AI.
8 points

Using Under Physical Constants $1 \frac{1}{2}^{2}=\frac{\hbar^{2}}{m^{2}} \frac{k^{2} e^{4} m_{e}}{\hbar^{4}}=\frac{1}{2} \frac{1}{2} e^{4}\left(4 \pi \epsilon_{0}\right)^{2}$
They can get this from $1 m_{e}$
\hbar^{2}

$$
\begin{aligned}
& E_{7}=-\frac{2529.6 \mathrm{eV}}{7^{2}}=-51.6 \mathrm{eV} \\
& E_{1}=-\frac{2529.6 \mathrm{eV}}{1^{2}}=-2529.6 \mathrm{eV}
\end{aligned}
$$

8 points solving for lambda,

$$
\frac{h c}{\lambda}=E_{7}-E_{1}
$$

$$
\lambda=\frac{h c}{E_{7}-E_{1}}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{-2529.6 \mathrm{eV}\left(\frac{1}{7^{2}}-1\right)}=0.500 \mathrm{~nm}
$$

A2. We consider the operator $B=e^{A}$, where the operator A is hermitian.
Is B hermitian?

SOLUTION

We have $e^{A}=I+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\ldots \quad 8$ pts
Now when A is hermitian, A^{n} is hermitian for all (integer) powers n, because for operators $\ldots, R, S, T, U \ldots$ we have $]$ donit $\quad \begin{aligned} & \text { need d } \\ & (\ldots R S T U \ldots)^{\dagger}=\ldots U^{\dagger} T^{\dagger} S^{\dagger} R^{\dagger} \ldots,\end{aligned}$ Chis. so when $\ldots=R=S=T=U=\ldots=A=A^{\dagger}$, we have $(\ldots A A A A \ldots)^{\dagger}=\ldots A^{\dagger} A^{\dagger} A^{\dagger} A^{\dagger} \ldots=\ldots A A A A \ldots$ or $\left(A^{n}\right)^{\dagger}=A^{n}$ \& A^{\dagger}

So, B is hermitian, because
${ }_{4 p} B^{+}=\left(e^{A}\right)^{+}=\left(1+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\ldots\right)^{+}=I^{+}+A^{+}+\frac{1}{2!}\left(A^{2}\right)^{+}+\frac{1}{3!}\left(A^{3}\right)^{+}+\ldots$
$=1+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\ldots=e^{A}=B$
5 points.

A3. A spin-2 particle is in the spin state $m_{s}=1$. Calculate the angle between its spin vector and the z axis.

SOLUTION

$$
8 \text { points }
$$

For $s=2$, we have $S^{2}=s(s+1) \hbar^{2}$, so the length of S is $\sqrt{2 \times 3} \hbar=\sqrt{6} \hbar$. We have $\frac{s}{\hbar}=\sqrt{6}$ and $\frac{m_{s}}{\hbar}=1$.
See diagram: $\varphi=\arccos \left(\frac{m_{s}}{S}\right)=\arccos \left(\frac{1}{\sqrt{6}}\right)=66^{\circ}$.

$$
8 \text { points. }
$$

A 4 Jree paticle of mass m moning in I din

$$
\psi(x, 0)=e^{i k x}
$$

9ponts. a) fist all quators whose egenstate this is.
Momentum $\frac{\hbar}{i} \frac{d}{d x} e^{i k_{x}}=\frac{\hbar}{y} \notin k e^{i k x}$ Engeinvalue of momentum is t k.
$\left\{\begin{aligned} \text { Kunetidinegy }-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} e^{i k x} & =-\frac{\hbar^{2}}{2 m}(i k)^{2} e^{i k x} \\ & =\hbar^{2}\end{aligned}\right.$

$$
\begin{aligned}
=\frac{\hbar^{2}}{2 m}(-1 k)^{2} e^{i k x} & \text { Aneigy eigenvalu } \\
& =\frac{\hbar^{2} k^{2}}{2 m}
\end{aligned}
$$

b) Pactich wave function at tinet. in teins of k.

