A1. A particle of charge q is moved from infinity into the center of a hollow conducting spherical shell of inner radius a and thickness t, through a tiny hole in the shell. How much work is required?

Solution:

The work done by the external force is equal to the increase of the electrostatic energy of the whole system. The electric field intensity at point \mathbf{r} from the charge q is $=\frac{q}{4 \pi \varepsilon_{0} r^{2}}$. When q is at infinity, the electrostatic energy of the whole system is $=\int \frac{\varepsilon_{0}}{2} E^{2} d^{3} r$, where the integration is over all space. This because the distance between the spherical shell and charge q is infinite so that the field at the conducting sphere can be taken to be zero. After q has been moved to the center of the conducting spherical shell, as the shell has no effect on the field inside, the electric intensity inside the shell is still $E=\frac{q}{4 \pi \varepsilon_{0} r^{2}}$, where r is the distance from charge q. Outside the shell, Gauss' law says that the electric intensity is still $E=\frac{q}{4 \pi \varepsilon_{0} r^{2}}$. Hence the electrostatic energy of the system remains the same as U but minus the contribution of the shell itself, inside whose thickness the field is zero. Thus, a decrease of the electrostatic energy is given by

$$
\Delta U=\int_{a}^{a+t} \frac{\varepsilon_{0}}{2}\left(\frac{q}{4 \pi \varepsilon_{0} r^{2}}\right)^{2} 4 \pi r^{2} d^{3} r=\frac{q^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{a}-\frac{1}{a+t}\right)
$$

and equal to the negative work done by the external force.

A2. A slab of homogeneous dielectric material of dielectric permittivity ε and thickness d is infinite in the z plane. It is placed in an external field $\mathbf{E}_{0}=E_{0} \mathbf{z}$, where E_{0} is a constant. There are no free charges in the slab. Using the electrostatic boundary conditions, find the electric field and induced polarization charge density σ_{P} on top and bottom surfaces of the slab. Find the electric field \mathbf{E}_{P} which is produced by the polarization charges and show that $\mathbf{E}=\mathbf{E}_{0}+\mathbf{E}_{p}$.

Solution:

Since there are no free surface charges, according to the electrostatic boundary conditions, the normal component of the electric displacement \mathbf{D} is continuous across the surface of the slab. Outside the slab $\mathbf{D}=\varepsilon_{0} \mathbf{E}_{0}$, whereas inside the slab $\mathbf{D}=\varepsilon \mathbf{E}$, where \mathbf{E} is the field in the dielectric. From the continuity of \mathbf{D}, we obtain $\mathbf{E}=\frac{\varepsilon_{0}}{\varepsilon} \mathbf{E}_{0}$.

In the absence of free charges, the normal component of the electric field has a step of $\frac{\sigma_{P}}{\varepsilon_{0}}$ when crossing the surface. Since the normal component of the electric field is E_{0} outside the dielectric and $E=\frac{\varepsilon_{0}}{\varepsilon} E_{0}$ inside the dielectric, we obtain $\sigma_{P}=\sigma_{0}=\varepsilon_{0}\left(\frac{\varepsilon_{0}}{\varepsilon}-1\right) E_{0}$ on the bottom surface and $\sigma_{P}=-\sigma_{0}=-\varepsilon_{0}\left(\frac{\varepsilon_{0}}{\varepsilon}-1\right) E_{0}$ on the top surface.

The surface polarization charges create a capacitor-like structure, so that $\mathbf{E}_{P}=\frac{\sigma_{0}}{\varepsilon_{0}} \mathbf{z}=\left(\frac{\varepsilon_{0}}{\varepsilon}-1\right) \mathbf{E}_{0}$. Since $\mathbf{E}=\frac{\varepsilon_{0}}{\varepsilon} \mathbf{E}_{0}$, it is easy to see that $\mathbf{E}=\mathbf{E}_{0}+\mathbf{E}_{p}$.

A3. An infinitely long wire carries a current $I=1 \mathrm{~A}$. It is bent so to have a semi-circular detour around the origin with radius $a=1 \mathrm{~cm}$, as shown in the figure below. Calculate the magnetic field at the origin.

