TH A1

An insurance company needs to know the probability $P(n)$ that the state of Calisota is hit by n tornadoes in a year. They find there is a probability distribution:

$$
P(n) \propto \frac{\mu^{n}}{n!},
$$

where $\mu=2.5$.
a. What is the probability that there will be no tornadoes in Calisota next year?
b. What is the probability that Calisota will be hit by 4 or more tornadoes next year?
c. What is the average number of tornadoes per year in Calisota?

ANSWERS

a. It is convenient (though not necessary) to normalize $P(n)$ first. We require $\Sigma_{n} P(n)=1$, or

$$
C \Sigma_{n} \frac{\mu^{n}}{n!}=C e^{\mu}=1 \quad \Rightarrow \quad C=e^{-\mu}, \quad \text { so } P(n)=e^{-\mu} \frac{\mu^{n}}{n!} .
$$

Probability for no tornadoes is then $P(0)=e^{-\mu} \frac{\mu^{0}}{0!}=e^{-\mu}=0.082=8.2 \%$
b. We have

$$
\begin{aligned}
& P(n \geq 4)=1-P(0)-P(1)-P(2)-P(3) \\
& P(0)=e^{-\mu} \frac{\mu^{0}}{0!}=e^{-\mu} \\
& P(0)=e^{-\mu} \frac{\mu^{1}}{1!}=\mu e^{-\mu} \\
& P(0)=e^{-\mu} \frac{\mu^{2}}{2!}=\frac{1}{2} \mu^{2} e^{-\mu} \\
& P(0)=e^{-\mu} \frac{\mu^{3}}{3!}=\frac{1}{6} \mu^{3} e^{-\mu} \\
& P(0)+P(1)+P(2)+P(3)=e^{-\mu}\left(1+\mu+\frac{1}{2} \mu^{2}+\frac{1}{6} \mu^{3}\right)=0.757576 \\
& P(n \geq 4)=1-0.757576=0.242424=24 \%
\end{aligned}
$$

c. We find $\langle n\rangle=\sum_{n=0}^{\infty} n P(n)=e^{-\mu} \sum_{n=0}^{\infty} n \frac{\mu^{n}}{n!}=e^{-\mu} \sum_{n=1}^{\infty} \mu \frac{\mu^{n-1}}{(n-1)!}=\mu e^{-\mu} \sum_{n=1}^{\infty} \frac{\mu^{n-1}}{(n-1)!}=\mu e^{-\mu} e^{\mu}=\mu=2.5$

Thermodynamics solutions
TH AD
First Low, easy
In the adiabatic expansion; into vacuum the energy of the gas is constant. This is a free expansion, so zero work is done by the gas.
Thus:

$$
\begin{aligned}
E_{2} & =E_{1} \\
\frac{3}{2} R T_{2}-\frac{a}{V_{2}} & =\frac{3}{2} R T_{1}-\frac{a}{V_{1}} \Rightarrow T_{2}=T_{1}+\frac{2}{3 R}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)
\end{aligned}
$$

TH AB
Maxwell relations, easy
We use Helmholtz free energy $F \equiv U-T S$

$$
d F=d(U-T S)=d U-T d S-S d T
$$

recall that $d U=T d S-p d v$
then

$$
d F=T d \delta-p d v-T d S-S d T=-p d v-S d T
$$

The right-hand side is a full differential, thus

$$
\left(\frac{\partial P}{\partial T}\right)_{S}=\left(\frac{\partial S}{\partial v}\right)_{T}
$$

Used: $\quad d F=\left(\frac{\partial F}{\partial x}\right) y d x+\left(\frac{\partial f}{\partial y}\right)_{x} d y \equiv X d x+Y d y$

$$
\frac{\partial^{2} F}{\partial x \partial y}=\left(\frac{\partial x}{\partial y}\right)_{x}=\left(\frac{\partial Y}{\partial x}\right)_{y}
$$

Seconctgen and heat engines, easy
The magnitude of the work done by the engine equals to the area enclosed by the cycle in the PV diagram given:

$$
\begin{aligned}
& W=\frac{1}{2}\left(P_{\text {high }}-P_{\text {low }}\right)\left(V_{\text {high }}-V_{\text {low }}\right) \\
& W=\frac{1}{2} \cdot 10^{6} \cdot 0.020=10000 \mathrm{~J}
\end{aligned}
$$

The efficiency is

$$
\eta=\frac{W}{Q_{\text {absorbed }}}=\frac{10000 \mathrm{~J}}{50000 \mathrm{~J}}=0.20
$$

TH B1

The $p V$ diagram shows the Otto cycle, which is an idealized model of the thermodynamic processes in a gasoline engine. Processes $a \rightarrow b$ and $c \rightarrow d$ are adiabatic, and processes $b \rightarrow c$ and $d \rightarrow a$ are isochoric (taking place at constant volume). The quantity $r>1$ is called the compression ratio. Show that the efficiency η of the Otto cycle is

$$
\eta=1-\frac{1}{r^{\gamma-1}},
$$

where $\gamma=C_{p} / C_{V}$.

