PROBLEM 1 (A1)

Photoelectric experiments are done with the target materials (1) and (2) with work functions ϕ_{1} and ϕ_{2}, respectively. For each material, the stopping potential V_{0} is plotted as a function of the frequency f of the light used. The two straight lines in the adjacent graph show the result.

a. Explain in a few sentences what "stopping potential" means.
b. What is the slope of the straight lines?
c. Which material has the higher work function, (1) or (2) ?

The work function of material (1) is $\phi_{1}=4.30 \mathrm{eV}$.
d. What is the largest wavelength light can have to cause photoemission from material © ?

ANSWERS

a. Stopping potential is the smallest potential difference between the sample and the anode for which no electrons reach the anode.
b. We have $h f=\phi+K=\phi+e V_{0}$, so $V_{0}=\frac{h}{e} f-\frac{\phi}{e}$, and the slope is $\frac{h}{e}$.
c. The lines intersect the abscissa when $V_{0}=\frac{h}{e} f-\frac{\phi}{e}=0 \Rightarrow \phi=h f$. This shows that $\phi_{2}>\phi_{1}$
d. For this largest wavelength, $K=0$, so

$$
h f_{\min }=\phi=\frac{h c}{\lambda_{\max }} \Rightarrow \lambda_{\max }=\frac{h c}{\phi}=\frac{1240 \mathrm{eV} \cdot \mathrm{~nm}}{4.30 \mathrm{eV}}=288 \mathrm{~nm}
$$

PROBLEM A2

In this one-dimensional problem, we consider a stationary state of an electron with energy E in a finite well of depth V_{0}. The adjacent diagram shows both the potential $V(x)$ and the electron's wave function $\psi(x)$ as a function of position x. The electron is in a bound state, meaning $E<V_{0}$. We will focus on the part of the wave function in the classically forbidden region $x>0$.

a. Why is this region called "classically forbidden"?
b. Show that the wave function $\psi(x)=A e^{-\kappa x}$ (with $\kappa>0$ and A some constant) satisfies the time-independent Schrödinger equation in this region, and derive an expression for κ.
c. The wave function $\psi(x)=B e^{+\kappa x}$ also satisfies the Schrödinger equation in this region, but must be rejected. Why?

At $x=0$, we have $\psi(0)$. At a certain position $x_{0}>0$, the value of the wave function has dropped to $\alpha \psi(0)$, with $\alpha<1$.
d. Find a relationship between κ, x_{0}, and α.
e. Use your answer of part d. and the expression you found for κ in part b. to find an expression for V_{0}.
f. If $E=2.27 \mathrm{eV}, x_{0}=1.1 \AA$, and $\alpha=0.13$, find the depth of the well in eV .

ANSWERS

a. Classically, the total mechanical energy of a particle is $E=K+U$. The particle can only be in locations where it has kinetic energy greater than zero, i.e. $U<E$. For $x>0$, we have $U>E$, so, classically, the particle cannot dwell here; the region is "forbidden" to the particle.
b. TISE: $-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}+V_{0} \psi=E \psi \Rightarrow \psi^{\prime \prime}=\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}} \psi \stackrel{\text { def. }}{=} \kappa^{2} \psi$, with $\kappa=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}}$. The wave function $A e^{-\kappa x}$ solves this differential equation.
c. The mathematically valid solution $B e^{+\kappa x}$ must be rejected because the wavefunction would not be normalizable. (The normalization integral would diverge.)
d. $A e^{-\kappa x_{0}}=\alpha A e^{\phi} \Rightarrow-\kappa x_{0}=\ln (\alpha) \Rightarrow \kappa=\frac{-\ln (\alpha)}{x_{0}}$
e. $\kappa=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}}=\frac{-\ln (\alpha)}{x_{0}} \Rightarrow \frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}=\left(\frac{\ln (\alpha)}{x_{0}}\right)^{2} \Rightarrow V_{0}=E+\frac{\hbar^{2}}{2 m}\left(\frac{\ln (\alpha)}{x_{0}}\right)^{2}$
f. With m the electron mass, we calculate $\frac{\hbar^{2}}{2 m}\left(\frac{\ln (\alpha)}{x_{0}}\right)^{2}=2.10 \times 10^{-18} \mathrm{~J}=13.11 \mathrm{eV}$. We conclude that $V_{0}=2.27+13.11=15.4 \mathrm{eV}$.