Solution:

The straight parts of the wire do not contribute to the magnetic field at O since for them $I d \mathbf{l} \times \mathbf{r}=0$ (see figure below).

We need only to consider the contribution of the semi-circular part. The magnetic field at O produced by a current element Idl is

$$
d \mathbf{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \mathbf{l} \times \mathbf{r}}{r^{3}}
$$

As Idl and \mathbf{r} are mutually perpendicular for the semi-circular wire, $d \mathbf{B}$ is always pointing into the page. The total magnetic field of the semi-circular wire is then

$$
B=\int d B=\frac{\mu_{0} I}{4 \pi a} \int_{0}^{\pi} d \theta=\frac{\mu_{0} I}{4 a} .
$$

With $I=1 \mathrm{~A}, a=10^{-2} \mathrm{~m}$, the magnetic induction at O is $B=3.14 \times 10^{-5} \mathrm{~T}$, pointing perpendicularly into the page.

A4. Employ the Faraday law in the form

$$
\oint \mathbf{E} \cdot d \mathbf{l}=-\frac{d \Phi}{d t} .
$$

The magnetc flux inside the loop

$$
\Phi=B \pi r^{2}=\mu_{0} n I \pi r^{2}
$$

for $r<a$, and $\mu_{0} n I \pi a^{2}$ for $r>a$, therefore

$$
\frac{d \Phi}{d t}=\pi \mu_{0} n b r^{2}
$$

inside and $\pi \mu_{0} n b a^{2}$ outside. Since the magnetic field is straight, the electric field is circumferential, therefore the l.h.s. is $2 \pi r E$ and

$$
E=-\frac{1}{2} \mu_{0} r n b
$$

inside and

$$
E=-\frac{a^{2}}{2 r} \mu_{0} n b
$$

outside.
Its direction is opposite to the direction of the growing current (the Lenz rule).

B1. Consider an infinite cylindrical wire oriented along the z direction with radius a. This wire has an infinite cylindrical cavity parallel to the wire with radius b, but displaced from the axis by a distance d along the x direction (see the cross-section of the wire in the figure below). This wire carries a total current I uniformly distributed throughout its cross-section flowing along the $+z$ direction. Using Ampere’s law and the superposition principle find the magnetic field inside the cavity.

Solution:

First, we note that the current density, J, flowing in the wire is given by the total current divided by the cross-sectional area of the wire:

$$
\begin{equation*}
\mathbf{J}=\frac{I}{\pi\left(a^{2}-b^{2}\right)} \hat{\mathbf{z}} \tag{1}
\end{equation*}
$$

We will use the superposition principle in the following way. First, we find the magnetic field, \mathbf{B}_{1}, inside a solid wire (i.e. without a cavity) of radius a carrying uniform current density \mathbf{J}. Next, we find the field, \mathbf{B}_{2}, generated by a solid wire of radius b displaced along x also carrying uniform current density, but equal and opposite to the larger wire, i.e. a current density $-\mathbf{J}$. By the superposition principle the sum of these two fields, $\mathbf{B}=\mathbf{B}_{1}+\mathbf{B}_{2}$, is the field of the original problem.
\mathbf{B}_{1} is easy to find using Ampere's law. Because of the axial symmetry and using the right-hand rule we know the field will be independent of φ and directed along $\hat{\varphi}$. We therefore take an Amperian loop of radius $s<a$ and find that

$$
\begin{equation*}
2 \pi s B_{1}=\mu_{0} \pi s^{2} J \Rightarrow \mathbf{B}_{1}=\frac{\mu_{0} J s}{2} \hat{\varphi} \tag{2}
\end{equation*}
$$

Rewriting this in Cartesian coordinates we find

$$
\begin{align*}
\mathbf{B}_{1} & =\frac{\mu_{0} J}{2} \sqrt{x^{2}+y^{2}}[-\sin \varphi \hat{\mathbf{x}}+\cos \varphi \hat{\mathbf{y}}] \\
& =-\frac{\mu_{0} J}{2}[y \hat{\mathbf{x}}-x \hat{\mathbf{y}}] \tag{3}
\end{align*}
$$