ANSWER
$Q^{a \rightarrow b}=0 \quad Q^{b \rightarrow c}=n C_{V}\left(T_{c}-T_{b}\right)>0$
$Q^{c \rightarrow d}=0 \quad Q^{d \rightarrow a}=n C_{V}\left(T_{a}-T_{d}\right)<0$
$\eta=\frac{W}{Q^{b \rightarrow c}}=\frac{Q^{b \rightarrow c}+Q^{d \rightarrow a}}{Q^{b \rightarrow c}}=\frac{n C_{V}\left(T_{c}-T_{b}\right)+n C_{V}\left(T_{a}-T_{d}\right)}{n C_{V}\left(T_{c}-T_{b}\right)}=\frac{T_{c}-T_{b}+T_{a}-T_{d}}{T_{c}-T_{b}}$
$T_{a} V_{a}^{\gamma-1}=T_{b} V_{b}^{\gamma-1} \Rightarrow T_{a} r^{\gamma-1} V^{\gamma /}=T_{b} V^{\prime / K} \Rightarrow T_{b}=r^{\gamma-1} T_{a}$
$T_{c} V_{c}^{\gamma-1}=T_{d} V_{d}^{\gamma-1} \Rightarrow T_{c} Y^{\gamma-1}=T_{d} r^{\gamma-1} V^{\gamma-1} \Rightarrow T_{c}=r^{\gamma-1} T_{d}$
Now $\eta=\frac{T_{c}-T_{b}+T_{a}-T_{d}}{T_{c}-T_{d}}=\frac{r^{\gamma-1}\left(T_{d}-T_{a}\right)+T_{a}-T_{d}}{r^{\gamma-1}\left(T_{d}-T_{a}\right)}=\frac{r^{\gamma-1}-1}{r^{\gamma-1}}=1-\frac{1}{r^{\gamma-1}}$

Probability, hard TH B2
After a sufficiently long time, the bacteria will amount to a huge number $N \gg 10000$ wither the existence of the predator. That the predator eats bacteria at random, is mathematically equivalent to selecting $n=10000$ bacteria out of N bacteria as survivors. $N>n$ means we can assume the probabilities of survival just p and (1-p) for the red and green bacteria, respectively.

We use the binomial distribution to find the probability of m successes (picking the red) out of n trials:

$$
\begin{aligned}
\mathbb{P}(m) & =C_{m}^{n}\left(\frac{1}{2}+p\right)^{m}\left(\frac{1}{2}-p\right)^{n-m} \\
& =\frac{n!}{m!(n-m)!}\left(\frac{1}{2}+p\right)^{m}\left(\frac{1}{2}-p\right)^{m}
\end{aligned}
$$

First law, hard TH B3
According to the first law,

$$
\begin{array}{ll}
d U=d Q-d W & d Q \rightarrow T d S \\
T d S=d U+d W & d W \rightarrow p d V \\
d S=\frac{d U+p d V}{T}=\left[\frac{1}{T}\left(\frac{\partial U}{\partial V}\right)_{T}+\frac{p}{T}\right] d V+\frac{1}{T}\left(\frac{\partial U}{\partial T}\right)_{V} d T
\end{array}
$$

where we used $d u=\left(\frac{\partial u}{\partial v}\right)_{T} d v+\left(\frac{\partial u}{\partial T}\right)_{v} d T$.
Next, substitute given $P(T, V)$ and $u(T, V)$ of the new matter:

$$
d S=\frac{B T^{n-1}+A T^{2}}{V} d V+\left(\frac{f^{\prime}(T)}{T}+n B T^{n-2} \ln \frac{V}{V_{0}}\right) d T
$$

from the condition that $d S$ is complete differential:

$$
\frac{\partial}{\partial T}\left(\frac{B T^{n-1}+A T^{2}}{V}\right)=\frac{\partial}{\partial V}\left(\frac{f^{\prime}(T)}{T}+n B T^{n-2} \ln \frac{V}{V_{0}}\right)
$$

