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 A4    A large number of non-interacting particles is in equilibrium with a thermal bath of 
temperature 300 K. The particles have only three energy levels: 1 20 meVE = ,  2 30 meVE = , and 

3 40 meVE = . Calculate the average energy of a particle. 
 

B
23 19
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1 B 2 B 3 B

exp( ) exp( / )
1.381 10 * 300 / 1.602 10 25.8614 meV 

exp( / ) exp( / ) exp( / )
exp( 10 / 25.8614) exp( 20 / 25.8614) exp( 50 / 25.8614)
0.679311 0.461463 0.144658 1.28543
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= × × =
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1 1 B
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3 3 B

1 1 2 2 3 3

exp( / ) / 0.528469
exp( / ) / 0.358995
exp( / ) / 0.112537

18.0914 meV

p E k T Z
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= − =
= − =
= − =

〈 〉 = + + =
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 A3    A wavefunction in one dimension is given by 

 for 3
( )

  0 elsewhere
C a x a

xψ
 − − < <

= 


   

where C  and a  are positive constants. Calculate the expectation value of the parity operator. 

 

Answer: 

 for 3
( )

  0 elsewhere
C a x a

xψ
 − − < <

= 


 

Normalize 

3 2 2 1( ) 1 4 1
4

a

a
C dx aC C

a−
− = ⇒ = ⇒ =∫   

2

 to 3 3  to 

1 1ˆ ˆ( ) ( )       2
4 2

a

a
a a a a

P x P x dx C C dx C dx a
a

ψ ψ
∞ ∞

−∞ −∞ −
− −

〈 〉 = = − − = = =∫ ∫ ∫  

 

QM A4 
 A4   The spherical harmonics are orthonormal; we have 

 , ,( , ) ( , )m m mmY Y dθ φ θ φ δ δ∗
′ ′ ′ ′Ω =∫      

where dΩ  is an infinitesimal amount of solid angle, and the integral is taken over all solid 
angle. Use this expression to demonstrate that 1,0Y   and 1,1Y  are orthogonal.  
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2

1,0 1,1
0 0

2 2
2

0 0 0 0

0

3 3( , ) ( , ) cos sin sin
4 8

3 3 cos sin sin sin cos 0
4 8
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π π π π
φ φ

θ φ θ φ

θ φ θ φ θ θ θ θ φ
π π

θ θ θ θ φ θ θ θ φ
π π

= =

= = = =

=

  
Ω = − =    

  
  

= − = =    
  

∫ ∫ ∫

∫ ∫ ∫ ∫
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 B2   NOTE: In this problem, we encounter infinitely large matrices, We will write these by only specifying the 4 by 4 block in 

the upper left corner, as in 

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

 
 
 
 
 
 
 
 



 

. For instance, the identity operator is written as 

1 0 0 0
0 1 0 0

ˆ 0 0 1 0
0 0 0 1

I

 
 
 
 =
 
 
 
 



 

.  

 

The stationary states of the harmonic oscillator are defined by 1
2

ˆ ( )H n n nω| 〉 = + | 〉 .  

The annihilation operator â  of the harmonic oscillator is defined by ˆ ˆ ˆ
2

ia x p
m

β
ω

 
= + 

 
 (with 

2 /mβ ω=  ). The operation of the annihilation operator is ˆ 1a n n n| 〉 = | − 〉 . Thus, in the n| 〉  

basis, the annihilation operator’s matrix is  

0 1 0 0

0 0 2 0
ˆ 0 0 0 3

0 0 0 0

a

 
 
 
 =  
 
 
 
 



 

 

 
a. Explain why † Tˆ ˆa a= , where T means matrix transposition. 
b. Find the matrix for †â .  
c. Find the matrix for x̂ .  
d. Find the matrix for p̂ . 
e. Find the matrix for ˆ ˆxp . 
f. Explain why Tˆ ˆ ˆ ˆ[( ) ]*px xp= , where T means matrix transposition.  
g. Find the matrix for ˆ ˆpx . 
h. Find the matrix for ˆ ˆ[ , ]x p  and comment on your answer. 

