
Preliminary Test, May 2021 
QM problems 

 

 
PROBLEM 1 (A1) 
 

Photoelectric experiments are done with the target ma-
terials  and  with work functions 1φ  and 2φ , respec-
tively. For each material, the stopping potential 0V  is 
plotted as a function of the frequency f  of the light 
used. The two straight lines in the adjacent graph show 
the result.  
 

a. Explain in a few sentences what “stopping poten-
tial” means. 

b. What is the slope of the straight lines? 
c. Which material has the higher work function,  or ? 

 

The work function of material  is 1 4.30 eVφ = .  
 

d. What is the largest wavelength light can have to cause photoemission from material  ?  
 
 
ANSWERS 
 

a. Stopping potential is the smallest potential difference between the sample and the anode 
for which no electrons reach the anode. 

b. We have 0hf K eVφ φ= + = + , so 0
hV f
e e

φ
= − , and the slope is 

h
e

. 

c. The lines intersect the abscissa when 0 0hV f hf
e e

φ φ= − = ⇒ = . This shows that 

2 1φ φ>   
 

d. For this largest wavelength, 0K = , so  

min max
max

1240 eV nm 288 nm
4.30 eV

hc hchf φ λ
λ φ

⋅
= = ⇒ = = = .   
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PROBLEM A2 
 

In this one-dimensional problem, we consider a 
stationary state of an electron with energy E  in 
a finite well of depth 0.V  The adjacent diagram 
shows both the potential ( )V x  and the elec-
tron’s wave function ( )ψ x  as a function of posi-
tion .x  The electron is in a bound state, meaning 

0.<E V  We will focus on the part of the wave 
function in the classically forbidden region 0.>x   
 

a. Why is this region called “classically forbidden”? 
b. Show that the wave function ( ) κψ −= xx Ae  (with 0κ >  and A  some constant) satisfies 

the time-independent Schrödinger equation in this region, and derive an expression for 
κ . 

c. The wave function ( ) κψ += xx Be  also satisfies the Schrödinger equation in this region, 
but must be rejected. Why? 

 

At 0=x , we have (0)ψ .  At a certain position 0 0>x , the value of the wave function has dropped 
to (0)αψ , with 1α < . 

  

d. Find a relationship between κ , 0x , and α . 
e. Use your answer of part d. and the expression you found for κ  in part b. to find an ex-

pression for 0V . 
f. If 2.27 eV=E , 0 1.1 Å=x , and 0.13α = , find the depth of the well in eV.         

 
 
ANSWERS 
 

a. Classically, the total mechanical energy of a particle is E K U= + . The particle can only 
be in locations where it has kinetic energy greater than zero, i.e. U E< . For 0x > , we 
have U E> , so, classically, the particle cannot dwell here; the region is “forbidden” to 
the particle. 

b. TISE: 
2 def.

20
0 2

2 ( )
  

2
m V E

V E
m
ψ ψ ψ ψ ψ κ ψ

−
′′ ′′− + = ⇒ = =




, with 0

2

2 ( )m V E
κ

−
=


. 

The wave function xAe κ−  solves this differential equation. 
c. The mathematically valid solution xBe κ+  must be rejected because the wavefunction 

would not be normalizable. (The normalization integral would diverge.) 
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d. A 0xe Aκ α− = 0e 0
0

ln( )ln( )x
x
ακ α κ −

⇒ − = ⇒ =   

e.  
2 22

0 0
02 2

0 0 0

2 ( ) 2 ( )ln( ) ln( ) ln( )
2

m V E m V E
V E

x x m x
α α ακ

   − −−
= = ⇒ = ⇒ = +   

   



 
 

f. With m the electron mass, we calculate 
22

18

0

ln( ) 2.10 10  J 13.11 eV
2m x

α − 
= × = 

 


. We 

conclude that 0 2.27 13.11 15.4 eVV = + = .       
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PROBLEM A3 
. In this one-dimensional problem, a particle of mass m is inside a potential well given by 

0( ) cosh( )=U x U bx  
When the particle is not far from the equilibrium position at 0,=x  the potential ( )U x  may be 
approximated by a parabolic potential.  

a. Calculate the parabolic potential as a function of x .  
 

Close to the equilibrium distance, we may consider the system as a harmonic oscillator.  
b. Find the spring constant of this harmonic oscillator. 

 

We have 0 10.0 eV=U ,  9 12.00 10  m−= ×b  , and 319.11 10  kg−= ×m . 
c. Calculate ω  in joules and in eV. 

 
d. The system makes a transition from the state with n = 3 to the state with n = 1, emitting 

a single photon. Calculate the wavelength of this photon in nanometers.  
 
