Thermo Al

Suppose 10.0 g of water at a temperature of 100.0 °C is in an insulated cylinder equipped
with a piston that maintains a constant pressure of p=101.3 kPa. Enough hat is added to the
water to vaporize it to steam at a temperature of 100.0 °C. The volume of the water is

Vwater = 10.0 cm3, and the volume of the steam is Vgipqm = 16900 cm?. What is the change
in internal energy of the water?
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Thermo A2

A Carnot engine takes 3000 ] of heat from a thermal reservoir that has a temperature of
Ty = 500 K and discards heat to a thermal reservoir with a temperature Ty = 325 K. How
much work does the Carnot engine do in this process?
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Thermo A3

Suppose we start with 2.00 kg of water at a temperature of 20.0 °C and warm the water
until it reaches a temperature of 80.0 °C. What is the change in entropy of the water?
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Thermo A4

Vi 7!
="T— = (300 K)(15.0)"* = 886 K = 613°C
Va

AN - ,
py = p](?l) — (1.01 X 10% Pa)(15.0)'40
2

= 44.8 X 10° Pa = 44 atm
The work done is

W (pVi — paVs)
?_IPII p2Va

Using V;/V> = 15.0, we have

| (1.01 X 10° Pa)(1.00 X 107> m?)

1.00 X 1072 m’
1.400 — 1 —(44.8><1n51:*a)( L 153 m)




Thermo Bl

I show you four unusual six-sided dice. They are unusual, because they do not have the
numbers 1 through 6 on their six faces. Instead, here's what the dice look like (what I'm
going to do is list the six numbers on the faces, in increasing order):

e DiceA:0,0,4,4,4,4

» DiceB:3,3,3,3,3,3

e DiceC:2,2,2,2,6,6

o DiceD:1,1,1,5,5,5
[ play the following game with you: you choose one of the dice, then I choose another.
Having made our choices, we both roll our respective dice. You win the game if you roll a
higher number than me (notice that ties are impossible).
Which dice do you choose, in order to maximize your probability of winning this game, and
what is your probability to win with that choice?
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Thermo B2

The Otto cycle, used in modern internal combustion engines, consists of [\

two adiabatic processes and two constant-volume processes. Given that \
the volume of the fuel-air mixture at points 1 and 4 is Vi and the volume of \ e
the mixture at points 2 and 3 is V3, find the efficiency of the Otto cycle (i.e. e

net work done over the heat gained per cycle). Pl
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Thermo B3

For the internal energy U(V, T) compute (dU/dV), through observable quantities only:
pressure P, temperature T, volume V, isothermal compressibility x, and thermal expansion
coefficient a (refer to the formula sheet for the deflmtlons of k¥ and «a).
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Solution Thermo B4
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Mech Al

Uy =Uj o =1k =1(100 N/m)(0.200 m)* =2.00 J

U, =U, ¢ =0, since after the block leaves the spring has given up all 1ts stored energy

Wother =W =(fycos@)s = tymg(cosd)s = - mgs, since ¢=180° (The friction force is directed
opposite to the displacement and does negative work.)

Putting all this into K, +U, + W, =K, +U, gives
Upg +W,=0

pymgs =U g

Ul o 2.00]

mgs (0.50 kg)(9.80 m/s*)(1.00 m)

Iy = =0.41.



A2 A ball of mass 1 kg is falling vertically down. Assuming the quadratic air resistance,

F'= cv? (v is the ball’s speed) with ¢ = 0.01 kg/m,
(a) find the terminal speed;

(b) Assuming that the ball is moving with the terminal speed, find the energy dissipated
per second.

A3 A spherical shell filled with a fluid of mass M has the inner radius R, and the outer
radius R,. A particle of mass m is placed at the distance 7 from the center. Find the force

on the particle at (a) 7 < Ry, (b) By <7 < Ryand (c) r > Ry. Qe Shetch F(’“)
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Mech A4

Solution. If long after the collision both masses move in the same direction, it means mi > mj;.
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Bl
The point of support of a simple pendulum of length b moves on a massless rim of radius a
rotating with constant angular velocity o.
(@) Obtain the expression for the Cartesian components of the velocity of the mass m.
(b) The Lagrangian
(c) The equation of motion for 6 (obtain the angular acceleration for the angle 6 shown
in Fig.).