 
 
 
 

Part a. 
In matrix algebra, taking the Hermitian conjugate equals transposition of the matrix followed 
by taking its complex conjugate (or the other way around). 
Because â  is real-valued, transposition alone gives its Hermitian conjugate: † Tˆ ˆa a=    
 
 
 
 
 



Part b. 

†

0 0 0 00 1 0 0
1 0 0 00 0 2 0

ˆ 0 2 0 00 0 0 3
0 0 0 0 0 0 3 0

T

a

   
   
   
   = =   
   
   
   
   



   

 

 
Part c. and Part d. 
 
We have  

ˆ ˆ ˆ
2

ia x p
m

β
ω

 
= + 

 
  and  †ˆ ˆ ˆ

2
ia x p

m
β

ω
 

= − 
 

  so 

so 

( )

( )

†

†

1ˆ ˆ ˆ
2

1ˆ ˆ ˆ
2

x a a

mp a a
i

β
ω
β

= +

= −
 

and so 
 

0 1 0 0 0 1 0 0

1 0 2 0 1 0 2 0
1 1ˆ ˆ ;        0 2 0 3 0 2 0 3

2 2
0 0 3 0 0 0 3 0

mx p
i
ω

β β

   
   
   −
   = = −   
   
   
   
   

 

   

 

Part e. 

2

0 1 0 0 0 1 0 0 1 0 2 0

1 0 2 0 1 0 2 0 0 1 0 6
1 1 1ˆ ˆ 0 2 0 3 0 2 0 3 2 0 1 022 2

0 0 3 0 0 0 3 0 0 6 0 1

m mxp
i i
ω ω

ββ β

     −
     
     − −
     

= =− − −     
     

− − −     
     
     

  



     

 

 

Part f. 

The definition of Hermitian conjugate is † T * † † † Tˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ,  so  ( ) [( ) ]*M M px p x xp xp= = = =  

Thus, to find px, we may transpose xp which we calculated in the previous part, and then take 
its complex conjugate. 



 

Part g. 

T
2 2

1 0 2 0 1 0 2 0

0 1 0 6 0 1 0 6
1 1ˆ ˆ ˆ ˆ(( ) )*     2 0 1 0 2 0 1 02 2

0 6 0 1 0 6 0 1

*

m mpx xp
i i

ω ω
β β

    − − − −    
    − − − −
    

= = = − −   −    
− −    

    
    

 

   

 

Part h. 

 

2 2 2

1 0 2 0 1 0 2 0 2 0 0 0
0 1 0 6 0 1 0 6 0 2 0 0

1 1 1ˆ ˆ ˆ ˆ 0 0 2 02 0 1 0 2 0 1 02 2 2
0 0 0 20 6 0 1 0 6 0 1

m m mxp px
i i i

ω ω ω
β β β

   − − −  −        − − − −           − = − = −     − − −     −         − − − −             

  

    

 

 

2 1
2 2

1 1 1Since  / ,   we have  
2 22

m mm i
i i m i

ω ωβ ω
ωβ

= = = = −
 

  , and 1
2

ˆ ˆˆ ˆ ˆ ˆ ( 2 )xp px i I i I− = − − =   

 

So we find ˆˆ ˆ[ , ]x p i I=  , which is a general property about the position and momentum operators 
in any context, including, here, the harmonic oscillator.  
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 B4   Consider a two-state quantum system. In the orthonormal and complete set of basis kets 
1| 〉 and 2| 〉 , the Hamiltonian operator for the system is represented by ( 0ω > ):  

 

ˆ 10 1 1 3 1 2 3 2 1 2 2 2H ω ω ω ω= | 〉〈 | − | 〉〈 | − | 〉〈 | + | 〉〈 |    . 
 

