(A1.) The mom

$$
\begin{gathered}
V=V_{0}+a p+b p^{2} \quad \text { where } a=-0.715 \times 10^{-3} \frac{c m^{3}}{\text { mole atm }} \\
d V=b=0.046 \times 10^{-6} \frac{\mathrm{~cm}}{\text { mole } \cdot a t m^{2}} \\
\int_{p_{1}}^{p_{2}} p d V=\int_{p_{1}}^{p_{2}} p(a+26 p) d p=a \frac{p_{2}^{2}-p_{1}^{2}}{2}+\frac{2}{3} \cdot b\left(p_{2}^{3}-p_{1}^{3}\right) \\
=-0.75 \times 10^{-3} \frac{1.01^{2}\left(10^{6}-1\right)}{2}+\frac{2}{3} 0.046 \times 10^{-6} \cdot 1.01^{3}\left(10^{9}-1\right)\left(\mathrm{cm}^{3} \cdot a t m\right) \\
=-0.333 \times 10^{3} \mathrm{~cm}^{3} \cdot a+m=-0.333 \times 10^{3} \times 10^{-6} \times 1.01 \times 10^{5} \mathrm{~J}=-33.3 \mathrm{~J}
\end{gathered}
$$

This is work done by water
wo wk by enurironmeat $=+33.3 \mathrm{~J}$

Therm
(Ar).
(a) The loss of the entropy in the hot reservoir is $\frac{\mathbb{Q}}{T_{h}}$,

$$
T_{h}=500 \mathrm{~K}
$$

The gain of the entropy in the cold reservoir is $\frac{Q}{T_{c}}, T_{c}=300 \mathrm{~K}$

$$
\Delta S=\frac{Q}{T_{c}}-\frac{Q}{T_{h}}=Q\left(\frac{1}{T_{c}}-\frac{1}{T_{h}}\right)=500\left(\frac{1}{300}-\frac{1}{500}\right)=0.667 \frac{\mathrm{~J}}{K}
$$

(b)

Carnot efficiency $=1-\frac{T_{C}}{T_{h}}$

$$
W=Q\left(1-\frac{T_{c}}{T_{h}}\right)=T_{c} \Delta S=200 \mathrm{~J}
$$

Bl. Thermo

$$
\Delta Q=p \Delta V+c_{v} \Delta T
$$

(a)
(i)

$$
\begin{aligned}
P=\text { const } W & =p \Delta V=P\left(\frac{R T_{2}}{P}-\frac{R T_{1}}{P}\right)=R \Delta T \\
\Delta V & =\frac{B}{2} R \Delta T \\
\Delta Q & =\frac{\square}{2} R A T \\
\frac{W}{\Delta Q} & =\frac{2}{7}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& T=\text { const } \quad W=R T \ln \frac{V_{2}}{V_{1}} \\
& \Delta U=0 \quad \frac{W}{\Delta Q}=1
\end{aligned}
$$

(b) (ii) The process is reversifte

$$
\Delta S=\int \frac{d Q}{T}=\frac{1}{T} \int p d V=R \int \frac{1}{T} \int_{V_{1}}^{V_{2}} \frac{R T}{V} d V=R \ln \frac{V_{2}}{V_{1}}
$$

(i) The process is irreversible, but wre can make it Quasistanic, so still

$$
\Delta S=\int \frac{d Q}{T}=\int_{T_{1}}^{T_{2}} \frac{T}{2} R \frac{d T}{T}=\frac{7}{2} R \ln \frac{T_{2}}{T_{1}}
$$

Therm
(B4.) The probability is given by binomial distribution

$$
W\left(n_{1}, n_{2}\right)=\frac{N!}{n_{1}!n_{2}!} p^{n_{1}} q^{n_{2}} \quad N=n_{1}+n_{2}
$$

Where n_{1} the number of hops to the right n_{2} to the left, and p,q are corresponding probabilities position is given by $m=n_{1}-n_{2}$
(a)

$$
\begin{aligned}
& \quad N=10, m=2 \quad n_{1}=\frac{1}{2}(N+m)=6, n_{2}=4, p=q=\frac{1}{2} \\
& W(0,4)=\frac{10!}{6!4!}\left(\frac{1}{2}\right)^{10}=\frac{10 \cdot 9 \cdot 8 \cdot 7}{6 \cdot 4 \cdot 2^{10}}=0.205 \\
& m=4 \quad n_{1}=7, n_{2}=3 \\
& W(7,3)=\frac{10!}{7!3!}\left(\frac{1}{2}\right)^{10}=\frac{120}{2^{10}}=0.117
\end{aligned}
$$

(b) $\bar{n}_{\text {right }}=N \cdot p=5 \quad \bar{n}_{\text {last }}=5$
(c)

$$
\begin{aligned}
W(0,4) & =210 \cdot\left(\frac{1}{5}\right)^{6} \cdot\left(\frac{1}{5}\right)^{4}=0.088 \quad p=\frac{4}{5}, q=\frac{1}{5} \\
W(7,3) & =120\left(\frac{4}{5}\right)^{7}\left(\frac{1}{5}\right)^{3}=0.201 \\
\bar{r}_{\text {right }} & =N_{p}=8 \\
\Gamma_{\text {left }} & =N_{q}=2
\end{aligned}
$$

A2. Solution:

For ideal gas, $\mathrm{V}=\mathrm{nRT} / \mathrm{P}$.
So, $\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{n R}{P},\left(\frac{\partial V}{\partial P}\right)_{T}=-\frac{n R T}{P^{2}}$.

$$
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{n R}{P V}=\frac{1}{T}, K_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}=-\frac{1}{V}\left(-\frac{n R T}{P^{2}}\right)=\frac{1}{P} .
$$

A3. In a game, you repeatedly roll a standard die with the numbers 1 through 6 on its faces. If you roll a 6 , the game is over. If you roll any other number, you may roll again.
a. What is the probability that the game is still not over after N rolls?
b. What is the probability that you roll a 6 in the N-th roll (so the game is over then)?
c. What is the average number of rolls a player makes in this game? Hint: $(d / d u) u^{a}=a u^{a-1}$

Answers

Part a.
Probability to roll a 1, 2, 3, 4, or 5: $p=\frac{5}{6}$
Probability to roll a 6: $q=1-p=\frac{1}{6}$
Probability that game is still not over after N rolls is $\left(\frac{5}{6}\right)^{N}$

Part b.