PROBLEM A3

. In this one-dimensional problem, a particle of mass m is inside a potential well given by

$$
U(x)=U_{0} \cosh (b x)
$$

When the particle is not far from the equilibrium position at $x=0$, the potential $U(x)$ may be approximated by a parabolic potential.
a. Calculate the parabolic potential as a function of x.

Close to the equilibrium distance, we may consider the system as a harmonic oscillator.
b. Find the spring constant of this harmonic oscillator.

We have $U_{0}=10.0 \mathrm{eV}, \quad b=2.00 \times 10^{9} \mathrm{~m}^{-1}$, and $m=9.11 \times 10^{-31} \mathrm{~kg}$.
c. Calculate $\hbar \omega$ in joules and in eV .
d. The system makes a transition from the state with $n=3$ to the state with $n=1$, emitting a single photon. Calculate the wavelength of this photon in nanometers.

ANSWERS

a. We have $\cosh (x)=1+\frac{x^{2}}{2}+\frac{x^{4}}{24}+\frac{x^{6}}{720}+\ldots \approx 1+\frac{1}{2} x^{2}$. Hence, $U_{0} \cosh (b x) \approx U_{0}+\frac{1}{2} U_{0} b^{2} x^{2}$.
b. The quadratic term is $\frac{1}{2} U_{0} b^{2} x^{2} \stackrel{\text { def. }}{=} \frac{1}{2} k x^{2}$, so $k=U_{0} b^{2}$
c. $\hbar \omega=\hbar \sqrt{\frac{k}{m}}=\hbar \sqrt{\frac{U_{0} b^{2}}{m}}=2.80 \times 10^{-19} \mathrm{~J}=1.75 \mathrm{eV}$
d. The transition energy is $E_{3}-E_{1}=(3-1) \hbar \omega=2 \hbar \omega=3.49 \mathrm{eV}$. Hence, $\lambda=\frac{1240}{3.49}=355 \mathrm{~nm}$.

PROBLEM A4

We consider a spin- $\frac{7}{2}$ particle (i.e. it has $s=\frac{7}{2}$).
a. What is the magnitude of its spin vector $\overrightarrow{\boldsymbol{S}}$?
b. Can the spin vector of this particle be perpendicular to the z-axis?
c. Calculate the smallest angle the spin vector can make with the positive z-axis.

ANSWERS

a. $|\overrightarrow{\mathbf{S}}|=\sqrt{s(s+1)} \hbar=\sqrt{\frac{7}{2} \cdot \frac{9}{2}} \hbar=\frac{3}{2} \sqrt{7} \hbar=4.19 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
b. No. This would mean $S_{z}=m_{s} \hbar=0$. However, $m_{s} \in\left\{-\frac{7}{2},-\frac{5}{2},-\frac{3}{2},-\frac{1}{2},+\frac{1}{2},+\frac{3}{2},+\frac{5}{2},+\frac{7}{2}\right\}$, so m_{s} (and, hence, S_{z}) cannot be zero.
c. $\cos \theta_{\text {min }}=\frac{\left(S_{z}\right)_{\text {max }}}{|\overrightarrow{\mathbf{S}}|}=\frac{\left(m_{s}\right)_{\text {max }} \hbar}{\sqrt{s(s+1)} \hbar}=\frac{\frac{7}{2} \hbar}{\frac{3}{2} \sqrt{7} \hbar}=\frac{1}{3} \sqrt{7}=0.882 \Rightarrow \theta_{\text {min }}=28.1^{\circ}$

PROBLEM B1

The operators L and M are Hermitian (self-adjoint). Operators A and B are not.
a. Is $\exp (\hat{L})$ Hermitian?
b. Is $[\hat{L}, \hat{M}]$ Hermitian?
c. Is $\left[\hat{A}^{\dagger}, \hat{B}\right]+\left[\hat{A}, \hat{B}^{\dagger}\right]$ Hermitian?