7pts

$$
\begin{gathered}
\Psi(x, t)=e^{i h x} e^{-i \frac{E}{\hbar} t}=e^{i k x} e^{-i \frac{\hbar k^{2}}{2 m} t} \\
=e^{i\left(k x-\frac{\hbar k^{2}}{2 m} t\right)}
\end{gathered}
$$

(c) If $\psi(x, 0)=\sin b x$.

8pts.
(3pts) Parity queater $x \rightarrow-x$.

$$
\begin{aligned}
& \psi(x, 0)=\sin k(-x)=+\sin k x \\
& \text { igen value of }-1
\end{aligned}
$$ an eyeía fruction of momentros.

ugen function of energ w/ egen value

$$
\frac{\hbar^{2} k^{2}}{2 m}
$$

Engen value of - 1 .

anesler port of the a a central plentrat

B1. Consider the wave function $\psi(\theta, \phi)=3 \sin \theta \cos \theta e^{i \phi}-2\left(1-\cos ^{2} \theta\right) e^{2 i \phi}$.
a. Write ψ in terms of spherical harmonics
b. Is ψ an eigenfunction of L^{2} ? Of L_{z} ? how work
c. Find the probability of measuring $2 \hbar$ for the z component of the orbital angular momentum.

SOLUTION

Part

Using a table of spherical harmonics, we can do the expansion by inspection:

B2:

$$
\text { apoints } \left.\int \begin{array}{l}
\text { eigenstaxis of } A=a_{\mu} \\
\left|\begin{array}{cc}
1-\mu & 1 \\
1 & 3-\mu
\end{array}\right|=0 \\
\mu^{2}-4 \mu+2=0 \quad \mu_{1,2}=2+\sqrt{2}
\end{array}\right\} 3 \text { points. }
$$

eigenverers: $(1-\mu) C_{1}+C_{2}=0 \rightarrow C_{2}=(\mu-1) C_{1}$

$$
\left.c_{2}^{(1)}=(1-\sqrt{2}) c_{1}^{(1)} \quad c_{2}^{(2)}=(1+\sqrt{2}) c_{1}^{(2)}\right\} 3 \text { points. }
$$

normaige: $\left(C_{1}^{(1)}\right)^{2}\left(1+(1-\sqrt{2})^{2}\right)=1 \quad\left[C_{i}^{(2 i}\right]^{2}\left(1+(1+\sqrt{2})^{2}\right)=1$

$$
\left(\begin{array}{l}
\left.\mid c_{1}^{(1)}\right]^{2}=\frac{1}{4-2 \sqrt{2}} \\
\left|a_{1}\right\rangle=\frac{1}{(4-2 \sqrt{2})^{1 / 2}}\binom{1}{1-\sqrt{2}} \quad\left|a_{2}\right\rangle=\frac{1}{\left.(4+2 \sqrt{2})^{2}\right)}\left(\frac{1}{4+2 \sqrt{2}}\right. \\
1+\sqrt{2}
\end{array}\right) \quad \text { 3points }
$$

$$
\left\{\begin{array}{l}
\left\langle a_{1} \mid \phi_{1}\right\rangle=2^{m / 2}(4-2 \sqrt{2})^{1 / 2} \\
\text { probadicity } \quad P_{1}=\left|\left\langle a_{1} \mid p_{1}\right\rangle\right|^{2}=\frac{3-2 \sqrt{2}}{4-2 \sqrt{2}}=0.1463 \text { | point } \\
\left.\left\langle a_{2} \mid \phi_{1}\right\rangle=\frac{1}{2^{m / 2}(4+2 \sqrt{2})^{1 / 2}}(1+1+\sqrt{2})=\frac{\sqrt{2}+1}{(4+2 \sqrt{2})^{1 / 2}}\right\} 3 \text { points }
\end{array}\right.
$$

$$
P_{2}=\frac{3+2 \sqrt{2}}{4+2 \sqrt{2}}=0.854
$$

\} I point

GM (B3)
At $t=0(a) \quad$ Find eigenstates $+S_{x}=\frac{\pi}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

