UNL - Department of Physics and Astronomy

Preliminary Examination - Day 1
Monday, May 23, 2022

This test covers the topics of Thermodynamics and Statistical Mechanics (Topic 1) and Classical Me-
chanics (Topic 2). Each topic has 4 “A” questions and 4 “B” questions. Work two problems from
each group. Thus, you will work on a total of 8 questions today, 4 from each topic.

Note: If you do more than two problems in a group, only the first two (in the order they appear
in this handout) will be graded. For instance, if you do problems A1, A3, and A4, only Aland A3

will be graded.

WRITE YOUR ANSWERS ON ONE SIDE OF THE PAPER ONLY
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Thermodynamics and Statistical Mechanics Group A - Answer only two Group A questions

A1. (a) Find the root-mean-square (rms) speed of molecules in a hydrogen gas at atmospheric
pressure. The gas number density is 2x10%° m™3.

(b) How should the pressure be increased in order to increase the rms speed by a factor of
two?

A2. Consider an ideal gas in a container of adjustable volume, V, which in addition allows for
control of the temperature, T. If you want to achieve that the pressure, P, increases linearly with
the volume according to P=AV with A=const you have to increase the temperature while the vol-

ume increases.
a) Find the functional form T=T(V) which allows to realize P=A V.

b) The temperature of the container is increased to Tt while the pressure changes according to P=AV and
the volume increases from Vi=V; to Vi=2Vq. Find the work done by the gas in terms of n, R and Ts. (Hint:
In case you could not solve (a) express the work in terms of A and Vo for partial credit.)

A3. There are 10 coins in a bag. Five of them are normal coins, one coin has two heads and four
coins have two tails. You pull one coin out, look at one of its sides and see that it is a tail. What

is the probability that it is a normal coin?

A4. Air (approximated as a diatomic ideal gas with ¢, =2.5R ) initially at 293K (20°C) is adiabati-

cally compressed
(a) Find the final temperature when the compression ratio Vf/V0 is 1/10 (as is typical in

gasoline engines).

(b) Find the final temperature when the compression ratio Vf/Vo is 1/20 (as is typical in

diesel engines).

Thermodynamics and Statistical Mechanics Group B - Answer only two Group B questions

B1. Ten grams (10.0 g) of aluminium foil at 30°C (303 K) and 0.50 moles of an ideal gas at 15°C
(288 K) are placed in a container whose volume changes to maintain the pressure at 200 kPa. The



Preliminary Examination - page 3

foil and the gas come to equilibrium with negligible heat transfer to or from the
container. The molar specific heat of the gas is cp=3.5 R, where R=8.314 J/(mol K)
is the universal gas constant and the specific heat capacity of Al is given by

M =0.904 ki /(kg K) .

creating
P=200kPa

as - adiabati
g - diabatic \

a)  Find the final temperature of the aluminium foil and the gas.

b)  Find the work done by the gas

B2. A certain volume of water with constant heat capacity Cp is initially at T;. It is brought into
contact with a heat reservoir at temperature T,.

a) What is AS;oea1, the entropy change of the entire system (water and reservoir) when the
water reaches the temperature of the heat reservoir? Assume that the volume of the
water doesn’t depend on temperature.

Express the answer in terms of Cp, T, and T}, .

Hint: Think about sign of the heat flow from or into the reservoir.

b) Show that AStotal(%) > 0 for any T, and T; all by discussing and sketching the function

AStoral ().
B3. A cyclic equilibrium process in n moles of an ideal gas with ¢, =2.5R is formed of three
sub-processes:

a — b is a constant pressure doubling of the volume;

b — cis at constant volume with decreasing pressure;

¢ — ais adiabatic.

Assume that Vp = V¢ = 2V,

(a) Sketch the process on a PV diagram.

(b) Find the heat absorbed in parta — b intermsof Ta, n, Rand a number.

(c) Find the heat rejected in part b— cin terms of Ta, n, R and a number.

(d) Find the energy efficiency of the cycle. Give a numerical answer.
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B4. Write down the energy distribution function for molecules in an ideal gas at a temperature T.
Suppose T=300 K.

(a) Estimate the probability that a molecule has the kinetic energy less than 0.001 eV. Hint:

use a suitable approximation in your calculation.
(b) Estimate the probability that a molecule has the kinetic energy greater than 0.2 eV.

