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A1. A particle of charge q is moved from infinity into the center of a hollow conducting 
spherical shell of inner radius a and thickness t, through a tiny hole in the shell. How much work 
is required?  
 
Solution:  
 
The work done by the external force is equal to the increase of the electrostatic energy of the 
whole system. The electric field intensity at point r from the charge q is = 𝑞𝑞

4𝜋𝜋𝜀𝜀0𝑟𝑟2
 . When q is at 

infinity, the electrostatic energy of the whole system is = ∫ 𝜀𝜀0
2
𝐸𝐸2𝑑𝑑3𝑟𝑟 , where the integration is 

over all space. This because the distance between the spherical shell and charge q is infinite so 
that the field at the conducting sphere can be taken to be zero. After q has been moved to the 
center of the conducting spherical shell, as the shell has no effect on the field inside, the electric 
intensity inside the shell is still 𝐸𝐸 = 𝑞𝑞

4𝜋𝜋𝜀𝜀0𝑟𝑟2
, where r is the distance from charge q. Outside the 

shell, Gauss’ law says that the electric intensity is still 𝐸𝐸 = 𝑞𝑞
4𝜋𝜋𝜀𝜀0𝑟𝑟2

. Hence the electrostatic energy 
of the system remains the same as U but minus the contribution of the shell itself, inside whose 
thickness the field is zero. Thus, a decrease of the electrostatic energy is given by   
 

∆𝑈𝑈 = ∫ 𝜀𝜀0
2
� 𝑞𝑞
4𝜋𝜋𝜀𝜀0𝑟𝑟2

�
2

4𝜋𝜋𝑟𝑟2𝑑𝑑3𝑟𝑟𝑎𝑎+𝑡𝑡
𝑎𝑎 = 𝑞𝑞2

8𝜋𝜋𝜀𝜀0
�1
𝑎𝑎
− 1

𝑎𝑎+𝑡𝑡
�  , 

 
and equal to the negative work done by the external force.  
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A2. A slab of homogeneous dielectric material of dielectric permittivity ε and thickness d is infinite 
in the z plane. It is placed in an external field 0 0E=E z , where 0E  is a constant. There are no free 
charges in the slab. Using the electrostatic boundary conditions, find the electric field and induced 
polarization charge density Pσ  on top and bottom surfaces of the slab.  Find the electric field PE  
which is produced by the polarization charges and show that 0 P= +E E E .  

Solution: 

Since there are no free surface charges, according to the electrostatic boundary conditions, the 
normal component of the electric displacement D is continuous across the surface of the slab. 
Outside the slab 0 0ε=D E , whereas inside the slab ε=D E , where E  is the field in the dielectric. 

From the continuity of D, we obtain 0
0

ε
ε

=E E  .  

In the absence of free charges, the normal component of the electric field has a step of 
0

Pσ
ε

 when 

crossing the surface. Since the normal component of the electric field is E0 outside the dielectric 

and 0
0E Eε

ε
=  inside the dielectric, we obtain 0

0 0 0( 1)P Eεσ σ ε
ε

= = −  on the bottom surface and 

0
0 0 0( 1)P Eεσ σ ε

ε
= − = − −  on the top surface.  

The surface polarization charges create a capacitor-like structure, so that 0 0
0

0

( 1)P
σ ε
ε ε

= = −E z E . 

Since 0
0

ε
ε

=E E , it is easy to see that 0 P= +E E E .  
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A3. An infinitely long wire carries a current I = 1 A. It is bent so to have a semi-circular detour 
around the origin with radius a = 1 cm, as shown in the figure below. Calculate the magnetic 
field at the origin. 
 

 
 
Solution:  
 
The straight parts of the wire do not contribute to the magnetic field at O since for them 

0Id × =l r  (see figure below).  
 