8 points

$$
\begin{aligned}
& \left\langle Q_{\mathrm{A}}\right\rangle-\frac{b}{2} O\left(f f^{x}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{f^{x}}{f}=\frac{\hbar}{4}\left(f^{2}+f^{\times 2}\right)
\end{aligned}
$$

where $w=\frac{C}{\text { in }}$ is ha Lazmer trequency

$$
\begin{aligned}
& \left\langle S_{2}\right\rangle=\frac{\hbar}{4}\left(f f^{*}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{t^{+}}{t}=\frac{1}{2}\left(-i f^{2}+i f^{\times 2}\right)=\frac{\pi}{2} \sin \cot t \\
& \rangle\rangle\rangle=\frac{h}{4}\left(t f^{*}\right)\binom{t-0}{t-1}\binom{t}{t}=0
\end{aligned}
$$

B4. $Q(p)=C e^{\left(-|p| / p_{0}\right)}$
(a) Final C

$$
\begin{aligned}
& \begin{array}{l}
\int|\varphi(p)|^{2} d p=1 \text { (2points) } \\
\left.C^{2} \int_{-\infty}^{+\infty} e^{-\lambda / p / p_{0}} d p=C^{2} \iint_{-\infty}^{+2 p / p_{0}} d p+\int_{0}^{\infty} e^{-2 p / p_{0}} d p\right]
\end{array} \\
& =C^{2}\left[\frac{p_{0}}{2} e^{+2 p / p_{0}} \left\lvert\, \begin{array}{cc|c}
\infty & -p_{0} e^{-2 p / p_{0}} & \\
2 & 2
\end{array}\right.\right] \\
& =C^{2}\left[\frac{p_{0}}{2}(1-0-(0-1))\right]=C^{2} p_{0}=1 \\
& \therefore C=1 / \sqrt{p_{0}}
\end{aligned}
$$

b) Wave function in posction space, $\Psi(x)$ This is the fomier transferm of k space. of they
foge
$\frac{1}{2}$ dovit cofle
x

$$
\begin{aligned}
& =\frac{1}{\sqrt{2 T \hbar p_{0}}}\left[\left.\frac{1}{\frac{1}{p_{0}}+\frac{i}{\hbar}} e^{p\left(1 / p_{0}+y^{x} x\right)}\right|_{-\infty} ^{0}+\left.\frac{1}{-1 / p_{0}+\frac{i}{\hbar} x} e^{-p\left(\frac{1}{p_{0}}-\frac{\nu}{\hbar} x\right)}\right|_{0} ^{\infty}\right. \\
& \frac{1}{\sqrt{2 \pi \hbar p_{0}}}\left[\frac{p_{0} \hbar}{\hbar+i x p_{0}}(1-0)+\frac{\hbar p_{0} \cdot(0-1)}{}-\hbar\right. \\
& \psi(x)=\frac{1}{\sqrt{2 \pi \hbar} p_{0}}\left[p_{0} \hbar\left[\frac{1}{\hbar+i x p_{0}-\hbar+i x p_{0}}\right]=\frac{1}{\sqrt{2 \pi \hbar} p_{0}}\left[-\frac{-\hbar+i x p_{0}-t /-i x p_{0}}{-\hbar^{2}-x^{2} p_{0}^{2}}\right]\right. \\
& \psi(x)=\frac{1}{\sqrt{2 \pi} p_{0}}\left[\frac{12 \hbar p_{0} \hbar}{\hbar^{2}+x^{2} p_{0}^{2}}\right] .
\end{aligned}
$$

3 points (d) Does this state have a defrielo pack Yes because if $x \longrightarrow-x$ nothing charges - even parity.
(e) Write an integral representation for $\psi(x, t)$ al $t \gg$ 4 points.