The point of support of a simple pendulum of length b moves on a massless
rim of radius a rotating with constant angular velocity w. Obtain the expres-
sion for the Cartesian components of the velocity and acceleration of the mass
m. Obtain also the angular acceleration for the angle @ shown in Figure

We choose the origin of our coordinate system where U =0aty = 0.

to be at the center of the rotating rim. Ly

The Cartesian components of mass m become
x=acoswr+ bsin @
v=asin ot —bcos @

The velocities are
%= —awsin wt + bbcos 6
¥ = awcos wr + b@sin 6
the acceleration:
%= —aw® cos wr + b(Hcos 8 — 6% sin 6)
§= —aw®sin wt + b(dsin § + & cos 6)

the single generalized coordinate is 6.

T=m@* + %)

L=T-U="2{u" + b0 + 2bawsin (6 — wr)]
U =mgy 2 '

—mg(a sin wt — b cos 6)



L=T-U= g[azw + %9 + 2b8aw sin (8 — wr)] —mg(a sin wr — b cos 6)

the Lagrange equation of motion for 6 are
daL

- b8+ g — =
e mb*6 + mbaw(6 — w)cos(f — wr)

L 4 .
-&3 = mblaw cos(f — wt) — mgh sin 8

the equation of motion 6= wa cos (8 — wr) — i—sin [’}
b

Notice that this result reduces to the well-known equation of motion for a simple

pendulum if w = 0.

B2

Find the force law for a central-force field that allows a particle to move in a logarithmic spiral
orbit given by r = ke®’, where k and o are constants.

Note: the equation of the orbit

d*u m 1
&t el )
1

u==, L=mr’ =const

Find the force law for a central-force field that allows a particle to move in a
logarithmic spiral orbit given by r = ke®, where k and a are constants.

Solution:
determine

We use Equation 8,21 to determine the force law F(r). First, we

a1\ _d () —aer?
de\r de\ k k
d_z(l)zn_’i‘:aj

462\ r k r

From Equation 8.21, we now determine F(r).

—2 2
Fn = _Iz(a__'.l)
ur

& r

2
F(r)= i,(a’ +1) 8.22)
ur
Thus, the force law is an attractive inverse cube.
Determine r(t) and 8(f)
Solution: From Equation 8.10, we find
! !
8= —=—333 (8.23
P )

Rearranging Equation 8.23 gives
!
ef g = —dt

and integrating gives

2a8
e It
=—+C'
2a uk?
where C' is an integration constant. Multiplying by 2« and letting C = 2aC" gives
2ot
2= :;% +C (8.24)

We solve for &) by taking the natural logarithm of Equation 8.24:

1 2ait
=—In|l—+C 8.25
&) 2a? (u‘-‘z ) (8.25)
We can similarly solve for r(r) by examining Equations 8.23 and 8.24:
2
2alt
Deem=2,c
172
) = [Ex + :ﬁc} (8.26)
m

The integration constant C and angular momentum / needed for Equations 8.25 and
8.26 are determined from the initial conditions.

What is the total energy of the orbit

Solution: The energy is found from Equation 8.14. In particular, we need i and
ulr).

+2 -
U{r)=—IFdr:7(a*+ !)Jr dr

Ple?+ 1) 1 327
e T
where we have let U(=) = 0. )
We rewrite Equation 8.10 to determine 7
_do_dedr_ L
Tar drdt wi’
N o TR (8.28)
df ur preour
Substituting Equations 8.27 and 8.28 into Equation 8.14 gives
A S A A G
=—pyl—] +t——-—7—5
2 2“ ur 2ur 2ur
E=0 (8.29)

The total energy of the orbit is zero if U (r = =) = 0.



Mech B3 Solution

Gravitational force on the first satellite:

F =AM

1 RZ

with M, = mass of Earth

MM
G 11{ E_T=MQ’R where T = tension in rope

2

For the second satellite:

—(]I\fi]\f;z +T=M,Q*(R+L)
GM—TleQZR o o [MM: g

R? M,R R?

M
GMZ—EZ+T:M2Q2(R+L) = O'= ! GMZME2+T
(R+1L) M,(R+L){ (R+L)
Hence,

MM 3 _p3

_ My (REL) R, G

M, R+M,(R+L){ R°(R+L)

In the limit L << R, and using g =GM, /R*:

Tz3M L g
M, +M, R



Mech B4 - Solution.

There will be two contributions to the scale reading. The part that is already on the scale will

give Mgx/L. The second part corresponds to the change of momentum of links:

dt dt L
here v* =2g(x+L)

ap vd—m=UZM=2g(x+L)%

The total force: Migx + 28(x Z LM = 3Mg% +2¢M
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