ANSWERS

a. Yes: $(\exp (\hat{L}))^{\dagger}=\left(\Sigma_{n} \frac{\hat{L}^{n}}{n!}\right)^{\dagger}=\Sigma_{n}\left(\frac{\hat{L}^{n}}{n!}\right)^{\dagger}=\Sigma_{n} \frac{1}{n!}\left(\hat{L}^{n}\right)^{\dagger}=\Sigma_{n} \frac{1}{n!} \hat{L}^{n}=\exp (\hat{L})$
b. No: $[\hat{L}, \hat{M}]^{\dagger}=(\hat{L} \hat{M}-\hat{M} \hat{L})^{\dagger}=(\hat{L} \hat{M})^{\dagger}-(\hat{M} \hat{L})^{\dagger}=\hat{M}^{\dagger} \hat{L}^{\dagger}-\hat{L}^{\dagger} \hat{M}^{\dagger}=\hat{M} \hat{L}-\hat{L} \hat{M} \neq[\hat{L}, \hat{M}]$
c. No:

$$
\begin{aligned}
& \left(\left[\hat{A}^{\dagger}, \hat{B}\right]+\left[\hat{A}, \hat{B}^{\dagger}\right]\right)^{\dagger}=\left[\hat{A}^{\dagger}, \hat{B}^{\dagger}+\left[\hat{A}, \hat{B}^{\dagger}\right]^{\dagger}=\left(\hat{A}^{\dagger} \hat{B}-\hat{B} \hat{A}^{\dagger}\right)^{\dagger}+\left(\hat{A} \hat{B}^{\dagger}-\hat{B}^{\dagger} \hat{A}\right)^{\dagger}=\right. \\
& =\left(\hat{A}^{\dagger} \hat{B}\right)^{\dagger}-\left(\hat{B} \hat{A}^{\dagger}\right)^{\dagger}+\left(\hat{A} \hat{B}^{\dagger}\right)^{\dagger}-\left(\hat{B}^{\dagger} \hat{A}\right)^{\dagger}=\hat{B}^{\dagger} \hat{A}^{+\dagger}-\hat{A}^{+\dagger} \hat{B}^{\dagger}+\hat{B}^{\dagger \dagger} \hat{A}^{\dagger}-\hat{A}^{\dagger} \hat{B}^{+\dagger}= \\
& =\hat{B}^{\dagger} \hat{A}-\hat{A} \hat{B}^{\dagger}+\hat{B} \hat{A}^{\dagger}-\hat{A}^{\dagger} \hat{B}=\left[\hat{B}^{\dagger}, \hat{A}\right]+\left[\hat{B}, \hat{A}^{\dagger}\right] \neq\left[\hat{A}^{\dagger}, \hat{B}\right]+\left[\hat{A}, \hat{B}^{\dagger}\right]
\end{aligned}
$$

Problem B2.

Answers:
(a) at $t>0$

$$
\psi(x, t)=\frac{1}{\sqrt{2}} e^{-i \omega t / 2}\left[\varphi_{0}(x)+\varphi_{1}(x) e^{-i \omega t}\right]
$$

therefore

$$
\langle x\rangle=\frac{1}{2} \int x\left|\varphi_{0}(x)+\varphi_{1}(x) e^{-i \omega t}\right|^{2} d x=\frac{1}{2} \int 2 \varphi_{0} \varphi_{1} \operatorname{Re} e^{-i \omega t} x d x=\sqrt{\frac{\hbar}{2 m \omega}} \cos \omega t
$$

where we used

$$
\int x \varphi_{0}^{2}(x) d x=0, \quad \int x \varphi_{1}^{2}(x) d x=0
$$

due to symmetry consideration, and the fact that φ_{0}, φ_{1} are real.
(b) The classical initial-value problem with $x(0)=x_{0}, v(0)=0$, gives

$$
x(t)=x_{0} \cos \omega t
$$

where x_{0} can be found from the energy equation

$$
E=\frac{m \omega^{2} x_{0}^{2}}{2}, \quad x_{0}=\sqrt{\frac{2 E}{m \omega^{2}}} .
$$