 
We need only to consider the contribution of the semi-circular part. The magnetic field at O 
produced by a current element Idl is  

0
34

Idd
r

µ
π

×
=

l rB  

As Idl and r are mutually perpendicular for the semi-circular wire, dB is always pointing into the 
page. The total magnetic field of the semi-circular wire is then  
 

0 0
04 4

I IB dB d
a a

πµ µθ
π

= = =∫ ∫ . 

 
With I = 1A, a =10-2 m, the magnetic induction at O is B = 3.14 x 10-5 T, pointing 
perpendicularly into the page.  
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B1. Consider an infinite cylindrical wire oriented along the z 
direction with radius a. This wire has an infinite cylindrical cavity 
parallel to the wire with radius b, but displaced from the axis by a 
distance d along the x direction (see the cross-section of the wire 
in the figure below). This wire carries a total current I uniformly 
distributed throughout its cross-section flowing along the +z 
direction. Using Ampere’s law and the superposition principle find 
the magnetic field inside the cavity. 
 

Solution: 

First, we note that the current density, J, flowing in the wire is given by the total current divided 
by the cross-sectional area of the wire: 

 
( )2 2

ˆI
a bπ

=
−

J z  (1) 

We will use the superposition principle in the following way. First, we find the magnetic field, B1, 
inside a solid wire (i.e. without a cavity) of radius a carrying uniform current density J. Next, we 
find the field, B2, generated by a solid wire of radius b displaced along x also carrying uniform 
current density, but equal and opposite to the larger wire, i.e. a current density –J. By the 
superposition principle the sum of these two fields, B = B1 + B2 , is the field of the original problem. 

B1 is easy to find using Ampere’s law. Because of the axial symmetry and using the right-hand 
rule we know the field will be independent of ϕ  and directed along ϕ̂ . We therefore take an 
Amperian loop of radius s < a and find that 

 2 0
1 0 1 ˆ2

2
JssB s J µπ µ π ϕ= ⇒ =B . (2) 

Rewriting this in Cartesian coordinates we find 

 
[ ]

[ ]

2 20
1

0

ˆ ˆsin cos
2

ˆ ˆ
2

J x y

J y x

µ ϕ ϕ

µ

= + − +

= − −

B x y

x y
 (3) 

This is the field inside the larger wire. Now we need the field generated inside the smaller wire by 
current –J. This is given by a formula similar to (3) but with current reversed (i.e. J → –J) and 
axis shifted along the x direction (i.e.  x → x – d): 

 ( )0
2 ˆ ˆ

2
J y x dµ

= − −  B x y . (4) 

Adding (3) and (4) we therefore find the total field inside the cavity of the original problem 

 [ ] ( ) ( )
0 0 0 0

2 2
ˆ ˆ ˆ ˆ ˆ ˆ

2 2 2 2
J J Jd Idy x y x d

a b
µ µ µ µ

π
= − − + − − = =   −

B x y x y y y . (5) 

It is seen that the field is uniform and oriented along the y direction. 
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B2. A grounded spherical metal shell of radius R is filled with a space charge of uniform charge 
density ρ. Find the electric field, the electric potential, and the electrostatic energy of the system.   
 
 
Solution:  
 
Consider a concentric spherical surface of radius r (r < R). Using Gauss' law we obtain 

0

ˆ( )
3

rρ
ε

=E r r . 

As the shell is grounded, Φ(R) = 0, E (r) = 0 for r > R. 
 

Thus, we obtain for the potential:  2 2

0

( ) ( ) ( )
6

R

r
r E r dr R rρ

ε
Φ = = −∫  

The electrostatic energy is 
2 2 5

3 2 2 2

0
0 0

1 1 2( )4
2 2 6 45

R RW d r R r r drρ ρρ π
ε ε

= Φ = − =∫ ∫ . 
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B3: A spherical conductor of uniform conductivity σ has a uniform volume charge density ρ0 and 
time t = 0. Describe time evolution of the electric field and electric current in the conductor. 
Discuss what happens at t →∞ .  
 