We get $2 A T-B T^{n-2}=0 \Rightarrow \begin{aligned} & n=3 \\ & B=2 A\end{aligned}$ for any T

Free energies, hard. TH B4
For an ideal gas, we have $d U=n C_{v} d T$, and $U=n C_{r} T+U_{0}$, where U_{0} is the internal energy of the system when $T=0$.

$$
\begin{aligned}
& T d S=d U+p d V \\
& d S=\frac{n C_{v}}{T} d T+\frac{p}{T} d V . \text { Integrating this, we get } \\
& S=\frac{3 n R}{2} \ln T+n R \ln V+\xi, \text { where } \xi \text { is a constant }
\end{aligned}
$$

assuming $S=S_{0}$ when $T=T_{0}, V=V_{0}$, we get

$$
S=\frac{3 n R}{2} \ln \frac{T}{T_{0}}+N R \ln \frac{V}{V_{0}}+S_{0}
$$

Then

$$
\begin{aligned}
F \equiv U-T S=\frac{3 n R T}{2} & -\left(\frac{3 n R T}{2} \ln \frac{T}{T_{0}}-n R T \ln \frac{V}{V_{0}}\right) \\
& +F_{0}
\end{aligned}
$$

where $F_{0}=U_{0}-T_{0} S_{0}$

MC A1

Mechanics easy

Two block are connected by a massless cord which rolls over a massless and frictionless pulley. Block A sits on a level, frictionless surface, and is sliding to the right. The masses of the blocks A and B are $m_{\mathrm{A}}=7 \mathrm{~kg}$ and $m_{\mathrm{A}}=3 \mathrm{~kg}$. Calculate the tension T in the cord.

SOLUTION

The blocks have the same acceleration, so
$\frac{T}{m_{\mathrm{A}}}=a_{\mathrm{A}}=a_{\mathrm{B}}=\frac{m_{\mathrm{B}} g-T}{m_{\mathrm{B}}} \Rightarrow m_{\mathrm{B}} T=m_{\mathrm{A}} m_{\mathrm{B}} g-m_{\mathrm{A}} T \Rightarrow\left(m_{\mathrm{A}}+m_{\mathrm{B}}\right) T=m_{\mathrm{A}} m_{\mathrm{B}} g \Rightarrow$
$T=\frac{m_{\mathrm{A}} m_{\mathrm{B}}}{m_{\mathrm{A}}+m_{\mathrm{B}}} g=\frac{7 \times 3}{7+3} g=\frac{21}{10} g=2.1 g=20.6 \mathrm{~N}$

Check:
$a_{\mathrm{A}}=\frac{F_{\mathrm{A}}}{m_{\mathrm{A}}}=\frac{T}{m_{\mathrm{A}}}=\frac{m_{\mathrm{B}}}{m_{\mathrm{A}}+m_{\mathrm{B}}} g$
$a_{\mathrm{B}}=\frac{F_{\mathrm{B}}}{m_{\mathrm{B}}}=\frac{m_{\mathrm{B}} g-T}{m_{\mathrm{B}}}=g-\frac{m_{\mathrm{A}}}{m_{\mathrm{A}}+m_{\mathrm{B}}} g=\frac{m_{\mathrm{A}}+m_{\mathrm{B}}}{m_{\mathrm{A}}+m_{\mathrm{B}}} g-\frac{m_{\mathrm{A}}}{m_{\mathrm{A}}+m_{\mathrm{B}}} g=\frac{m_{\mathrm{B}}}{m_{\mathrm{A}}+m_{\mathrm{B}}} g=a_{\mathrm{A}} \quad$ OK

MC A2

Mechanics easy

A solid, uniform, 45 kg ball of radius 16 cm is supported against a vertical, frictionless wall by a thin, 30 cm wire of negligible mass. Find the tension in the wire and the magnitude of the force that the ball exerts on the wall.