This is the field inside the larger wire. Now we need the field generated inside the smaller wire by current $-\mathbf{J}$. This is given by a formula similar to (3) but with current reversed (i.e. $J \rightarrow-J$) and axis shifted along the x direction (i.e. $x \rightarrow x-d$):

$$
\begin{equation*}
\mathbf{B}_{2}=\frac{\mu_{0} J}{2}[y \hat{\mathbf{x}}-(x-d) \hat{\mathbf{y}}] . \tag{4}
\end{equation*}
$$

Adding (3) and (4) we therefore find the total field inside the cavity of the original problem

$$
\begin{equation*}
\mathbf{B}=-\frac{\mu_{0} J}{2}[y \hat{\mathbf{x}}-x \hat{\mathbf{y}}]+\frac{\mu_{0} J}{2}[y \hat{\mathbf{x}}-(x-d) \hat{\mathbf{y}}]=\frac{\mu_{0} J d}{2} \hat{\mathbf{y}}=\frac{\mu_{0} I d}{2 \pi\left(a^{2}-b^{2}\right)} \hat{\mathbf{y}} . \tag{5}
\end{equation*}
$$

It is seen that the field is uniform and oriented along the y direction.

B2. A grounded spherical metal shell of radius R is filled with a space charge of uniform charge density ρ. Find the electric field, the electric potential, and the electrostatic energy of the system.

Solution:

Consider a concentric spherical surface of radius $r(r<R)$. Using Gauss' law we obtain
$\mathbf{E}(\mathbf{r})=\frac{\rho r}{3 \varepsilon_{0}} \hat{\mathbf{r}}$.
As the shell is grounded, $\Phi(R)=0, E(r)=0$ for $r>R$.
Thus, we obtain for the potential: $\Phi(r)=\int_{r}^{R} E(r) d r=\frac{\rho}{6 \varepsilon_{0}}\left(R^{2}-r^{2}\right)$
The electrostatic energy is $W=\frac{1}{2} \int \rho \Phi d^{3} r=\frac{1}{2} \int_{0}^{R} \frac{\rho^{2}}{6 \varepsilon_{0}}\left(R^{2}-r^{2}\right) 4 \pi r^{2} d r=\frac{2 \rho^{2} R^{5}}{45 \varepsilon_{0}}$.

B2 solution (IF version). In Evgeny's solution I don't understand why $\mathrm{E}=0$ outside the sphere. So I used the Poisson equation approach.

Inside the sphere we have

$$
\frac{1}{r} \frac{d^{2}}{d r^{2}}(r \phi)=-\frac{\rho}{\epsilon_{0}}
$$

with the boundary conditions $\phi(0)$ is finite, and $\phi(R)=0$. Integrating this equation twice, we obtain

$$
\phi(r)=\frac{\rho}{6 \epsilon_{0}}\left(R^{2}-r^{2}\right)
$$

Outside the sphere

$$
\frac{1}{r} \frac{d^{2}}{d r^{2}}(r \phi)=0
$$

with the boundary conditions $\phi(R)=0, \phi(\infty)=0$. This gives

$$
\phi(r) \equiv 0
$$

From here we obtain

$$
E(r)=-\frac{d \phi}{d r}=\frac{\rho}{3 \epsilon_{0}} r
$$

for $r<R$, and $E(r)=0$ for $r>R$.

B3: A spherical conductor of uniform conductivity σ has a uniform volume charge density ρ_{0} and time $t=0$. Describe time evolution of the electric field and electric current in the conductor. Discuss what happens at $t \rightarrow \infty$.

