a+a") ,so we have

(a+a")

\/ =(p|x|p)= ,/ <<o|ﬂ|¢>+ —<co|a lp) =
- /%(<0|co*+<1|cl*)fl(co|0>+c1|1>)+1/%(<0|c0*+<1|cl*)fl+(c0|0>+cl|1>)

Now

a|¢>:a(9@m§+cl|1>)=clzz|1>:c1|o>

a'|py=a"(c,|0)+c, |1)) :(coa* |0y +c,a’ |1>) =(co I +(..)12))

%\/%:WWW):,/ﬁ((olﬁW)ﬁt ﬁ(rplﬁ*m):
g O 98 (0 (01 11 0+ 1) -
= (Co*cl‘kcocl*): L%\/E(Clﬂfl*) because ¢, = 1\/_65

2mam

2mw

We get

L o serer) = 1=(oe el e - o ot
= COSHZ%[ = 9:%;;(:450)

Part c.

(1) =c,e S [0y + ¢, 1) =142 &5 |0) + 142 &4 1)

Part d.

We had seen (¢ |x| @)= Sy (co c, +¢,c, )= %2Re(c0 c,), SO NOW




<(//(t) | X | [//(t)> _ h zRe(%\/Ee%iwt %\/E e%iﬂe—%i(ut) _ h Re(e%i(ute%in’e—%iwt) _
\ 2mw \ 2me
h h
= cos(—wt+17)= cos(wt —1rx
\ 2mae ( i) \ 2mw ( i)

The angular frequency of oscillation is .

(from http://dfcd.net/articles/firstyear/solutions/s06-2.pdf)


http://dfcd.net/articles/firstyear/solutions/s06-2.pdf
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o
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b.

Recall x = \sE— (a+a*)
& = <ol = (o [(hlatcal W+ < Kleraatlte

)
= Vi [a¥c + c¥a) J
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The angular frequency of oscillatron s .



QM B3 LQM&Z‘Z:J Pl

7\
{») (;/L (/x/ /E-’—D! TFAX
= 5 Dl
n (X )= | T .
/- \/..ﬁ_:\v-—rl—
(a) % 4 I
= . /_
bl)= [T SA72 (x2E )= [ 6n (T + 27)
(=) amkx :
. = Y VZSW——,——« J £ N=2b §
A
N Jy(;z_é—f/\x‘ - :
*) (—1) Y73 T 4 p=2dely =0y,
7 , Y o

(5) c/&‘) .. W&n (1) /{CU) /D:"'/

zZ&fM%/L\ fan = 14

~ / /,)( o ) N\I/ll 47 -ﬁ QJM

_Kﬁj;(_ ML/) 7CU7 g

p [ S A, . ; Ly
() =% TF GF A =0  Suce iriprend 11 oW

() i)

a

2,
A ’&9«77/(/ V[#O/ 7Y o = 2ih 7 (y‘vllﬂ/@mwx,ﬂx
NS L " - FE Y i A
L L‘/) /7
p ha A0 SIS =/ A A Toy | 7%
= : z _,S:_/’LK St 7 dx = e / Xﬁ COD 7 /_ !-/é
L. ﬂ Y, (AT [ L> ooy LN Qp 2k J AT
,,,_[. ?&J m a_\,L_-_/‘ Ll / A/W L I/ prav) Loztw—/ VZaRdd E/—L J
2/ '—:'/L S /h’ Aol £ AAAJJ‘I\B-/)




Jer o = %,Lﬁ/( Ch
(O = — /}4 753 *’5

.

Fererad soturion J = G @ ()1 O Z -t/

L /o Lt (/) i ”‘Z P Jwot /

| ><g > ) () m%//

7% (4@: )%Wf «ﬁﬁww/) _17 5@%044«){

’ ? S5 $@e)(? (4 ) (Mé 495%

=0T (w)é’ é%/gﬁm Sineot = Sin2e0dF




E&M Al

An isolated sphere of perfectly conducting material is surrounded by air. Though normally a
good insulator, air breaks down (it becomes conductive) for electric fields beyond 3.0 kV/mm
(the so-called dielectric strength of air). The sphere’s radius is 5.0 cm. What is the maximum
amount of electrostatic energy the sphere can store before breakdown occurs? Assume the
electrostatic potential is zero at infinite distance from the sphere.