$$
\begin{aligned}
& \Psi(x)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{i \frac{p}{\hbar} x} \frac{1}{\sqrt{p_{0}}} e^{--\mid p / p_{0}} d p \\
& A t t>0 \\
& \Psi(x, t)=\frac{1}{\sqrt{2 \pi \hbar p_{0}}} \int_{\theta}^{A} e^{i \frac{t}{\hbar} x} e^{-1 / p_{0}} e^{-i \frac{p^{2} t}{2 m} d p}
\end{aligned}
$$

$E=\frac{p^{2}}{2 m}$ since its a free pallid

A1: Two uniform infinite sheets of electric charge densities $+\sigma$ and $-\sigma$ intersect at right angles. Find the magnitude and direction of the electric field everywhere and sketch the lines of electric field \mathbf{E}.

Solution: First let us consider the infinite sheet of charge density $+\boldsymbol{\eta}$ The magnitude of the electric field caused by it at any space point is

$$
E=\frac{\sigma}{2 \varepsilon_{0}} .
$$

$$
\} 5 \text { points }
$$

The direction of the electric field is perpendicular to the surface of the sheet. For the two orthogonal sheets of charge densities $\pm \sigma$, superposition of their electric fields yields

$$
E=\frac{\sqrt{2} \sigma}{2 \varepsilon_{0}}
$$

The direction of \mathbf{E} is as shown in Fig. 1.

Fig. 1

B1: A ring of radius R has a total charge $+Q$ uniformly distributed on it (Fig. 2).

1) Find electric field \mathbf{E} at the axis of the ring (the z-axis). From $\mathbf{E}(z)$, find the electrostatic potential at the z-axis from the field $\mathbf{E}(z)$.
2) Consider a point charge $-Q$ at the center of the ring constrained to slide along the z-axis. Show that the charge will execute simple harmonic motion for small displacements perpendicular to the plane of the ring.

Fig. 2

Solution: 1) The electric field is obtained from Coulomb's law. By symmetry, at the z-axis, the field is pointing along the z direction. A contribution to the z component of the field from a
charge $d q$ at any point on the ring is $d E_{z}=\frac{d q}{4 \pi \varepsilon_{0} r^{2}} \cos \theta$, whee. $r=\sqrt{R^{2}+z^{2}}$ and $\cos \theta=\frac{z}{r}$. Integrating over the charge on the ring, we obtain $\quad 5 \mathrm{points}$

$$
\left.\Phi(z)=\int_{z}^{\infty} E\left(z^{\prime}\right) d z^{\prime}=\frac{Q}{4 \pi \varepsilon_{0}} \int_{z}^{\infty} \frac{z^{\prime}}{\left(R^{2}+z^{\prime 2}\right)^{3 / 2}} d z^{\prime}=\frac{Q}{4 \pi \varepsilon_{0} \sqrt{R^{2}+z^{2}}}\right\} \text { pints }
$$

2) The electrostatic force acting on the change is given by

$$
\mathbf{F}(z)=-Q \mathbf{E}(z)=-\frac{Q^{2} z}{4 \pi \varepsilon_{0}\left(R^{2}+z^{2}\right)^{3 / 2}} \hat{\mathbf{z}}
$$

For small displacements $z \square R$, the force F is proportional to z and therefore charge $-Q$ will execute simple harmonic oscillations.

B2. A sphere of radius R_{1} has charge density ρ uniform within its volume, except for a small spherical hollow region of radius R_{2} located a distance a from the center.

1) Find the electric field E at the center of the hollow sphere.
2) Find the potential Φ at the same point.

Solution: 1) Consider an arbitrary point P of the hollow region (see Fig. 3) and let $O P=\mathbf{r}, \quad O^{\prime} P=\mathbf{r}^{\prime}, \quad O O^{\prime}=\mathbf{a}, \quad \mathbf{r}^{\prime}=\mathbf{r}-\mathbf{a}$.