Solution: 

From the Gauss’ law 
0

ρ
ε

∇ ⋅ =E , the continuity equation 0
t
ρ∂

∇ ⋅ + =
∂

J , and the definition of 

conductivity σ=J E , we obtain:  

0t
ρ σ ρ

ε
∂

= −
∂

,  

resulting in   

0
0( )

t
t e

σ
ερ ρ

−

=  and 00

0

t
e

σ
ερ

ε

−

∇ ⋅ =E . 

The spherical symmetry requires that ˆ( ) ( )E r=E r r . Hence we obtain:  

( ) 02 0
2

0

1 ( )
t

r E r e
r r

σ
ερ

ε

−∂
∇ ⋅ = =

∂
E ,  

giving 

0 00 0

0 0

( , ) (0, )
3 3

t t
t e t e

σ σ
ε ερ ρ

ε ε

− −

= + =
r rE r E  

and 
 

00

0

ˆ
3

tr e
σ
εσρ

ε

−

=J r  

 
Note that (0, ) 0t =E  by symmetry. It is evident that at t →∞ , 0, 0, and 0J ρ= = =E  inside the 
conductor. Thus, the charge is uniformly distributed on the spherical surface and there are no 
fields, charges, and current inside the conductor after a sufficiently large time.  
 





A1.   

hc/λ=ϕ+K 

(a) K=V=1.10 eV 
(b) ϕ= hc/λ-K= 1240 eV.nm/400nm-1.10 eV=2.00 eV 
(c) λcut= hc/ϕ=620 nm 
(d)  

Problem A2 

Operator R is defined by ( ) Re[ ( )]ψ ψ=R x x . Is R Hermitian?   

ANSWER 

The operator is Hermitian when ϕ ψ ϕ ψ〈 | 〉 = 〈 | 〉R R . We calculate LHS and RHS:  

[ ]
[ ]

[ ]
[ ]

1 1 1
2 2 2

1 1 1
2 2 2

*( ) ( ) * ( )Re ( )

*( ) ( ) * ( ) *( ) ( ) * ( ) *( )

( ( ))* ( ) Re ( ) * ( )

( ) * ( ) * ( ) *( ) ( ) ( ) ( )

ϕ ψ ϕ ψ ϕ ψ

ϕ ψ ψ ϕ ψ ϕ ψ

ϕ ψ ϕ ψ ϕ ψ

ϕ ϕ ψ ϕ ψ ϕ ψ

〈 | 〉 = = =

+ = +

〈 | 〉 = = =

+ = +

∫ ∫
∫ ∫ ∫

∫ ∫
∫ ∫ ∫

R x R x dx x x dx

x x x dx x x dx x x dx

R R x x dx x x dx

x x x dx x x dx x x dx

  

So  is not Hermitianϕ ψ ϕ〈 | 〉 ≠ 〈 | 〉 ⇒R R R R   

 

 

  

 

 

 

 

 

 

 

 

 

 



Problem A3 

Part a. 

write  as αα β β
 | ↑ 〉 + | ↓ 〉  
 

  

α β
β α
   =   
   

F  

*
1 2

1 2 1 2 1 2
1 2

*
1 2

1 2 1 2 1 2
1 2

1 2 1 2

Writing ,  we have:

* *

* *

 is Hermitian

β
α

α β α β β αβ α

β α β α α βα β

 | Σ 〉 =  
 

   〈Σ | Σ 〉 = = +   
   

   〈 Σ | Σ 〉 = = +   
   

〈Σ | Σ 〉 = 〈 Σ | Σ 〉 ⇒

i
i

i

F

F

F F F

 

 

Part b. 