SOLUTION
For a charge g on the sphere we have

2
Ezki = quR

2
ER bR 276,E’R® = 27(8.85x107%)(3x10°)* (5% 10) =0.063 = 63 m]
k

Sonow U=1qV =1



E&M A2

The diagram shows part of an electronic circuit. Calculate the potential at point P.

oV -12V 18V

=
I

e —

AMV—e—— 0000
l I l 400 10 mH

o || | |

12 mH
SOLUTION
Left two inductors:
EINEUN U0 U WIS P
L. L 6 12 12 4 ¢

2

From the 10 mH inductor we find di _AV _18-(-12)

L loxio® Cov0A/s

So AV:O—VP:LeH%:Ade3*3000:12V = V,=-12V



E&M A3

2. If the electric field generated by a static point charge is proportional to
1/r%, where r is the distance to the charge, will Guass’ law still be correct?
Justify your answer.
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E&M A4

1. A circuit consisting of infinite resistors is as shown in the figure. Please
find the resistance between A and B in terms of R; and R,.

R, C‘ R, R, R,
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E&M B1

A flat square loop of wire of length 2a on each side carries a stationary current I. Calculate the
magnitude of the magnetic field at the center of the square.

SOLUTION

This field is 4 times the field of one side. The field of one side is the field at a point a distance a
away from wire.
Uy Idext  py 1 Hy 1 a la  dy

dB(for one side) =—- — —Jdysing =—- Id =
( ide) i 2 dnp VY / 47 y* +a Y Vi ra An (y* +a*)*?

a

a I ¢ I
B(of one side) = tyla J- dy _ wyla 2_[ dy _H a{ Y 1/2} _H a[ a 1/2}

iz AP @)Y Ar AP ra)y? 2x " 2x
I S —
27 2a°)"? 27 24 2427a
ml N2l
tot:4* =
2\2za 7w oa

a*(y* +a°) . a*(a® +a*)

The integral must be provided in the cheat sheet:

nEr= Integrate [ ﬁ , Y]
v +a

¥

e
32 \,/ a + 2

out]s]=

In[&]:= Integrate[ 377 7 {v, —a, a}]

(v* +a”)
VZ et

out[s]= .

A

EM Hard



E&M B2

All space is filled with a material with uniform, fixed magnetization M, except for the region
0 <z <a, in which there is vacuum. The magnetization is M = M, where 1 is a unit vector in
the yz plane that makes an angle ¢ with the z-axis: u =(sin@)y + (cos#)z . Calculate the

magnetic field B and the auxiliary field H everywhere.

SOLUTION
There are no free current densities, so if there’s a B field it must be due to bound currents.

The bound volume current density J, =VxM =0 because M is uniform. The bound surface

0 0 *tsinf
current density is K, =Mxn=M]| sinf |x| 0 [=M| 0 for the surface at z =0 (plus sign)
cos@ ) (1 0

and the surface at z=a (minus sign). It follows from symmetry and Ampere’s law that these

bound currents give rise to a uniform magnetic field B=—(x,Msind)y inside the gap; outside

the gap, B=0.

The auxiliary field follows from B=y (H+M) = H= B_
Hy

Msin @) ,
(1) In the gap: H=£—M=—My

Hy Hy

-0=—(Msinb)y

(2) Outside the gap: H= B_ M=0-M=—(Msinb)y —(Mcosb)z

0

To verify this result we can use the magnetostatic charge density. For instance, for the bottom

surface we have o,, =M- n= M, = Mcos@. From Gauss’s law for magnetostatics, we have

mH -da=gq,, .- Applying this to a pillbox of area A enclosing part of the surface, calling the
S

auxiliary field inside/outside gap, H;/H_, we find
H,-2A+H, -(-2)A=Ac,, = H, —H,_ =0, =Mcos6.

This agrees with our result H, = -(Msin6)y and H =—-(Msin8)y —(Mcos#)z=H, —(Mcosb)z
= H,-H =(Mcos6)z



E&M B3

3. In the lab, a ball with mass m and electric charge +q is hung in a

horizontal uniform electric field E by a string of negligible mass. If the

ball is raised to the position shown in the figure and dropped from still,

what’s the largest angle that it will swing to?
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E&M B4

4. A slab of isotropic dielectric material of permittivity ¢ is infinite in the
plane and is exposed to an external electric field Eo perpendicular to the

slab plane. Find the polarization density P inside the slab.
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