Fig. 3
If there were no hollow region inside the sphere, the electric field at the point P would be

$$
\mathbf{E}_{1}=\frac{\rho}{3 \varepsilon_{0}} \mathbf{r}
$$

If only the spherical hollow region has charge density p the electric field at P would be

$$
\mathbf{E}_{2}=\frac{\rho}{3 \varepsilon_{0}} \mathbf{r}^{\prime}
$$

Hence the superposition theorem gives the electric field at P as

$$
\mathbf{E}=\mathbf{E}_{1}-\mathbf{E}_{2}=\frac{\rho}{3 \varepsilon_{0}} \mathbf{a} \cdot 5 \text { points }
$$

Thus, the field inside the hollow region is uniform. This of course includes the center of the hollow.
2) Suppose the potential is taken to be zero at an infinite point. Consider an arbitrary sphere of radius R with a uniform charge density ρ. We can find the electric fields inside and outside the sphere as

$$
\mathbf{E}(\mathbf{r})=\left\{\begin{array}{ll}
\frac{\rho}{3 \varepsilon_{0}} \mathbf{r}, & r<R, \\
\frac{\rho R^{3}}{3 \varepsilon_{0} r^{3}} \mathbf{r}, & r>R .
\end{array}\right\} \text { joints }
$$

Then the potential at an arbitrary point inside the sphere is

$$
\Phi=\int_{r}^{R} \mathbf{E} \cdot d \mathbf{r}+\int_{R}^{\infty} \mathbf{E} \cdot d \mathbf{r}=\frac{\rho}{6 \varepsilon_{0}}\left(3 R^{2}-r^{2}\right)
$$

(1) $\}$ Joints
where r is the distance between this point and the spherical center.
Now consider the problem in hand. If the charges are distributed throughout the sphere of radius R_{1}, let Φ_{1} be the potential at the center O^{\prime} of the hollow region. If the charge distribution is replaced by a small sphere of uniform charge density ρ of radius R_{2} the hollow region, let the potential at O^{\prime} be Φ_{2}. Using (1) and the superposition theorem, we obtain

$$
\begin{aligned}
& \Phi_{O^{\prime}}=\Phi_{1}-\Phi_{2}=\frac{\rho}{6 \varepsilon_{0}}\left(3 R_{1}^{2}-a^{2}\right)-\frac{\rho}{6 \varepsilon_{0}}\left(3 R_{2}^{2}-0\right)=\frac{\rho}{6 \varepsilon_{0}}\left[3\left(R_{1}^{2}-R_{3}^{2}\right)-a^{2}\right] . \quad V=-\int_{a}^{b} \mathbf{E} \cdot d \mathbf{r}=-\int_{a}^{b} \frac{Q}{4 \pi \varepsilon r^{2}} d r=\frac{Q}{4 \pi \varepsilon}\left(\frac{1}{b}-\frac{1}{a}\right) .
\end{aligned}
$$

A2. A particle with charge q is traveling with velocity v parallel to a wire with a uniform linear charge distribution λ per unit length. The wire also carries a current I as shown in Fig.5. What must the velocity be for the particle to travel in a straight line parallel to the wire, a distance r away?

Fig. 5
Solution: Consider a long cylinder of radius r with the axis along the wire. Denote its curved surface for unit length by S and the periphery of its cross section by C. Usipg Gauss's flux theorem and Ampere's circuital law,

$$
\oint_{S} \mathbf{E} \cdot d \mathbf{s}=\frac{\lambda}{\varepsilon_{0}} \text { and } \int_{C} \mathbf{B} \cdot d \mathbf{l}=\mu_{0} I,
$$

by the axial symmetry we find

$$
\mathbf{E}(\mathbf{r})=\frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{\mathbf{r}} \text { and } \mathbf{B}(\mathbf{r})=\frac{\mu_{0} I}{2 \pi r} \hat{\boldsymbol{\phi}}
$$