 
 

 
ANSWERS 
 

a. We have + + + + ≈ += 
2 4 6

21
21 1

2 2
cosh( )

4 720
x x x x x . Hence, ≈ + 2 21

0 020 cosh( ) U Ux bb xU . 

b. The quadratic term is 
def.

22 21 1
202 U b x kx= , so 2

0k U b=  

c. 
2

190 2.80 10  J 1.75 eV
U bk

m m
ω −= = = × =    

d. The transition energy is 3 1 (3 1) 2 3.49 eVE E ω ω− = − = =  . Hence, 
1240 355 nm
3.49

λ = = .    

 
 
  
 
PROBLEM A4 
 

We consider a spin- 7
2  particle (i.e. it has s = 7

2 ). 

a. What is the magnitude of its spin vector

S ? 

 

b. Can the spin vector of this particle be perpendicular to the z-axis? 
 

c. Calculate the smallest angle the spin vector can make with the positive z-axis.  



Preliminary Test, May 2021 
QM problems 

 

 
ANSWERS 

a. 349 37
2 2 2( 1) 7 4.19 10  J ss s −= + = ⋅ = = × ⋅S


    

b. No. This would mean 0z sS m= = . However, 5 3 3 57 1 1 7
2 2 2 2 2 2 2 2{ , , , , , , , }sm ∈ − − − − + + + +  , 

so sm  (and, hence, zS ) cannot be zero. 

c. 
7

max max 2 1
min min33

2

( ) ( )
cos 7 0.882 28.1

( 1) 7
z sS m

s s
θ θ= = = = = ⇒ = °

+S



 

        

 
 
PROBLEM B1 
 

The operators L and M are Hermitian (self-adjoint). Operators A and B are not. 
 

a. Is ˆexp( )L  Hermitian? 
 

b. Is ˆ ˆ[ , ]L M  Hermitian? 
 

c. Is † †ˆ ˆ ˆ ˆ[ , ] [ , ]A B A B+  Hermitian?  
 

ANSWERS 

a. Yes: ( )
† †

† †ˆ ˆ 1 1ˆ ˆ ˆ ˆexp( ) ( ) exp( )
! ! ! !

n n
n n

n n n n
L LL L L L
n n n n

   
= Σ = Σ = Σ = Σ =   
   
   

 

b. No: ( )†† † † † † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] ( ) ( ) [ , ]L M LM ML LM ML M L L M ML LM L M= − = − = − = − ≠  

c. No: 

( ) ( ) ( )† † †† † † † † † † † † †

† † † † † † † † † †† †† † †† † † ††

† † † † † † † †

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] [ , ] [ , ]

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] [ , ] [ , ]

A B A B A B A B A B BA AB B A

A B BA AB B A B A A B B A A B

B A AB BA A B B A B A A B A B

+ = + = − + − =

= − + − = − + − =

= − + − = + ≠ +
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Problem B2. 
 
Answers: 
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1 

 

A1. A metal hollow sphere of radius R is kept under a constant potential 0 . Using the Gauss’s 

law, find the electric field E and the electrostatic potential   inside and outside the sphere and 

determine the surface charge density  . 

 

Solution: 

 

1. Assume that the sphere has surface change . According to the Gauss’s law, we have for the 

electric field outside the sphere 

2

0

4

S

R
d

 


 = E a . 

Using for the surface S the sphere of radius r > R and using symmetry of the problem, we find 

2

2
0

ˆ
R

r




=E r . 

Hence the electrostatic potential outside the sphere is   

2 2

2
0 0

1
r r

R R
d dr

rr

 

 
− −

 = −  = − = E r . 

The surface change density can be found from the given potential on the sphere which leads to  

0 0

R





= . 

Therefore, outside the sphere the electric field is  

0

2
ˆ( )

R
r

r


=E r , 

and the potential is  

0R

r


 = . 

Inside the sphere r < R Gauss’s law theorem says that the electric field is zero and consequently 

the electrostatic potential is constant 

0( )r = . 
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A2: A spherical conducting shell of radius b is concentric with and 

encloses a conducting ball of radius a. The ball is grounded, and the 

shell has charge Q. Argue that the presence of the charge Q on the shell 

will draw up a charge onto the ball from ground. Find the magnitude of 

this charge. 

 

 

Solution 

   

A charge will be induced on the ball to maintain a zero potential. In the absence of this charge 

the potential would be non-zero, equal to Q/b due to the charge Q on the shell. Drawing up a 

charge Q' onto the ball from ground establishes zero potential on the ball. The condition of zero 

potential on the ball determines the magnitude of the charge Q': 

 0
Q Q

b a


+ = ,  (1) 

from which we obtain 

 
a

Q Q
b

 = − .  (2) 
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A3.  A strip of width b carries a uniform surface current ˆK=K z . Find 

the magnetic field B at a point in the plane of the strip that lies at 

perpendicular distance a from the strip in the ŷ-direction.  