1 0 0 1 0 1   and      so   0 1 1 0 1 0
         = = =         
         

F F F  

Eigenvalue equation: 

21 0 1 0 11
λ λ λλ

− = ⇒ − = ⇒ = ±
−

  

Eigenkets: 

For 1λ = +   

( )1 1
2 2

1 1 01 1

1Eigenket is 2 21

α α ββ
−   = ⇒ =  −  

  = | ↑ 〉+ | ↓ 〉 
 

 

For 1λ = −   

( )1 1
2 2

1 1 01 1

1Eigenket is 2 21

α α ββ
   = ⇒ = −  
  

  = | ↑ 〉 − | ↓ 〉 − 

 

 



Problem A4 

En=-kme4/(2n2 hbar2) 

Where m is the reduced mass. For hydrogen m=me, and kme4/(2 hbar2) =Ry (Rydberg constant)=13.6 eV 

(a) For Ps m=me/2, therefore En=-Ry/(2n2) 

For n=2 E2=-Ry/8=-1.7 eV 

(b) hc/λ=Ry/2(1/4-1/9)=5Ry/72=0.944 eV 
λ=1240 eV.nm/0.944 eV=1316 nm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



B2. The wavefunction of a particle moving in one dimension is given by 

0 / 2
( ) / 2 / 2

0 / 2

x b
x C b x b

x b
ψ

 < −
= − < < +
 > +

  

where C is a real-valued, positive constant. 

a. Normalize the wavefunction. 
b. Find ( )ϕ k , the wavefunction in k-space ( /= k p ). 
c. Estimate the widths ∆x  and ∆p  and show they agree with Heisenberg’s uncertainty principle.  

ANSWERS 

Part a. 

/2
2 2 2

/2

1( )ψ
+∞ +

−∞ −

=1 ⇒ = =1 ⇒ =∫ ∫
b

b
x dx C dx C b C

b
 

Part b. 

1( ) ( ) ( )ϕ ψ ψ ψ ψ ψ
π π

+∞ +∞ +∞ +∞−
∗ −

−∞ −∞ −∞ −∞

= 〈 | 〉 = 〈 | 〉〈 | 〉 = 〈 | 〉 〈 | 〉 = =
2 2∫ ∫ ∫ ∫
ikx

ikxek k k x x dx x k x dx x dx e x dx   

 

/2/2
/2 /2

/2 /2

/2 /2

1 1 1( )

2 1 sin( / 2)sin( / 2)
/ 2

ϕ
π π π

π π π

+ −
− −

− −

+ −

 
 = = = − =   −2 2 2  

−  = − = = 2 2 2

∫
bb ikx

ikx ikb ikb

b b

ikb ikb

e ik e dx e e
ikb b b k

i kbe e kb b
kbb k b k

 

Part c. 

For the width of ( )ψ x  we take ∆ =x b . 

For the width of ( )ϕ k  we take the width between its zeroes nearest to 0=k  : 

sin( /2) 0 /2 2 / 4 /π π π= ⇒ = ± ⇒ = ± ⇒ ∆ = ∆ = kb kb k b p k b    

Hence, 1
24 / 4π π∆ ∆ = × = >  x p b b  

 

 

 

 



B1. Combine Compton formula

λ′ − λ = λC(1− cos θ)

with the conservation of energy

hc

λ
= E +

hc

λ′

where E is the energy transfer to electron. Obviously, the maximum energy transfer occurs

for backward scattering, θ = 180◦, therefore

hc

λ
= E +

hc

λ+ 2λC

which reduces to the quadratic equation

λ2 + 2λλC − 2µλC = 0

where µ = hc/E = 24.8 pm. Solve quadratic equation

λ = −λC +
√
λ2
C + 2µλC = −2.43 +

√
2.432 + 2 · 24.8 · 2.43 = 8.814 pm.

Ephoton =
hc

λ
= 1240 keV · pm/8.814 pm = 140.7 keV.

(b)

λ′ = λ+ λC(1− cos 60◦) = 8.814 + 2.43/2 = 10.03‘pm

E = hc
(

1

λ
− 1

λ′

)
= 17 keV.