in cylindrical coordinates $\mathbf{r}=(r, \phi, z)$ with origin at the wire.
in cylindrical coordinates ($\mathrm{r}, 0, \mathrm{z}$) with origin 0 at the wire.
The total force acting on the particle which has velocity $\mathbf{v}=v \hat{\mathbf{z}}$ is

$$
\begin{aligned}
& \text { n the particle which has velocity } \mathbf{v}=v \hat{\mathbf{z}} \text { is } \\
& \mathbf{F}=\mathbf{F}_{e}+\mathbf{F}_{m}=q \mathbf{E}+q \mathbf{v} \times \mathbf{B}=\frac{q \lambda}{2 \pi \varepsilon_{0} r} \hat{\mathbf{r}}+\frac{q \mu_{0} I}{2 \pi r} v(-\hat{\mathbf{r}})
\end{aligned}\left\{\begin{array}{l}
12 \text { p } \operatorname{int} \mathrm{t}
\end{array}\right.
$$

For the particle to maintain the motion along the z direction, this radial force nust vanish, i.e.,

$$
\frac{q \lambda}{2 \pi \varepsilon_{0} r}-\frac{q \mu_{0} I}{2 \pi r} v=0
$$

resulting in

$$
\left.v=\frac{q \lambda}{\mu_{0} \varepsilon_{0} I}=\frac{\lambda c^{2}}{I} . \quad\right\} s p: n \nmid s
$$

B3. Two parallel straight wires of infinite length are separated by distance $2 a$ and carry current I in opposite directions, as shown in Fig. 4. A circular conducting ring of radius a lies in the plane of the wires between them. The ring is electrically insulated from the wires. Find the coefficient of mutual inductance between the circular conductor and the two straight wires.

Fig. 4
Solution: The magnetic field at a point between the two conduc ors at distance r from one conductor is

Let $x=a-r$ and integrate

$$
\left.\phi=2 \int_{0}^{a} \frac{\mu_{0} I}{\pi}\left(\frac{1}{a-x}+\frac{1}{a+x}\right) \sqrt{a^{2}-x^{2}} d x=2 \int_{0}^{a} \frac{\mu_{0} I}{\pi}\left(\frac{2 a}{\sqrt{a^{2}-x^{2}}}\right) d x=\left.\frac{4 \mu_{0} I a}{\pi} \arcsin \frac{x}{a}\right|_{0} ^{a}=2 \mu_{0} I a\right\} \text { CpNints }
$$

The coefficient of mutual inductance is therefore

$$
M=\frac{\phi}{I}=2 \mu_{0} a .\left\{\begin{array}{l}
2 \text { point } S_{\text {if }} \text { write } M=\frac{\Phi}{I}
\end{array}\right.
$$

B4. Consider an electromagnetic wave in free space of the form

$$
\mathbf{E}(x, y, z, t)=\mathbf{E}_{0}(x, y) e^{i(k z-\omega t)}, \quad \mathbf{B}(x, y, z, t)=\mathbf{B}_{0}(x, y) e^{i(k z-\omega t)} .
$$

where the amplitudes \mathbf{E}_{0} and \mathbf{B}_{0} are in the $x y$ plane.
Using Maxwell's equations, find the relation between k and ω as well as between $\mathbf{E}_{0}(x, y)$ and $\mathbf{B}_{0}(x, y)$.

Solution:

1) Calculating the curl of fields \mathbf{E} and \mathbf{B}, we find
$\nabla \times \mathbf{E}=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_{x} & E_{y} & E_{z}\end{array}\right|=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & i k \\ E_{0 x} & E_{0 y} & 0\end{array}\right| e^{i(k z-}$
Similar expression can be found for $\nabla \times \mathbf{B}$.
Maxwell's equations $\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}, \nabla \times \mathbf{B}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}$, can then be written as
$-i k E_{0 y} \hat{\mathbf{x}}+i k E_{0 x} \hat{\mathbf{y}}+\left(\frac{\partial E_{0 y}}{\partial x}-\frac{\partial E_{0 x}}{\partial y}\right) \hat{\mathbf{z}}=\left(-i \omega B_{0 x} \hat{\mathbf{x}}-i \omega B_{0 y} \hat{\mathbf{y}},\right) \boldsymbol{X}(-\mathbf{1})$ $-i k B_{0 y} \hat{\mathbf{x}}+i k B_{0 x} \hat{\mathbf{y}}+\left(\frac{\partial B_{0 y}}{\partial x}-\frac{\partial B_{0 x}}{\partial y}\right) \hat{\mathbf{z}}=-\frac{i \omega}{c^{2}} E_{0 x} \hat{\mathbf{x}}-\frac{i \omega}{c^{2}} E_{0 y} \hat{\mathbf{y}}$.
From the z components, we have