ANSWER

$$
\begin{aligned}
& n=T \sin \varphi \text { and } m g=T \cos \varphi \\
& \sin \varphi=\frac{16}{30+16} \Rightarrow \varphi=20.354^{\circ} \\
& \frac{n}{m g}=\tan \varphi \Rightarrow n=m g \tan \varphi=164 \mathrm{~N} \\
& T=\frac{m g}{\cos \varphi}=470 \mathrm{~N}
\end{aligned}
$$

MC AB
Mechanics A3

$$
\begin{aligned}
F_{\text {TOT, }, ~} & =\dot{p} \\
& =m \dot{V}+\dot{m} V \\
F(h) & -m(h) g \\
& =\dot{m V}
\end{aligned}
$$

$$
\begin{aligned}
F(h) & =\mu h g+\mu v^{2} \\
& =\mu\left(h g+v^{2}\right)
\end{aligned}
$$

MC A4

(a) We note that the angle between the cable and the strut is

$$
\alpha=\theta-\phi=45^{\circ}-30^{\circ}=15^{\circ} .
$$

The angle between the strut and any vertical force (like the weights in the problem) is $\beta=$ $90^{\circ}-45^{\circ}=45^{\circ}$. Denoting $M=225 \mathrm{~kg}$ and $m=45.0 \mathrm{~kg}$, and ℓ as the length of the boom, we compute torques about the hinge and find

$$
T=\frac{M g \ell \sin \beta+m g\left(\frac{\ell}{2}\right) \sin \beta}{\ell \sin \alpha}=\frac{M g \sin \beta+m g \sin \beta / 2}{\sin \alpha} .
$$

The unknown length ℓ cancels out and we obtain $T=6.63 \times 10^{3} \mathrm{~N}$.
(b) Since the cable is at 30° from horizontal, then horizontal equilibrium of forces requires that the horizontal hinge force be

$$
F_{x}=T \cos 30^{\circ}=5.74 \times 10^{3} \mathrm{~N}
$$

and vertical equilibrium of forces gives the vertical hinge force component:

$$
F_{y}=M g+m g+T \sin 30^{\circ}=5.96 \times 10^{3} \mathrm{~N}
$$

Mechanics Bl

$$
\begin{aligned}
& \tau=I_{\alpha} \\
& -M g r \sin \theta=I_{0} \ddot{\theta} \\
& -\operatorname{Mgr} \theta \simeq\left(\frac{1}{2} M R^{2}+M r^{2}\right) \ddot{\theta} \\
& -\operatorname{gr} \theta=\left(\frac{1}{2} R^{2}+r^{2}\right) \ddot{\theta}
\end{aligned}
$$

This is analogous to

$$
\begin{gathered}
-k x=m \ddot{x} \\
\omega=\sqrt{\frac{k}{m}}=\frac{2 \pi}{T}
\end{gathered}
$$

$T=2 \pi \sqrt{\frac{m}{k}}$ ar, by $a x a \log y$

$$
T=2 \pi \sqrt{\frac{\frac{1}{2} R^{2}+r^{2}}{g r}}
$$

to maxine T, we should set

$$
\begin{aligned}
& \frac{d}{d r}\left(\frac{R^{2}}{2 r}+r\right)=0=1-\frac{R^{2}}{2 r^{2}} \\
& 2 r^{2}=R^{2} ; r=\frac{1}{\sqrt{2}} R
\end{aligned}
$$

Mech I solution
(a) $\quad F(x)=-F_{0} \sin (c x)$

$$
V(x)=-\int F(x) d x=-\frac{F_{10}}{c} \cos (c x)
$$

(choose const $=0$).

(6)

$$
\begin{aligned}
& \frac{m v_{0}^{2}}{2}-\frac{F_{0}}{c}=\frac{m v^{2}}{2}-\frac{F_{0}}{c} \cos (c x) \\
& v=\sqrt{v_{0}^{2}-\frac{2 F_{0}}{m c}(1-\cos c x)}
\end{aligned}
$$

(c) $E=\frac{i v_{0}^{2}}{2}-\frac{E}{C}<\frac{F_{0}}{C}$ (for focnded

$$
v_{0}<2\left(\frac{F_{0}}{m c}\right)^{1 / 2}
$$

motion)
(d) $F \approx-F_{0} c x \equiv-k x$

$$
\begin{aligned}
w_{0} & =\sqrt{\frac{R}{m}}=\sqrt{F_{0} C} \\
T & =\frac{2 \pi}{w_{0}}=2 \pi \sqrt{\frac{m}{F_{0} C}} \\
\text { Cmplitude } & =\frac{v_{0}}{w_{0}}=v_{0} \sqrt{\frac{m}{F_{0} C}}
\end{aligned}
$$

For a rough surface there is ho slipping and $\omega=\frac{v}{a}$

$$
v^{2}=\frac{2 m g(b+a)(1-\cos \theta)}{m+\frac{I}{a^{2}}}
$$

Newton eq. for the motion of the cheater of TiN mass of the sphere

$$
\frac{m v^{2}}{6+a}=m \cos \theta-N
$$

sphere leaves when $x=0 \rightarrow v^{2}=(b+a) g \cos \theta$

$$
\begin{aligned}
& \frac{2 g(b+a)(1-\cos \theta)}{1+\frac{I}{m a^{2}}}=(b+a) g \cos \theta \\
& \cos \theta=\frac{2}{3+\frac{I}{m a^{2}}}
\end{aligned}
$$

