
















A1: Two uniform infinite sheets of electric charge densities +σ and −σ intersect at right angles. 

Find the magnitude and direction of the electric field everywhere and sketch the lines of electric 

field E. 

Solution: First let us consider the infinite sheet of charge density +σ. The magnitude of the electric 

field caused by it at any space point is 
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The direction of the electric field is perpendicular to the surface of the sheet. For the two 

orthogonal sheets of charge densities ± σ, superposition of their electric fields yields 
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The direction of E is as shown in Fig. 1. 

 Fig. 1 

 

B1: A ring of radius R has a total charge +Q uniformly distributed on it (Fig. 2).  

1) Find electric field E at the axis of the ring (the z-axis). From E(z), find the electrostatic 

potential at the z-axis from the field E(z). 

2) Consider a point charge −Q at the center of the ring constrained to slide along the z-axis. 

Show that the charge will execute simple harmonic motion for small displacements 

perpendicular to the plane of the ring.  

  Fig. 2 

 

Solution: 1) The electric field is obtained from Coulomb’s law. By symmetry, at the z-axis, the 

field is pointing along the z direction. A contribution to the z component of the field from a 



charge dq at any point on the ring is 
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Integrating over the charge on the ring, we obtain  
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The potential is obtained by integrating the field which gives:  
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2) The electrostatic force acting on the change is given by 
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For small displacements z R , the force F is proportional to z and therefore charge −Q will 

execute simple harmonic oscillations.   

B2. A sphere of radius R1 has charge density ρ uniform within its volume, except for a small 

spherical hollow region of radius R2 located a distance a from the center. 

1) Find the electric field E at the center of the hollow sphere. 

2) Find the potential Φ at the same point. 

Solution: 1) Consider an arbitrary point P of the hollow region (see Fig. 3) and let 
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Fig. 3 

If there were no hollow region inside the sphere, the electric field at the point P would be 
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If only the spherical hollow region has charge density p the electric field at P would be 
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Hence the superposition theorem gives the electric field at P as 
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Thus, the field inside the hollow region is uniform. This of course includes the center of the 

hollow. 

2) Suppose the potential is taken to be zero at an infinite point. Consider an arbitrary sphere of 

radius R with a uniform charge density ρ. We can find the electric fields inside and outside the 

sphere as 
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Then the potential at an arbitrary point inside the sphere is 
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where r is the distance between this point and the spherical center. 

Now consider the problem in hand. If the charges are distributed throughout the sphere of radius 

R1, let Φ1 be the potential at the center O' of the hollow region. If the charge distribution is 

replaced by a small sphere of uniform charge density ρ of radius R2 the hollow region, let the 

potential at O' be Φ2. Using (1) and the superposition theorem, we obtain 
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A2. A particle with charge q is traveling with velocity v parallel to a wire with a uniform linear 

charge distribution λ per unit length. The wire also carries a current I as shown in Fig.5. What 

must the velocity be for the particle to travel in a straight line parallel to the wire, a distance r 

away? 



Fig. 5 

Solution: Consider a long cylinder of radius r with the axis along the wire. Denote its curved 

surface for unit length by S and the periphery of its cross section by C. Using Gauss’s flux 

theorem and Ampere’s circuital law,  
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by the axial symmetry we find 
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in cylindrical coordinates ( , , )r z=r  with origin at the wire.  

in cylindrical coordinates (r, 0, z) with origin 0 at the wire. 

The total force acting on the particle which has velocity ˆv=v z  is 
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For the particle to maintain the motion along the z direction, this radial force must vanish, i.e., 
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B3. Two parallel straight wires of infinite length are separated by distance 2a and carry current I 

in opposite directions, as shown in Fig. 4. A circular conducting ring of radius a lies in the plane 

of the wires between them. The ring is electrically insulated from the wires. Find the coefficient 

of mutual inductance between the circular conductor and the two straight wires. 



Fig. 4 

Solution: The magnetic field at a point between the two conductors at distance r from one 

conductor is 
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So, the magnetic flux crossing the area of the ring is given by 
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Let x a r= −  and integrate 
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The coefficient of mutual inductance is therefore  

02M a
I


= = . 

 

 

 

B4. Consider an electromagnetic wave in free space of the form  

 
( )

0( , , , ) ( , ) i kz tx y z t x y e −=E E ,     
( )

0( , , , ) ( , ) i kz tx y z t x y e −=B B .  

where the amplitudes E0 and B0 are in the xy plane.  

Using Maxwell’s equations, find the relation between k and ω as well as between 0 ( , )x yE  and 

0 ( , )x yB .  

Solution:  

1) Calculating the curl of fields E and B, we find 
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Similar expression can be found for B . 
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From the z components, we have 
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For the xy components we obtain:  
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or, more compactly: 
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Substituting 0E  from the second equation to the first we have: 
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The relationship between 0 ( , )x yE  and 0 ( , )x yB is  
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