Let us consider another orthonormal and complete basis, α| 〉  and β| 〉 , such that 1Ĥ Eα α| 〉 = | 〉  

and 2Ĥ Eβ β| 〉 = | 〉  (with 1 2E E< ). Let the action of some operator Â  on the basis kets α| 〉  and 
β| 〉  be given by 

 

ˆ ˆ2    and   2 3  ,A ia A ia aα β β α β| 〉 = | 〉 | 〉 = − | 〉 − | 〉   
 

where a  is real and 0a > . 
 

a. Show that Â  is Hermitian, and find its eigenvalues. 
 

Answer the next two independent parts based on the information given above: 
 
PART I - Suppose an Â -measurement is carried out at time 0t =  on an arbitrary state, and the 
largest possible value is obtained. 
   

b. Calculate the probability ( )P t  that another measurement made at some later time t  will 
yield the same value as the one measured at 0t = . 

c. Calculate the time dependence of the expectation value Â〈 〉 . Plot ˆ ( )A t〈 〉 as a function of 
time. What is the minimum value of Â〈 〉 ? At what time is it first achieved? 

   

PART II - Suppose that the average value obtained from a large number of Â -measurements 
on identical quantum states at a given time is / 4a− .  
 

d. Construct the most general normalized ket (just before the Â -measurement) for the 
system consistent with this information. Express your answer as C Dα β| 〉 + | 〉 .   

 
   

 

 

 

 

 

 

 

 



Related to QM B4 -- full solutions elsewhere 
 

2 2

2 2

1

10 3ˆ 10 1 1 3 1 2 3 2 1 2 2 2
3 2

10 3
0 (10 )(2 ) 9 0 10(2 ) (2 ) 9 0

3 2
20 10 2 9 0 12 11 0

4 ( 12) 4 1 11 144 44 100

12 10 6 5 1 or 11
2 2

H

D b ac

b D
a

E

ω ω ω ω ω

λ
λ λ λ λ λ

λ

λ λ λ λ λ

λ

 −
= | 〉〈 | − | 〉〈 | − | 〉〈 | + | 〉〈 | =  − 
− −

= ⇒ − − − = ⇒ − − − − = ⇒
− −

− + − − = ⇒ − + =

= − = − − ⋅ ⋅ = − =

− ± ±
= = = ± =

=

    



2 11E
ω
ω= 

. 

 

ˆ ˆ2    and   2 3  ,A ia A ia aα β β α β| 〉 = | 〉 | 〉 = − | 〉 − | 〉  so 

ˆ ˆ
ˆ

ˆ ˆ

ˆ ˆFrom 2    and   2 3  we find
ˆ 2 0
ˆ 2 3 2
ˆ 2 2    
ˆ 2 3

A A
A

A A

A ia A ia a
A ia
A ia a ia
A ia ia
A ia a

α α α β

β α β β

α β β α β

α α α β

α β α α α β

β α β β

β β β α β

 〈 | | 〉 〈 | | 〉
=   〈 | | 〉 〈 | | 〉 

| 〉 = | 〉 | 〉 = − | 〉 − | 〉

〈 | | 〉 = 〈 | | 〉 =

〈 | | 〉 = 〈 | − | 〉 − 〈 | | 〉 = −

〈 | | 〉 = 〈 | | 〉 =

〈 | | 〉 = −〈 | | 〉 − 〈 | | 3aβ〉 = −

  

We find 
0 2ˆ

2 3
ia

A
ia a

 −
=  − 

. We note that, for this matrix, † Tˆ ˆ ˆ( )*A A A= = , so Â  is Hermitian.  

Eigenvalues:  

2 2 2

2 2

2 2 2 2

0 2
0 ( 3 ) 4 3 4

2 3
3 4

4 9 4 * 1* ( 4 ) 25

3 3 5   or  4
2 2

ia
a a a a

ia a
a a

D B AC a a a

a D a a a a

λ
λ λ λ λ

λ

λ λ

λ

− −
= = − − − − = + −

− −

+ −

= − = − − =

− ± − ±
= = = −
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