In order for quantum and classical results to coincide we need $E=\hbar \omega / 4$.

B3. (a)

$$
\psi(x, t)=\sin \left(k_{1} x\right) e^{-i E_{1} t / \hbar}+2 \cos \left(k_{2} x\right) e^{-i E_{2} t / \hbar}
$$

where

$$
E_{1}=\frac{\hbar^{2} k_{1}^{2}}{2 m}, \quad E_{2}=\frac{\hbar^{2} k_{2}^{2}}{2 m}
$$

(b) Outcomes: $k_{1},-k_{1}, k_{2},-k_{2}$.

The probability to get k_{1} is

$$
P_{1}=\frac{1}{1+1+4+4}=\frac{1}{10}
$$

similarly for $-k_{1}$ we get $1 / 10$, and for $k_{2},-k_{2}$ we get $4 / 10$ for each.
(c) After measurements

$$
\psi(x, t)=C e^{i k_{1} x}, \quad C=1 / 2 i
$$

This is the energy eigenstate with the energy eigenvalue $E_{1}=\hbar^{2} k_{1}^{2} / 2 m$.

B4. (a) Possible outcomes: $\hbar / 2$ and $-\hbar / 2$;
(b) expectation values: $\left\langle S_{z}\right\rangle=\hbar / 2$ (eigenvalue) For $S_{x}\left\langle S_{x}\right\rangle=P_{1} \hbar / 2+P_{2}(-\hbar / 2)=0$ since probabilities for spin up and down are equal $1 / 2$ both.
(c) The Hamiltonian of interaction with magnetic field

$$
H^{\prime}=\frac{e}{m} S_{z} B
$$

(assume \mathbf{B} along the z axis, since the gyromagnetic ratio for electron is e / m. When the spin flips, the igenvalue of S_{z} changes from $\hbar / 2$ to $-\hbar / 2$ resulting in the energy change $\Delta E=e \hbar B / m$, therefore frequency of radiation is

$$
\omega=\Delta E / \hbar=e B / m=1.76 \times 10^{11} \mathrm{C} / \mathrm{kg} \cdot 1 \mathrm{~T}=1.76 \times 10^{11} \mathrm{rad} / \mathrm{s}=2.80 \times 10^{10} \mathrm{~Hz}
$$

A1. A metal hollow sphere of radius R is kept under a constant potential Φ_{0}. Using the Gauss's law, find the electric field \mathbf{E} and the electrostatic potential Φ inside and outside the sphere and determine the surface charge density σ.

Solution:

1. Assume that the sphere has surface change σ. According to the Gauss's law, we have for the electric field outside the sphere

$$
\int_{S} \mathbf{E} \cdot d \mathbf{a}=\frac{4 \pi R^{2} \sigma}{\varepsilon_{0}} .
$$

Using for the surface S the sphere of radius $r>R$ and using symmetry of the problem, we find

$$
\mathbf{E}=\frac{\sigma R^{2}}{\varepsilon_{0} r^{2}} \hat{\mathbf{r}}
$$

Hence the electrostatic potential outside the sphere is

$$
\Phi=-\int_{-\infty}^{r} \mathbf{E} \cdot d \mathbf{r}=-\frac{\sigma R^{2}}{\varepsilon_{0}} \int_{-\infty}^{r} \frac{1}{r^{2}} d r=\frac{\sigma R^{2}}{\varepsilon_{0} r}
$$