1



B3. (a)

Y −1
1 (θ, φ) = Θ(θ)Φ(φ),

Φ =
1√
2π
e−iφ, Θ(θ) =

√
3

2
sin θ.

Since Φ is normalized, only θ integration is necessary

p =
∫ π/3

0
Θ2(θ) sin θdθ =

3

4

∫ π/3

0
sin2 θ sin θdθ.

with the integration variable u = cos θ

p =
3

4

∫ 1

1/2
(1− u2)du =

3

4

(
u− u3/3

)1

1/2
=

3

4

(
1

2
− 1

3
+

1

8 · 3

)
=

5

32
.

(b)

p =
∫ ∞
a0

R2
2pr

2dr =
1

24a5
0

∫ ∞
a0

r4e−r/a0dr.

using the substitution x = r/a0 we obtain

p =
1

24

∫ ∞
1

x4e−xdx =
1

24
e−1(1 + 4 + 12 + 24 + 24) = 0.996

where we have used ∫
x4e−xdx = −e−x(x4 + 4x3 + 12x2 + 24x+ 24).

(c)

〈r〉 =
∫ ∞

0
R2

2pr
3dr =

a6
0

24a5
0

∫ ∞
0

x5e−xdx = 5a0.

(d) Determine the position of the the maximum probability density

d

dr
(r4e−r/a0) = 0

e−r/a0(4r3 − r4/a0) = 0

r = 4a0.

2



B4. (a) Consider the well defined as V (x′) = 0 for 0 < x′ < L. The solution is

ψn(x) =

√
2

L
sin

πnx′

L
, n = 1, 2, ...

The solution for the well defined as V (x) = 0 for −L/2 < x < L/2 can be obtained by

performing the transformation x′ = x+ L/2. Then

ψ1(x) =

√
2

L
sin

[
π

L
(x+ L/2)

]
=

√
2

L
cos

πx

L
,

ψ2(x) =

√
2

L
sin

[
2π

L
(x+ L/2)

]
= −

√
2

L
sin

2πx

L
.

The sign in front is inessential.

(b)

ψ(x) = C[2ψ1(x) + ψ2(x)]

C2(4 + 1) = 1, C = 1/
√

5.

(c)

〈H〉 =
1

5

∫ L/2

−L/2
(2ψ∗1 + ψ∗2)H(2ψ1 + ψ2)dx.

〈x〉 =
1

5

∫ L/2

−L/2
x|2ψ1 + ψ2|2dx.

Since ψ1 and ψ2 are eigenstates of H, the crossed terms in the first integral disappear, and

we have

〈H〉 =
1

5
(4E1 + E2), En =

h̄2k2
n

2m
=
h̄2π2n2

2mL2

3



〈H〉 =
1

5

h̄2π2

2mL2
(4 + 4) =

4

5

h̄2π2

mL2

In the second integral only the crossed terms survive since x|ψ1|2 and x|ψ2|2 are odd functions.

〈x〉 =
2

5
2Re

∫ L/2

−L/2
xψ∗2(x)ψ1(x)dx (1)

At t = 0

〈x〉 =
8

5L

∫ L/2

−L/2
x cos

πx

L
sin

2πx

L
dx.

∫ L/2

−L/2
x cos

πx

L
sin

2πx

L
dx =

(
L

π

)2 ∫ π/2

−π/2
y cos(y) sin(2y)dy =

8

9

(
L

π

)2

Finally

〈x〉 =
64L

45π2
(2)

(d) For t > 0 ψ1 and ψ2 are multplied by e−iE1t/h̄ and e−iE2t/h̄, therefore from (1) and (2)

we obtain

〈x〉(t) =
64L

45π2
cos

(E2 − E1)t

h̄
=

64L

45π2
cos

3π2h̄t

2mL2

Since the Hamiltonian is time-independent, 〈H〉 does not depend on time, and

〈H〉(t) =
4

5

h̄2π2

mL2

for t > 0.
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