Classical Mechanics Group A - Answer only two Group A guestions

A1. Three identical open-top containers are filled to the brim with water. Toy ducks float in two
of the containers, as shown. Rank the containers plus contents according to their weight, e.g.
(a) > (b) = (c). Explain your reasoning.

| ||

(@) (b) ()

Figure 1: Problem Al

A2. A particle slides frictionlessly inside a spherical surface of radius R, as shown. Show that the
motion is simple harmonic for small displacements and find the period of this motion.

R

Figure 2: Problem A2

A3. Determine the wavelengths of the three lowest-frequency tones produced by a pipe of
length L that is open at both ends.



Preliminary Examination - page 5

A4. Consider a ball launched from level ground at a fixed angle 8 with respect to the horizontal
and a speed vo. The objective is to shoot the ball through a window a distance L away that is at
a height h. Find an expression for the speed vo required to shoot the ball through the window.
Your answer should depend only on the parameters defined here and the acceleration due to

gravity, g.

Classical Mechanics Group B - Answer only two Group B questions

B1. Three pipes with smooth walls rest in an open box (width 3D)
with a horizontal bottom and vertical walls. Two of the pipes have
diameter D and weight W1 and sit on the bottom of the box with
centers separated by distance 2D. The third pipe has diameter 2D
and weight W5 and rests on the other pipes, as shown. Calculate
the force on each of the vertical walls.

Figure 3: Problem B1

B2. A water droplet falling in the atmosphere is spherical. Assume that, as the droplet passes
through a cloud, it acquires mass at a rate proportional to kA where k is a positive constant and
A its cross-sectional area. Consider a droplet of initial radius ro that enters a cloud with velocity
vo. Assume air resistance force can be neglected. The water mass density is p.

(a) Show that the radius increases linearly with time t;

(b) Obtain differential equation for the velocity v as a function of time t (you don’t have to

solve it).
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B3. A uniform density solid cylinder of mass M and ra-
dius R is free to rotate about its axis of symmetry,
which is horizontal. The moment of inertia of the cyl-
inder is / = MR?/2. Part of a long cable of negligible

mass is wound around the cylinder with the remainder (
of the cable hanging vertically. A massless spring, with

axis

spring constant k, is attached to the end of the cable,
and a block with mass m is attached to the end of the
spring. Determine the Lagrangian using a suitable
choice of generalized coordinates and the resulting
equations of motion. Find the conjugate momenta
and Hamiltonian.

Figure 4: Problem B3

B4. A particle of mass m is moving along a straight line in the presence of a periodic force
F=Focoswt. At t=0 the particle’s velocity is vo, and its position x=0.

(a) Find the particle’s position x as a function of time t;

(b) Find the particle’s kinetic energy averaged over many oscillations.
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Physical Constants

speed of light.................. c=2.998x10° m/s Atmospheric pressure.... 101,325 Pa

electron mass .......coevuue m, =9.109x10™" kg Avogadro constant ...... N, =6.022x10% mol™
Boltzmann constant k, =1.381x10 J/K =8.617x10° eV/K  gas constant... R =8.314 J/(mol-K)
Atomic mass unit 1 u=1.66x10"%" kg

gravitational constant ... G = 6.674x10™" m*/(kg-s*)  §=9.8 m/s?

Equations That May Be Helpful

TRIGONOMETRY

sin(a + ) =sina cos f +cosasin 3
sin(a — ) =sina cos ff —cosa sin
cos(a + ) =cosacos ff —sinasin B

(
cos(a — f8) = cosa cos 3 +sina sin B

sin(26) = 2sin@cos
c0s(20) = cos? @ —sin” @ =1~ 2sin* @ = 2cos” 0 — 1

singsin f = %[cos(a - B)—cos(ax + ,3):]
cosacosfB= %[cos(a — )+ cos(a + ﬂ)]
sinxcos = %[sin(a + ) +sin(a - ﬂ)}

cosasinff = 15[sin(a + ) —sin(a — ,B)]

For small x:
sinx ~ x —1x°
cosx~1-1x*

tanxzx+%x3

THERMODYNAMICS

Heat capacity = Gy = Ne——r

N N
Clausius’ theorem: Zg <0, which becomes Z—?’— =0 for a reversible cyclic process of N steps.
i i=1

i i



dp 2
dT TAV

Carnot efficiency =1 — T¢/Th

Molar heat capacity of diatomic gasis C, =2 R
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For adiabatic processes in an ideal gas with constant heat capacity, pv = const.

du =TdS —pdV dF =-SdT —pdV
H=U+pV F=U-TS G=F+pV Q=F-uN

(&, ol&) &
aT ), v\dr ), \aT),
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Efficiency of a heat engine: n =

The Maxwell-Boltzmann distribution function

of 3 | m \/? .
‘/‘l';“l‘}[‘ = — ()! 1) p2e Mt '“41’(‘

MECHANICS

Fe=-mw X (W X r) Feor=-2mw x v

Tas=C,dr+1{ 22| av
oV ).