Solution:

From the Gauss' law $\nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}$, the continuity equation $\nabla \cdot \mathbf{J}+\frac{\partial \rho}{\partial t}=0$, and the definition of conductivity $\mathbf{J}=\sigma \mathbf{E}$, we obtain:
$\frac{\partial \rho}{\partial t}=-\frac{\sigma}{\varepsilon_{0}} \rho$,
resulting in
$\rho(t)=\rho_{0} e^{-\frac{\sigma}{\varepsilon_{0}} t}$ and $\nabla \cdot \mathbf{E}=\frac{\rho_{0}}{\varepsilon_{0}} e^{-\frac{\sigma}{\varepsilon_{0}} t}$.
The spherical symmetry requires that $\mathbf{E}(\mathbf{r})=E(r) \hat{\mathbf{r}}$. Hence we obtain:
$\nabla \cdot \mathbf{E}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} E(r)\right)=\frac{\rho_{0}}{\varepsilon_{0}} e^{-\frac{\sigma}{\varepsilon_{0}} t}$,
giving
$\mathbf{E}(\mathbf{r}, t)=\frac{\rho_{0} \mathbf{r}}{3 \varepsilon_{0}} e^{-\frac{\sigma}{\varepsilon_{0}} t}+\mathbf{E}(0, t)=\frac{\rho_{0} \mathbf{r}}{3 \varepsilon_{0}} e^{-\frac{\sigma}{\varepsilon_{0}} t}$
and
$\mathbf{J}=\frac{\sigma \rho_{0} r}{3 \varepsilon_{0}} e^{-\frac{\sigma}{\varepsilon_{0}} t} \hat{\mathbf{r}}$

Note that $\mathbf{E}(0, t)=0$ by symmetry. It is evident that at $t \rightarrow \infty, \mathbf{E}=0, J=0$, and $\rho=0$ inside the conductor. Thus, the charge is uniformly distributed on the spherical surface and there are no fields, charges, and current inside the conductor after a sufficiently large time.
(B4.) El. field:
(a) $E=E_{0} \hat{h} \cos (\vec{k}-\hat{r}-\omega t)$

$$
\hat{k}=\frac{1}{\sqrt{3}}(1,1,1) \quad \vec{k}=\frac{\omega}{c \sqrt{3}}(1,1,1)
$$

$\hat{n}=\hat{x} \cos \alpha+z \sin \alpha \quad \sin c e|\hat{h}|=1$
from $\hat{n} \cdot \hat{k}=0$ we obtain $\cos \alpha+\sin \alpha=0, \alpha=-\frac{\pi}{4}$

$$
\hat{n}=\frac{1}{\sqrt{2}}(\hat{x}-\hat{z})
$$

(6)

$$
\begin{aligned}
& \hat{B}=\frac{1}{c} \hat{k} \times \vec{E}=\frac{1}{c}(\hat{\hat{k}} \times \hat{n}) E_{0} \cos (\hat{k} \cdot \vec{r}-\omega t) \\
& \hat{k} \times \hat{n}=\frac{1}{\sqrt{6}}\left(\begin{array}{ccc}
\hat{x} & y_{1} & \hat{z}_{y} \\
1 & 0 & -1
\end{array}\right)=\frac{1}{\sqrt{6}}(-\hat{x}+2 \hat{y}-\hat{z}) \equiv \hat{n_{c}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \hat{S}=\frac{1}{\mu_{0}}(\hat{E} \times \vec{B})=\frac{E_{0}^{2}}{\mu_{0} c}\left(\hat{n} \times \hat{n}_{A}\right) \cos ^{2}(\vec{k} \cdot \vec{r}-\omega t) \\
& \hat{n} \times \hat{n}_{1}=\frac{1}{\sqrt{12}}\left(\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
1 & 0 & -1 \\
-1 & 2 & -1
\end{array} \left\lvert\,=\frac{1}{\sqrt{12}}(2 \hat{x}+2 \hat{y}+2 \hat{z})=\frac{1}{\sqrt{3}}(\hat{x}+\hat{y}+\hat{z})=\hat{k}\right.\right. \\
& \hat{S}=\frac{E_{0}^{2}}{\mu_{0} C} \hat{k} \cos ^{2}(\hat{k}-\vec{r}-\omega t)=\varepsilon_{0}\left(E_{0}^{2} \hat{k} \cos ^{2}(\vec{k} \cdot \vec{r}-\omega t)\right.
\end{aligned}
$$

where we used $\varepsilon_{0} \mu_{0} C^{2}=1$
(d) $u=\frac{|\widetilde{S}|}{c}=\varepsilon_{0} E_{0}^{2} \operatorname{cog}^{2}(\hat{r} \cdot \hat{r}-\omega t)$