For a uniform space $I=\frac{2}{5} m a^{2}$ and $\cos \theta=\frac{2}{3+\frac{2}{5}}=\frac{10}{17}$ for a hollow sphere $t=\frac{2}{3} m a^{2} \cos \theta=\frac{2}{3+\frac{2}{3}}=\frac{6}{11}$ $\frac{6}{11}<\frac{10}{17}$

$$
\theta_{\text {lolled }}>\theta_{\text {unatorn }}
$$

(a) conserve angular momentum: $L_{i}=L_{f}, L=I \omega$

$$
\begin{aligned}
& L_{i}=I_{p} \omega_{p}=\left[M\left(\frac{L}{2}\right)^{2}\right]\left[\frac{V}{(L / 2)}\right]=M \frac{L}{2} V \\
& L_{f}=\left(I_{p}+I\right) \omega=\left[M\left(\frac{L}{2}\right)^{2}+2 m\left(\frac{L}{2}\right)^{2}\right] \omega=(M+2 m)\left(\frac{L}{2}\right)^{2} \omega \\
& M \frac{L}{2} V=(M+2 m)\left(\frac{L}{2}\right)^{2} \omega
\end{aligned}
$$

Solve for ω

$$
\begin{aligned}
& \omega=\frac{M}{(M+2 \mathrm{~m})} \frac{2}{L} V=\frac{50.0 \times 10^{-3} \mathrm{~kg}}{\left(50.0 \times 10^{-3} \mathrm{~kg}+2.2 .00 \mathrm{~kg}\right)} \frac{2(3.00 \mathrm{~m} / \mathrm{s})}{\left(50.0 \times 10^{-2} \mathrm{~m}\right)} \\
& \omega=0.148 \frac{\mathrm{rad}}{\mathrm{sec}}
\end{aligned}
$$

(b)

$$
\left.\begin{array}{l}
k_{i}=\frac{1}{2} M v^{2} \\
k_{f}=\frac{1}{2}\left(I_{p}+I\right) \omega^{2}
\end{array}\right\} \quad \frac{k_{f}}{k_{i}}=\frac{\left(I_{p}+I\right) \omega^{2}}{M v^{2}}=\frac{(M+2 m)\left(\frac{L}{2}\right)^{2}}{M v^{2}} \omega^{2}
$$

$$
\begin{gathered}
\frac{k_{f}}{k_{i}}=\frac{\left(50.0 \times 10^{-3} \mathrm{~kg}+2(2.00 \mathrm{~kg})\right)}{\left(50.0 \times 10^{-3} \mathrm{~kJ}\right)(3.00 \mathrm{~m} / \mathrm{s})^{2}}\left(\frac{50.0 \times 10^{-2} \mathrm{~m}}{2}\right)^{2}\left(0.148 \frac{\mathrm{rad}}{\mathrm{~s}}\right)^{2} \\
\frac{k_{f}}{k_{i}}=1.23 \times 10^{-2}
\end{gathered}
$$

(c) after the collision, energy is conserved

$$
\begin{aligned}
& \left.K_{i}=\alpha \frac{1}{2} M v^{2}, \quad \alpha=1.23 \times 10^{-2} \quad \text { (from part } b\right) \\
& U_{i}=0
\end{aligned}
$$

$$
K_{f}=0
$$

Note: h must be positive, so the

$$
u_{f}=M g h+m g h-m g h
$$ system notates through $180^{\circ}+\theta$

the two bulls cancel each other because one is above the zero point and the other is below

$$
\begin{aligned}
& \begin{array}{l}
\alpha \frac{1}{2} M v^{2}=M g h \rightarrow h
\end{array} \begin{array}{l}
\underbrace{L / 2}_{\theta} \\
\qquad \operatorname{Sin} \theta=\frac{\alpha v^{2}}{2 g}=\frac{L}{2} \operatorname{Sin} \theta \\
h
\end{array}=\operatorname{Sin}^{-1}\left[\frac{\alpha v^{2}}{L g}\right] \\
& \theta=1.3^{\circ}
\end{aligned}
$$

$$
\sin \theta=\frac{h}{L / 2}, h=\frac{L}{2} \sin \theta
$$

system rotates 181°