 

 

 

Solution:  

The problem amounts to superposing the fields from a collection of long straight wires. An 

infinitely long filament of width dy at position y carries current dI Kdy= . This filament gives a 

contribution to the magnetic field at the point of consideration  

 0 ˆ
4 ( )

Kdy
d

a b y




= −

+ −
B x .  (1) 

The total field is obtained by integration of Eq. (1) over the strip width:  

  

 0 0

0

ˆ ˆln
4 ( ) 4

b
dy a b

K K
a b y a

 

 

+ 
= − = −  

+ −  
B x x   (2) 
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B1. Two infinite parallel wires are oriented along the y-direction and 

placed at a distance d apart. One wire carries a current I, and the other 

carries current I/4 in the opposite direction. Between these two wires 

there is a particle with position constrained to be in the plane formed by 

the two wires (the x-y plane). This particle has magnetic moment, m, 

that is fixed in magnitude and direction along +z, i.e. ˆm=m z . Find the 

equilibrium position, x, between the two wires (0 < x < d) of the particle 

that minimizes the interaction energy of this magnetic moment with the 

fields generated by the current of the wires. 

 

 

 

 

 

 

Solution: 

From the Ampere’s law, the magnetic field generated in the x-y plane by the wire at x = 0 is  

 0
1

ˆ
2

I

x




= −B z . (1) 

The magnetic field generated by the wire at x = d is   

 
( )

0
2

ˆ
8

I

x d




=

−
B z . (2) 

The total field is the sum of these two: 

 
( )

0 0ˆ ˆ
2 8

I I

x x d

 

 
= − +

−
B z z . (3) 

The interaction energy of the magnetic moment m with the field is given by 

 
( )

0 0

2 8

m I m I
U

x x d

 

 
= −  = −

−
m B . (4) 

We must minimize this with respect to x. Taking the first derivative, we find: 

 
( )

( )

( )

2 2

0 00 0

2 22 2

4
0

2 8 8

m I x d m Ixm I m IU

x x x d x x d

  

  

− −
= = − + = −
 − −

. (5) 

Setting the numerator equal to zero and solving for x, we obtain 

 ( )
2 2 2

4 0 ,2
3

x d x x d d− − =  = . (6) 

x

 ˆm=m z

I/4

x = 0

I

x = d

y
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Only one of these, x = 2d/3, lies between the wires, i.e. from 0 < x < d, and this is the minimum. 

To make sure it is a minimum we can check the second derivative of U: 

 
( )

( )

( )

3 32
0 00 0 0

3 32 3 33

44

4 84 4

m I x d m IxmI m I m IU

x x dx d x x d

   

  

− −
= − = = −

 − −
, (7) 

which is negative, ensuring the point is indeed a minimum. 

 

Correction: the second derivative is actually positive, coef= +81/8 in front (sorry, could not 

correct in the equation-IF), which is the requirement for the minimum. It can be also easily seen 

by sketching function (4) which is positively defined and approaches +\infty when x approaches 

0 from the right and d from the left.  

 

2. This is the unstable equilibrium if we allow the dipole to change orientation, since the dipole 

is originally oriented in such direction that interaction energy  ̶mˑB is positive (m is antiparallel 

to B). The stable equilibrium would correspond to m parallel to B. 
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B2. A polarized matter with a radial distribution of polarization, i.e. ˆP=P r

, where P is constant, has a spherical hole of radius R at the origin.  Find the 

polarization charge density and the electric field everywhere. 

 

Solution: 

 

There are two contributions to the polarization charge density: surface and volume.  The 

polarization charge on the surface of the spherical hole is equal to  

 ˆ
P P =  = −  = −P n P r  . (1) 

The volume polarization charge at r R  is given by 

 
2

ˆ1 3 2
ˆ

P

P
P P P P

r r r r r r


      
= −  = −   = −   = − +  = − −  = −     

     

r r r
P r r r .  (2) 

According to the Gauss’s law, P  and P  produce purely radial electric fields outside the hole. 

The contribution to the electric field at r R  from the volume charge density is given by 

  
2

0

( )
ˆ( )

4

Q r

r



=E r r ,  (3) 

where ( )Q r  is the volume polarization charge inside the sphere of radius r, i.e. 

 ( )2 2 2 22
( ) ( )4 4 ( ) 4

r r

P P

R R

P
Q r r r dr r r dr P R r

r
    = = − = −  .  (4) 

The contribution to the electric field at r R  from the surface charge density is  

 
2 2

2 2

0 0

4
ˆ ˆ( )

4

PR PR

r r




 

−
= = −E r r r .  (5) 

Summing up the two contributions, we find for the total electric field: 

 0

ˆ
( ) ( ) ( )

0

P
r R

r R

 



− 

= + = 
 

r
E r E r E r . (6) 
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