A1.
$h c / \lambda=\varphi+K$
(a) $\mathrm{K}=\mathrm{V}=1.10 \mathrm{eV}$
(b) $\varphi=\mathrm{hc} / \lambda-K=1240 \mathrm{eV} . \mathrm{nm} / 400 \mathrm{~nm}-1.10 \mathrm{eV}=2.00 \mathrm{eV}$
(c) $\lambda_{\text {cut }}=\mathrm{hc} / \varphi=620 \mathrm{~nm}$
(d)

Problem A2

Operator R is defined by $R \psi(x)=\operatorname{Re}[\psi(x)]$. Is R Hermitian?
ANSWER
The operator is Hermitian when $\langle\varphi \mid R \psi\rangle=\langle R \varphi \mid \psi\rangle$. We calculate LHS and RHS:

$$
\begin{aligned}
& \langle\varphi \mid R \psi\rangle=\int \varphi^{*}(x) R \psi(x) d x=\int \varphi^{*}(x) \operatorname{Re}[\psi(x)] d x= \\
& \int \varphi^{*}(x) \frac{1}{2}\left[\psi(x)+\psi^{*}(x)\right] d x=\frac{1}{2} \int \varphi^{*}(x) \psi(x) d x+\frac{1}{2} \int \varphi^{*}(x) \psi^{*}(x) d x
\end{aligned}
$$

$$
\langle R \varphi \mid \psi\rangle=\int(R \varphi(x)) * \psi(x) d x=\int[\operatorname{Re} \varphi(x)] * \psi(x) d x=
$$

$$
\frac{1}{2} \int\left[\varphi(x)+\varphi^{*}(x)\right]^{*} \psi(x) d x=\frac{1}{2} \int \varphi^{*}(x) \psi(x) d x+\frac{1}{2} \int \varphi(x) \psi(x) d x
$$

So $\langle\varphi \mid R \psi\rangle \neq\langle R \varphi \mid R\rangle \Rightarrow R$ is not Hermitian

Problem A3

Part a.

write $\alpha|\uparrow\rangle+\beta|\downarrow\rangle$ as $\binom{\alpha}{\beta}$
$F\binom{\alpha}{\beta}=\binom{\beta}{\alpha}$
Writing $\left|\Sigma_{i}\right\rangle=\binom{\beta_{i}}{\alpha_{i}}$, we have:
$\left\langle\Sigma_{1} \mid F \Sigma_{2}\right\rangle=\binom{\alpha_{1}}{\beta_{1}}^{*}\binom{\beta_{2}}{\alpha_{2}}=\alpha_{1}^{*} \beta_{2}+\beta_{1}^{*} \alpha_{2}$
$\left\langle F \Sigma_{1} \mid \Sigma_{2}\right\rangle=\binom{\beta_{1}}{\alpha_{1}}^{*}\binom{\alpha_{2}}{\beta_{2}}=\beta_{1}{ }^{*} \alpha_{2}+\alpha_{1}{ }^{*} \beta_{2}$
$\left\langle\Sigma_{1} \mid F \Sigma_{2}\right\rangle=\left\langle F \Sigma_{1} \mid \Sigma_{2}\right\rangle \Rightarrow F$ is Hermitian