Bernoulli's Equation P + %pv2 + pgh = constant where P is pressure and p is density
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VECTOR UMES».H:.HM YECTOR IDENTITIES
Cartesian. @l =dxX+dyy+dcz: dr =dxdyd: o - o
Triple Products
Gradient - Vi = Sm+§ ,+wwm
. T m Ta e () A-BxC)=B-(CxA)=C-(AxB)
Diversencet Vo = oigl . 0% 2) Ax®BxC) =BA C-CA-B)
ax ay 3z
. Product Rules
- - Am..r. mm..v S Aa-._» m.&.v 4 Am.# v, 3
: Xiv = — e | X ma— e
e ay oz 9z ax ) \ax v 3 VU = F(V8) +5(V])
S 8% ( 7(A - B) = ¢ 2 :
Loplacian P .i“.+lu4_.u @ VA-B=Ax(VxB)+Bx(VxA) +(A-V)B (B-V)A

(5) V-(fA)=fF(V-A)+A-(VSf)
Spherical.  dl =dri+rdif +rsinfded; dr =r’sinédrd9dg

€ V-AxB)=B-(VXA)-~A-{VxB)

Gradient - 4~I!,~~m~m+ 1 ?%
radient : = mwn.«.ﬂmm Fand 59 () Vx{fA)=f(VxA)—Ax (V]
13 - a 1 48 =(B- —(A- 2 B Y= .
Plrpancss V¥ = ;l?.sz?.— S g e 8) Vx{AxB)=(B-VVA-(A-V)B+ A(V-B) - B(V-A)
r?ar rsiné 56 rsiné 3¢
Second Derivatives
Curl : Vor w st oy, B0
S *V = rene a0 ™" 5 " © V- (VxA)=0
1 1 dv, b ~ 1]a dv, ] » 10}y Vx{(VHi=0
e ——— - — 8+ | —(rvg) — —= !
%mse ) .u«:eo@ +~T~¢sv a0 |°®
(1) Vx(VxA)=9Y(V.A}- VA
i3 /,d 82
Laplacian : Vi o= —-—|{r° d B ap. wmtﬁwmue?v t I_IJI.QM
r=dr ar resiné o6 kL] r2sin® @ 8¢°
Cylindrical.  dl =ds§+sdod +dz3; dr =sdsdddz FUNDAMENTAIL THEOREMS
a1 19r ~ 3t v o o
Gradienr : Vi = —8} -—o¢+—12
gl ds ~a00$1mus b
Gradient Theorem:  f7(V/}-dl= f(b) - f(a)
- _ 19 oy L300 20
ivergence : . = ——(sv, ¥ g oot .
8 s os s 3¢ 9z Divergence Theorem : (V- -A)dr = §A-da
Curl : Vxy = —“MM.:JIWW m.r_xmca[Wm.w.. é1 ! ,m.f:owl.o:._ z Cocl Theowem : JOxA) -da=Fa-a
s o9 az Laz ds sios . dp

a 18/ &t a2 3°
Laplacian : Vet = - Aqw v + — _W . 9 M

s ds B
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CARTESIAN AND SPHERICAL UNIT VECTORS

% = (sin@cos Pt + (cos O cos $)0 —sin g ¢
y =(sin@sing)r + (cosHsinqb)é +Cos ¢ (})
2

=cosOt—sind O

INTEGRALS
(x) " F(x) dx "
f J;; J‘ i 2dx:7r/2b1/2
2 1+bx
e N \/; Tx”e"”"‘dxz n!l
2 WI' S bn+
€ 1 Jlo + 0ty 2 = Infx-- 417
2a I(xz +v¥)ldx = }—arctan(x/b)
\,2 e x2 \ 37T/ 5 b
4a [ 42y *dx = ———
2 2 2
1(.3‘,£,—czx2 i b*Nx* +b
v £+ 00 eesessssccssces 2 a2 2 bz +arctan(x/b)
2 232 = X+
yhomas? 3 T
v s eesecsecsssesase 5 2
3a>f (2 ()
2 x* +b? 2
S @R i
.X \/€ ............... _—3- dx 1 x2
: .
x(x* +b?) 2b x*+b
6 —ax? 15vVn
X € s omewme s smes 77 dx 1 ax—>b
| 6472 % -l
a*x* -b° 2ab  \ax+b

& artanh| 2%
ab b