The surface change density can be found from the given potential on the sphere which leads to

$$
\sigma=\frac{\varepsilon_{0} \Phi_{0}}{R} .
$$

Therefore, outside the sphere the electric field is

$$
\mathbf{E}(r)=\frac{\Phi_{0} R}{r^{2}} \hat{\mathbf{r}}
$$

and the potential is

$$
\Phi=\frac{\Phi_{0} R}{r} .
$$

Inside the sphere $r<R$ Gauss's law theorem says that the electric field is zero and consequently the electrostatic potential is constant

$$
\Phi(r)=\Phi_{0} .
$$

A2: A spherical conducting shell of radius b is concentric with and encloses a conducting ball of radius a. The ball is grounded, and the shell has charge Q. Argue that the presence of the charge Q on the shell will draw up a charge onto the ball from ground. Find the magnitude of this charge.

Solution

A charge will be induced on the ball to maintain a zero potential. In the absence of this charge the potential would be non-zero, equal to Q / b due to the charge Q on the shell. Drawing up a charge Q^{\prime} onto the ball from ground establishes zero potential on the ball. The condition of zero potential on the ball determines the magnitude of the charge Q^{\prime} :

$$
\begin{equation*}
\frac{Q}{b}+\frac{Q^{\prime}}{a}=0, \tag{1}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
Q^{\prime}=-\frac{a}{b} Q . \tag{2}
\end{equation*}
$$

A3. A strip of width b carries a uniform surface current $\mathbf{K}=K \hat{\mathbf{z}}$. Find the magnetic field \mathbf{B} at a point in the plane of the strip that lies at perpendicular distance a from the strip in the $\hat{\mathbf{y}}$-direction.

Solution:

The problem amounts to superposing the fields from a collection of long straight wires. An infinitely long filament of width $d y$ at position y carries current $d I=K d y$. This filament gives a contribution to the magnetic field at the point of consideration

$$
\begin{equation*}
d \mathbf{B}=-\frac{\mu_{0}}{4 \pi} \frac{K d y}{(a+b-y)} \hat{\mathbf{x}} . \tag{1}
\end{equation*}
$$

The total field is obtained by integration of Eq. (1) over the strip width:

$$
\begin{equation*}
\mathbf{B}=-\frac{\mu_{0}}{4 \pi} K \int_{0}^{b} \frac{d y}{(a+b-y)} \hat{\mathbf{x}}=-\frac{\mu_{0}}{4 \pi} K \ln \left(\frac{a+b}{a}\right) \hat{\mathbf{x}} \tag{2}
\end{equation*}
$$

A4. The current is given by $I=e \lambda c$ where λ is the number of protons per unit length, therefore

$$
\lambda=\frac{I}{e c}=\frac{5 \times 10^{-3}}{1.6 \times 10^{-19} \cdot 3 \times 10^{8}}=1.04 \times 10^{8} \mathrm{~m}^{-1} .
$$

The proton number density in the beam $n=\lambda / A$ where A is the cross section area. Therefore the average distance l is

$$
l=n^{-1 / 3}=\left(\frac{A}{\lambda}\right)^{1 / 3}=2.13 \times 10^{-5} \mathrm{~m}
$$

B1. Two infinite parallel wires are oriented along the y-direction and placed at a distance d apart. One wire carries a current I, and the other carries current $I / 4$ in the opposite direction. Between these two wires there is a particle with position constrained to be in the plane formed by the two wires (the $x-y$ plane). This particle has magnetic moment, \mathbf{m}, that is fixed in magnitude and direction along $+z$, i.e. $\mathbf{m}=m \mathbf{z}$. Find the equilibrium position, x, between the two wires $(0<x<d)$ of the particle that minimizes the interaction energy of this magnetic moment with the fields generated by the current of the wires.