Part b.
$F\binom{1}{0}=\binom{0}{1}$ and $F\binom{0}{1}=\binom{1}{0}$ so $F=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
Eigenvalue equation:
$\left|\begin{array}{cc}-\lambda & 1 \\ 1 & -\lambda\end{array}\right|=0 \Rightarrow \lambda^{2}-1=0 \quad \Rightarrow \quad \lambda= \pm 1$
Eigenkets:
For $\lambda=+1$
$\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)\binom{\alpha}{\beta}=0 \Rightarrow \alpha=\beta$
Eigenket is $\frac{1}{2} \sqrt{2}\binom{1}{1}=\frac{1}{2} \sqrt{2}(|\uparrow\rangle+|\downarrow\rangle)$
For $\lambda=-1$
$\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\binom{\alpha}{\beta}=0 \Rightarrow \alpha=-\beta$
Eigenket is $\frac{1}{2} \sqrt{2}\binom{1}{-1}=\frac{1}{2} \sqrt{2}(|\uparrow\rangle-|\downarrow\rangle)$

Problem A4

$E_{n}=-k m e^{4} /\left(2 n^{2} h b a r^{2}\right)$
Where m is the reduced mass. For hydrogen $m=m_{e}$ and $\mathrm{kme}^{4} /\left(2 \mathrm{hbar}^{2}\right)=R y($ Rydberg constant $)=13.6 \mathrm{eV}$
(a) For Ps $m=m_{e} / 2$, therefore $E_{n}=-R y /\left(2 n^{2}\right)$

For $n=2 E_{2}=-R y / 8=-1.7 \mathrm{eV}$
(b) $\mathrm{hc} / \lambda=\mathrm{Ry} / 2(1 / 4-1 / 9)=5 \mathrm{Ry} / 72=0.944 \mathrm{eV}$ $\lambda=1240 \mathrm{eV} . \mathrm{nm} / 0.944 \mathrm{eV}=1316 \mathrm{~nm}$

B2. The wavefunction of a particle moving in one dimension is given by
$\psi(x)= \begin{cases}0 & x<-b / 2 \\ C & -b / 2<x<+b / 2 \\ 0 & x>+b / 2\end{cases}$
where C is a real-valued, positive constant.
a. Normalize the wavefunction.
b. Find $\varphi(k)$, the wavefunction in k-space $(k=p / \hbar)$.
c. Estimate the widths Δx and Δp and show they agree with Heisenberg's uncertainty principle.

ANSWERS
Part a.

$$
\int_{-\infty}^{+\infty}|\psi(x)|^{2} d x=1 \Rightarrow \int_{-b / 2}^{+b / 2} C^{2} d x=C^{2} b=1 \Rightarrow C=\frac{1}{\sqrt{b}}
$$

Part b.

$\varphi(k)=\langle k \mid \psi\rangle=\int_{-\infty}^{+\infty}\langle k \mid x\rangle\langle x \mid \psi\rangle d x=\int_{-\infty}^{+\infty}\langle x \mid k\rangle^{*}\langle x \mid \psi\rangle d x=\int_{-\infty}^{+\infty} \frac{e^{-i k x}}{\sqrt{2 \pi}} \psi(x) d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} e^{-i k x} \psi(x) d x$

$$
\begin{aligned}
& \varphi(k)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{b}} \int_{-b / 2}^{+b / 2} e^{-i k x} d x=\frac{1}{\sqrt{2 \pi b}}\left[\frac{e^{-i k x}}{-i k}\right]_{-b / 2}^{b / 2}=\frac{i}{\sqrt{2 \pi b} k}\left[e^{-i k b / 2}-e^{i k b / 2}\right]= \\
& =\frac{-i}{\sqrt{2 \pi b} k}\left[e^{+i k b / 2}-e^{-i k b / 2}\right]=\frac{2}{\sqrt{2 \pi b} k} \sin (k b / 2)=\frac{1}{\sqrt{2 \pi}} \sqrt{b} \frac{\sin (k b / 2)}{k b / 2}
\end{aligned}
$$

Part c.