$$
(-1)\left(E_{0 y} \hat{\mathbf{x}}-E_{0 x} \hat{\mathbf{y}}\right)=\frac{\omega}{k} B_{0 x} \hat{\mathbf{x}}+\frac{\omega}{k} B_{0 y} \hat{\mathbf{y}}, B_{0 y} \hat{\mathbf{x}}-B_{0 x} \hat{\mathbf{y}}=\frac{\omega}{k c^{2}} E_{0 x} \hat{\mathbf{x}}+\frac{\omega}{k c^{2}} E_{0 y} \hat{\mathbf{y}}
$$

or, more compactly:

$$
\hat{\mathbf{z}} \times \mathbf{E}_{0}=\frac{\omega}{k} \mathbf{B}_{0}, \quad \hat{\mathbf{z}} \times \mathbf{B}_{0}=-\frac{\omega}{k c^{2}} \mathbf{E}_{0} .
$$

Substituting \mathbf{E}_{0} from the second equation to the first we have:

$$
-\frac{k c^{2}}{\omega} \hat{\mathbf{z}} \times\left(\hat{\mathbf{z}} \times \mathbf{B}_{0}\right)=-\frac{k c^{2}}{\omega}\left[\hat{\mathbf{z}}\left(\hat{\mathbf{z}} \cdot \mathbf{B}_{0}\right)-\mathbf{B}_{0}(\hat{\mathbf{z}} \cdot \hat{\mathbf{z}})\right]=\frac{k c^{2}}{\omega} \mathbf{B}_{0}
$$

and hence $k=\frac{\omega}{c}$.
The relationship between $\mathbf{E}_{0}(x, y)$ and $\mathbf{B}_{0}(x, y)$ is $\hat{\mathbf{z}} \times \mathbf{E}_{0}=\frac{\omega}{k} \mathbf{B}_{0}$ or equivalently $\mathbf{E}_{0}=-\frac{\omega}{k} \hat{\mathbf{z}} \times \mathbf{B}_{0}$. Algebra mistakes, remove 4 points.

EM AB.)
(a. According to the Ampere caw

This is the field due to one strip (tervicen tee strips)
The field due to two strips is $B=\mu_{0} \frac{I}{w}$
$W=\frac{B^{2}}{2 \mu_{0}} d w S$
where s
, the length q b le strip
$\frac{w}{S}=\frac{B^{2}}{2 \mu_{0}} d w=\frac{d w}{2 \mu_{0}}\left(\frac{\mu_{0} I}{w}\right)^{2}=\frac{\mu_{0} I^{2} d}{2 w}$
from $W=\frac{L x^{2}}{2}$
$\frac{L}{s}=\frac{\mu_{0} d}{2 \pi}$
\$1. if B is found give 8 points
2. :f w is found give 8 points
W_{3} if $\frac{L}{s}$ is found give 7 points

$$
\text { points }\{
$$

The field on the axis due to large loop is

$$
\left.b=\frac{\mu_{0} I b^{2}}{2\left[b^{2}+\left(z_{0}+v t\right)^{2}\right]^{3 / 2}}\right\} 8 \text { points }
$$