Solution:

From the Ampere's law, the magnetic field generated in the $x-y$ plane by the wire at $x=0$ is

$$
\begin{equation*}
\mathbf{B}_{1}=-\frac{\mu_{0} I}{2 \pi x} \hat{\mathbf{z}} \tag{1}
\end{equation*}
$$

The magnetic field generated by the wire at $x=d$ is

$$
\begin{equation*}
\mathbf{B}_{2}=\frac{\mu_{0} I}{8 \pi(x-d)} \hat{\mathbf{z}} . \tag{2}
\end{equation*}
$$

The total field is the sum of these two:

$$
\begin{equation*}
\mathbf{B}=-\frac{\mu_{0} I}{2 \pi x} \hat{\mathbf{z}}+\frac{\mu_{0} I}{8 \pi(x-d)} \hat{\mathbf{z}} . \tag{3}
\end{equation*}
$$

The interaction energy of the magnetic moment \mathbf{m} with the field is given by

$$
\begin{equation*}
U=-\mathbf{m} \cdot \mathbf{B}=\frac{m \mu_{0} I}{2 \pi x}-\frac{m \mu_{0} I}{8 \pi(x-d)} \tag{4}
\end{equation*}
$$

We must minimize this with respect to x. Taking the first derivative, we find:

$$
\begin{equation*}
0=\frac{\partial U}{\partial x}=-\frac{m \mu_{0} I}{2 \pi x^{2}}+\frac{m \mu_{0} I}{8 \pi(x-d)^{2}}=-\frac{4 m \mu_{0} I(x-d)^{2}-m \mu_{0} I x^{2}}{8 \pi x^{2}(x-d)^{2}} . \tag{5}
\end{equation*}
$$

Setting the numerator equal to zero and solving for x, we obtain

$$
\begin{equation*}
4(x-d)^{2}-x^{2}=0 \Rightarrow x=\frac{2}{3} d, 2 d . \tag{6}
\end{equation*}
$$

Only one of these, $x=2 d / 3$, lies between the wires, i.e. from $0<x<d$, and this is the minimum. To make sure it is a minimum we can check the second derivative of U :

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial x^{2}}=\frac{4 \mu_{0} m I}{4 \pi x^{3}}-\frac{m \mu_{0} I}{4 \pi(x-d)^{3}}=\frac{4 m \mu_{0} I(x-d)^{3}-m \mu_{0} I x^{3}}{4 \pi x^{3}(x-d)^{3}}=-\frac{m \mu_{0} I}{8 \pi d^{3}}, \tag{7}
\end{equation*}
$$

which is negative, ensuring the point is indeed a minimum.
Correction: the second derivative is actually positive, coef $=+81 / 8$ in front (sorry, could not correct in the equation-IF), which is the requirement for the minimum. It can be also easily seen by sketching function (4) which is positively defined and approaches + linfty when x approaches 0 from the right and d from the left.
2. This is the unstable equilibrium if we allow the dipole to change orientation, since the dipole is originally oriented in such direction that interaction energy $-\mathbf{m} \cdot \mathbf{B}$ is positive (\mathbf{m} is antiparallel to \mathbf{B}). The stable equilibrium would correspond to \mathbf{m} parallel to \mathbf{B}.

B2. A polarized matter with a radial distribution of polarization, i.e. $\mathbf{P}=P \hat{\mathbf{r}}$, where P is constant, has a spherical hole of radius R at the origin. Find the polarization charge density and the electric field everywhere.

Solution:

There are two contributions to the polarization charge density: surface and volume. The polarization charge on the surface of the spherical hole is equal to

$$
\begin{equation*}
\sigma_{P}=\mathbf{P} \cdot \mathbf{n}=-\mathbf{P} \cdot \hat{\mathbf{r}}=-P . \tag{1}
\end{equation*}
$$

The volume polarization charge at $r \geq R$ is given by

$$
\begin{equation*}
\rho_{P}=-\nabla \cdot \mathbf{P}=-P \nabla \cdot \hat{\mathbf{r}}=-P \nabla \cdot\left(\frac{\mathbf{r}}{r}\right)=-P\left(\frac{\nabla \cdot \mathbf{r}}{r}+\mathbf{r} \cdot \nabla \frac{1}{r}\right)=-P\left(\frac{3}{r}-\mathbf{r} \cdot \frac{\hat{\mathbf{r}}}{r^{2}}\right)=-\frac{2 P}{r} . \tag{2}
\end{equation*}
$$