For the width of $\psi(x)$ we take $\Delta x=b$.
For the width of $\varphi(k)$ we take the width between its zeroes nearest to $k=0$:
$\sin (k b / 2)=0 \Rightarrow k b / 2= \pm \pi \Rightarrow k= \pm 2 \pi / b \Rightarrow \Delta p=\hbar \Delta k=\hbar 4 \pi / b$
Hence, $\Delta x \Delta p=b \times \hbar 4 \pi / b=4 \pi \hbar>\frac{1}{2} \hbar$

B1. Combine Compton formula

$$
\lambda^{\prime}-\lambda=\lambda_{C}(1-\cos \theta)
$$

with the conservation of energy

$$
\frac{h c}{\lambda}=E+\frac{h c}{\lambda^{\prime}}
$$

where E is the energy transfer to electron. Obviously, the maximum energy transfer occurs for backward scattering, $\theta=180^{\circ}$, therefore

$$
\frac{h c}{\lambda}=E+\frac{h c}{\lambda+2 \lambda_{C}}
$$

which reduces to the quadratic equation

$$
\lambda^{2}+2 \lambda \lambda_{C}-2 \mu \lambda_{C}=0
$$

where $\mu=h c / E=24.8 \mathrm{pm}$. Solve quadratic equation

$$
\begin{gathered}
\lambda=-\lambda_{C}+\sqrt{\lambda_{C}^{2}+2 \mu \lambda_{C}}=-2.43+\sqrt{2.43^{2}+2 \cdot 24.8 \cdot 2.43}=8.814 \mathrm{pm} \\
E_{\text {photon }}=\frac{h c}{\lambda}=1240 \mathrm{keV} \cdot \mathrm{pm} / 8.814 \mathrm{pm}=140.7 \mathrm{keV}
\end{gathered}
$$

(b)

$$
\begin{gathered}
\lambda^{\prime}=\lambda+\lambda_{C}\left(1-\cos 60^{\circ}\right)=8.814+2.43 / 2=10.03 ` \mathrm{pm} \\
E=h c\left(\frac{1}{\lambda}-\frac{1}{\lambda^{\prime}}\right)=17 \mathrm{keV}
\end{gathered}
$$

B3. (a)

$$
\begin{gathered}
Y_{1}^{-1}(\theta, \phi)=\Theta(\theta) \Phi(\phi), \\
\Phi=\frac{1}{\sqrt{2 \pi}} e^{-i \phi}, \quad \Theta(\theta)=\frac{\sqrt{3}}{2} \sin \theta .
\end{gathered}
$$

Since Φ is normalized, only θ integration is necessary

$$
p=\int_{0}^{\pi / 3} \Theta^{2}(\theta) \sin \theta d \theta=\frac{3}{4} \int_{0}^{\pi / 3} \sin ^{2} \theta \sin \theta d \theta
$$

with the integration variable $u=\cos \theta$

$$
p=\frac{3}{4} \int_{1 / 2}^{1}\left(1-u^{2}\right) d u=\frac{3}{4}\left(u-u^{3} / 3\right)_{1 / 2}^{1}=\frac{3}{4}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{8 \cdot 3}\right)=\frac{5}{32} .
$$

(b)

$$
p=\int_{a_{0}}^{\infty} R_{2 p}^{2} r^{2} d r=\frac{1}{24 a_{0}^{5}} \int_{a_{0}}^{\infty} r^{4} e^{-r / a_{0}} d r .
$$

using the substitution $x=r / a_{0}$ we obtain

$$
p=\frac{1}{24} \int_{1}^{\infty} x^{4} e^{-x} d x=\frac{1}{24} e^{-1}(1+4+12+24+24)=0.996
$$

where we have used

$$
\int x^{4} e^{-x} d x=-e^{-x}\left(x^{4}+4 x^{3}+12 x^{2}+24 x+24\right)
$$

(c)

$$
\langle r\rangle=\int_{0}^{\infty} R_{2 p}^{2} r^{3} d r=\frac{a_{0}^{6}}{24 a_{0}^{5}} \int_{0}^{\infty} x^{5} e^{-x} d x=5 a_{0}
$$

(d) Determine the position of the the maximum probability density

$$
\begin{gathered}
\frac{d}{d r}\left(r^{4} e^{-r / a_{0}}\right)=0 \\
e^{-r / a_{0}}\left(4 r^{3}-r^{4} / a_{0}\right)=0
\end{gathered}
$$

$$
r=4 a_{0}
$$

B4. (a) Consider the well defined as $V\left(x^{\prime}\right)=0$ for $0<x^{\prime}<L$. The solution is

$$
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{\pi n x^{\prime}}{L}, n=1,2, \ldots
$$