Since $a \ll b$ we assume that B is uniform in the Smaller lop

$$
\text { (a) } \delta=-\frac{d}{d t}(B a(i t)
$$

$$
D=B \pi a^{2}
$$

$$
\begin{aligned}
I^{\prime} & =-\frac{1}{R} \frac{d c D}{d t}=\frac{3}{2 R} \frac{\mu_{0} I b^{2} \pi a^{2}}{2\left[b^{2}+\left(z_{0}+v t\right)^{2}\right]^{s / 2}} \cdot 2 v\left(z_{0}+v t\right) \\
& =\frac{3}{2} \frac{\pi \mu_{0} I b^{2} a^{2} v\left(z_{0}+v t\right)}{R\left(b^{2}+\left(z_{0}+v t\right)^{2}\right]^{5 / 2}} \quad \text { (plus sign) }
\end{aligned}
$$

(6) Current in the small loop is in the same direction as in the large coop since the flux is decreasing (Lens Law)
$\frac{9}{\text { points }}$

$$
\begin{aligned}
& \text { (c) } v t \gg z_{0}, b \\
& I^{\prime}=\frac{3}{2} \frac{\pi \mu_{0} I b^{2} a^{2} v^{2} t}{R(v t)^{5}}=\frac{3}{2} \frac{\pi \mu_{0} I b^{2} a^{2}}{R v^{3} t^{4}}
\end{aligned}
$$

EM B4 alternative solution

$$
\begin{aligned}
& \vec{E}=\vec{E}_{0}(x, y) e^{i(k z-\omega t)}, \quad \hat{B}=\vec{B}_{0}(x, y) e^{i(k z-\omega t)} \\
& \tilde{\theta} \times \vec{E}=\left[-i k E_{0 y} \hat{x}+i k E_{0 x} \hat{y}+\left(\frac{\partial E_{0}}{\partial x}-\frac{\partial E_{0} x}{\partial y}\right) \hat{z}\right] e^{i(k z-i t)} \\
& \frac{\partial \vec{B}}{\partial t}=-i \omega \vec{B} \quad \frac{\partial \vec{E}}{\partial t}=-i \omega \vec{E}
\end{aligned}
$$

from $\vec{V} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$

$$
\left\{\begin{array}{l}
-i k E_{0 y} \hat{x}+i k E_{0 x} \hat{y}+\left(\frac{\partial E_{0 y}}{\partial x}-\frac{\partial E_{0 x}}{\partial y}\right)=i \omega B_{0 x} \hat{x}+i \omega B_{0 y} \hat{y} \\
\text { from } \vec{\nabla} \times \vec{B}=\frac{1}{C^{2}} \frac{\partial \vec{E}}{\partial t} \\
-i k B_{0 y} \hat{x}+i k B_{0 x} \hat{y}+\left(\frac{\partial B_{0 y}}{\partial x}-\frac{\partial B_{0 x}}{\partial y}\right)=-\frac{i \omega}{C^{2}} E_{0 x} \hat{x}-\frac{i \omega}{C^{2}} E_{0 y} \hat{y}
\end{array}\right.
$$

in components

$$
\left.\begin{array}{ll}
-k E_{0 y}=\omega B_{0 x}, & k E_{0 x}=\omega B_{0 y} \\
-k B_{0 y}=-\frac{\omega}{c^{2}} E_{0 x}, & k B_{0 x}=-\frac{\omega}{c^{2}} E_{0 y}
\end{array}\right\}(x)
$$

Combining 15 and 4 th eggs, we get

$$
\frac{\omega}{k} B_{0 x}=\frac{k c^{2}}{\omega} B_{0 x} \text { or } k=\frac{\omega}{c}
$$

and the relationship between \vec{E}_{0} and \vec{B}_{0} is given by (x),
or

$$
\begin{array}{ll}
E_{0 x}=\frac{\omega}{R} B_{o y}, & E_{o y}=-\frac{\omega}{R} B_{0 x} \\
E_{0 x}=C B_{0 y}, & E_{0 y}=-C B_{0 x}
\end{array}
$$