According to the Gauss's law, σ_{P} and ρ_{P} produce purely radial electric fields outside the hole. The contribution to the electric field at $r>R$ from the volume charge density is given by

$$
\begin{equation*}
\mathbf{E}_{\rho}(\mathbf{r})=\frac{Q(r)}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}, \tag{3}
\end{equation*}
$$

where $Q(r)$ is the volume polarization charge inside the sphere of radius r, i.e.

$$
\begin{equation*}
Q(r)=\int_{R}^{r} \rho_{P}(r) 4 \pi r^{2} d r=-4 \pi \int_{R}^{r} \frac{2 P}{r} \rho_{P}(r) r^{2} d r=4 \pi P\left(R^{2}-r^{2}\right) \tag{4}
\end{equation*}
$$

The contribution to the electric field at $r>R$ from the surface charge density is

$$
\begin{equation*}
\mathbf{E}_{\sigma}(\mathbf{r})=\frac{-4 \pi P R^{2}}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}=-\frac{P R^{2}}{\varepsilon_{0} r^{2}} \hat{\mathbf{r}} \tag{5}
\end{equation*}
$$

Summing up the two contributions, we find for the total electric field:

$$
\mathbf{E}(\mathbf{r})=\mathbf{E}_{\rho}(\mathbf{r})+\mathbf{E}_{\sigma}(\mathbf{r})=\left\{\begin{array}{cc}
-\frac{P}{\varepsilon_{0}} \hat{\mathbf{r}} & r>R \tag{6}\\
0 & r \leq R
\end{array} .\right.
$$

B3. Equation for the circuit

$$
\begin{equation*}
\mathcal{E}-L \frac{d I}{d t}=I R \tag{1}
\end{equation*}
$$

The current grows from $I=0$ at $t=0$ to \mathcal{E} / R at $t \rightarrow \infty$. (a) Initially $I=0$, therefore $d I / d t=\mathcal{E} / L=3 \times 10^{3} \mathrm{~A} / \mathrm{s}$.
(b) For $I=\mathcal{E} / 2 R$

$$
\frac{d I}{d t}=\frac{\mathcal{E}-(\mathcal{E} / 2 R) \cdot R}{L}=\frac{\mathcal{E}}{2 L}=1.5 \times 10^{3} \mathrm{~A} / \mathrm{s}
$$

(c)

$$
I_{f}=\mathcal{E} / R=12 / 150=0.08 \mathrm{~A}
$$

(d) The solution of the differential Eq. (1) is

$$
I=\frac{\mathcal{E}}{R}(1-\exp (-R t / L))
$$

therefore

$$
t=-\frac{L}{R} \ln \left(1-\frac{I R}{\mathcal{E}}\right)=-\frac{4 \times 10^{-3}}{150} \ln (0.01)=0.00123 \mathrm{~s}
$$

B4. The potential difference is given by the Faraday law

$$
V=-\frac{d \Phi}{d t}
$$

The magnetic field at a distance x from the wire is

$$
B=\frac{\mu_{0} I}{2 \pi x}
$$

The corresponding element $d x$ of the wire creates the potential difference

$$
d V=-B d x \frac{d y}{d t}
$$

where $d y$ is the element of distance covered by the rod in the direction of the current, therefore $d y / d t=v$ and

$$
V=-\frac{\mu_{0} I v}{2 \pi} \int_{d}^{d+b} \frac{d x}{x}=-\frac{\mu_{0} I v}{2 \pi} \ln \frac{d+b}{d}
$$

The sign - represents the Lenz rule: if we had a closed loop whose part is the rod, the current due to the potential difference V would lead to a magnetic force which would slow down the motion of the rod.