The solution for the well defined as $V(x)=0$ for $-L / 2<x<L / 2$ can be obtained by performing the transformation $x^{\prime}=x+L / 2$. Then

$$
\begin{gathered}
\psi_{1}(x)=\sqrt{\frac{2}{L}} \sin \left[\frac{\pi}{L}(x+L / 2)\right]=\sqrt{\frac{2}{L}} \cos \frac{\pi x}{L} \\
\psi_{2}(x)=\sqrt{\frac{2}{L}} \sin \left[\frac{2 \pi}{L}(x+L / 2)\right]=-\sqrt{\frac{2}{L}} \sin \frac{2 \pi x}{L}
\end{gathered}
$$

The sign in front is inessential.
(b)

$$
\begin{gathered}
\psi(x)=C\left[2 \psi_{1}(x)+\psi_{2}(x)\right] \\
C^{2}(4+1)=1, \quad C=1 / \sqrt{5} .
\end{gathered}
$$

(c)

$$
\begin{gathered}
\langle H\rangle=\frac{1}{5} \int_{-L / 2}^{L / 2}\left(2 \psi_{1}^{*}+\psi_{2}^{*}\right) H\left(2 \psi_{1}+\psi_{2}\right) d x \\
\langle x\rangle=\frac{1}{5} \int_{-L / 2}^{L / 2} x\left|2 \psi_{1}+\psi_{2}\right|^{2} d x
\end{gathered}
$$

Since ψ_{1} and ψ_{2} are eigenstates of H, the crossed terms in the first integral disappear, and we have

$$
\langle H\rangle=\frac{1}{5}\left(4 E_{1}+E_{2}\right), \quad E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m L^{2}}
$$

$$
\langle H\rangle=\frac{1}{5} \frac{\hbar^{2} \pi^{2}}{2 m L^{2}}(4+4)=\frac{4}{5} \frac{\hbar^{2} \pi^{2}}{m L^{2}}
$$

In the second integral only the crossed terms survive since $x\left|\psi_{1}\right|^{2}$ and $x\left|\psi_{2}\right|^{2}$ are odd functions.

$$
\begin{equation*}
\langle x\rangle=\frac{2}{5} 2 \operatorname{Re} \int_{-L / 2}^{L / 2} x \psi_{2}^{*}(x) \psi_{1}(x) d x \tag{1}
\end{equation*}
$$

At $t=0$

$$
\begin{gathered}
\langle x\rangle=\frac{8}{5 L} \int_{-L / 2}^{L / 2} x \cos \frac{\pi x}{L} \sin \frac{2 \pi x}{L} d x \\
\int_{-L / 2}^{L / 2} x \cos \frac{\pi x}{L} \sin \frac{2 \pi x}{L} d x=\left(\frac{L}{\pi}\right)^{2} \int_{-\pi / 2}^{\pi / 2} y \cos (y) \sin (2 y) d y=\frac{8}{9}\left(\frac{L}{\pi}\right)^{2}
\end{gathered}
$$

Finally

$$
\begin{equation*}
\langle x\rangle=\frac{64 L}{45 \pi^{2}} \tag{2}
\end{equation*}
$$

(d) For $t>0 \psi_{1}$ and ψ_{2} are multplied by $e^{-i E_{1} t / \hbar}$ and $e^{-i E_{2} t / \hbar}$, therefore from (1) and (2) we obtain

$$
\langle x\rangle(t)=\frac{64 L}{45 \pi^{2}} \cos \frac{\left(E_{2}-E_{1}\right) t}{\hbar}=\frac{64 L}{45 \pi^{2}} \cos \frac{3 \pi^{2} \hbar t}{2 m L^{2}}
$$

Since the Hamiltonian is time-independent, $\langle H\rangle$ does not depend on time, and

$$
\langle H\rangle(t)=\frac{4}{5} \frac{\hbar^{2} \pi^{2}}{m L^{2}}
$$

for $t>0$.