Probability that game is not over after $N-1$ rolls is $\left(\frac{5}{6}\right)^{N-1}$
Probability for a 6 in the N-th role is $\frac{1}{6}$ (and then the game is over).
So the answer is $\left(\frac{5}{6}\right)^{N-1}\left(\frac{1}{6}\right)$

Part c.

$$
\begin{aligned}
& \langle N\rangle=\sum_{N=1}^{\infty} N p^{N-1} q=\sum_{N=1}^{\infty} N p^{N-1}(1-p)=(1-p) \sum_{N=1}^{\infty} \frac{d}{d p} p^{N}=(1-p) \frac{d}{d p} \sum_{N=1}^{\infty} p^{N}= \\
& =(1-p) \frac{d}{d p}\left(\frac{1}{1-p}\right)=(1-p) \frac{-1}{(1-p)^{2}}(-1)=\frac{1-p}{(1-p)^{2}}=\frac{1}{1-p}=\frac{1}{1-\frac{5}{6}}=6
\end{aligned}
$$

B2. Solution:

Assume the temperature of A and B is T , $\mathrm{T}_{\mathrm{C}}=\mathrm{P}_{\mathrm{BC}} \mathrm{V}_{\mathrm{AC}} / \mathrm{R}=1 / 2 \mathrm{P}_{\mathrm{BC}} \mathrm{V}_{\mathrm{B}} / \mathrm{R}=1 / 2 \mathrm{~T}$.
We then write everything in terms of T .

	$\Delta \mathrm{U}$	Q	W
A->B	0	$\mathrm{RT} \ln (2)$	$\mathrm{RT} \ln (2)$
B->C	$-3 / 4 \mathrm{RT}$	$-5 / 4 \mathrm{RT}$	$-\mathrm{RT} / 2$
$\mathrm{C}->\mathrm{A}$	$3 / 4 \mathrm{RT}$	$3 / 4 \mathrm{RT}$	0

The total work is $\mathrm{W}=\mathrm{RT}[\ln (2)-1 / 2]$
The total heat in is $\mathrm{Q}=\mathrm{RT}[\ln (2)+3 / 4]$
The efficiency is then $\mathrm{W} / \mathrm{Q}_{\mathrm{in}}=13.4 \%$.

B3.
Consider a one-cylinder Otto-cycle engine with $r=10.6$. The diameter of the cylinder is 82.5 mm . The distance that the piston moves during the compression is 86.4 mm . The initial pressure (at point a) of the gas/air mixture is $8.50 \times 10^{4} \mathrm{~Pa}$, and the initial temperature is 300 K (the same as the outside air). Assume that 200 J of heat is added to the cylinder in each cycle by the burning gasoline, and that the gas has
 $C_{V}=20.5 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$ and $\gamma=1.40$.
a. Calculate the volume of the air-fuel mixture at point a in the cycle.
b. Calculate the amount of the mixture in moles.
c. Calculate the temperature of the mixture at points b, c, and d in the cycle.
d. Calculate the efficiency of this engine and compare it with the efficiency of a Carnot-cycle engine operating between the same maximum and minimum temperature.

Solution
(a) The change of the volume

$$
\Delta V=A \Delta L=r V-V
$$

where $A=\pi D^{2} / 4$ is the area of the base of the cylinder

$$
\begin{gathered}
V_{b}=V=\frac{A \Delta L}{r-1}=\frac{\pi D^{2} \Delta L}{4(r-1)}=4.81 \times 10^{-5} \mathrm{~m}^{3} . \\
V_{a}=r V=5.10 \times 10^{-4} \mathrm{~m}^{3} .
\end{gathered}
$$

(b)

$$
p_{a} V_{a}=n R T_{a}, \quad n=\frac{p_{a} V_{a}}{R T_{a}}=\frac{8.5 \times 10^{4} \cdot 5.10 \times 10^{-4}}{8.314 \cdot 300}=0.01738 \mathrm{~mole} .
$$

(c) Point b: For the adiabatic process

$$
\begin{aligned}
& T_{a}(r V)^{\gamma-1}=T_{b} V^{\gamma-1}, \\
& T_{b}=T_{a} r^{\gamma-1}=771 \mathrm{~K},
\end{aligned}
$$

Point c: Heat added

$$
Q_{H}=n C_{V}\left(T_{c}-T_{b}\right),
$$

therefore

$$
T_{c}=\frac{Q_{H}}{n C_{V}}+T_{b}=\frac{200}{0.01738 \cdot 20.5}+771=1332 \mathrm{~K}
$$

Point d: For the adiabatic process, since $V_{c}=V, V_{d}=r V$,

$$
T_{d}(r V)^{\gamma-1}=T_{c} V^{\gamma-1},
$$

$$
T_{d}=T_{c} / r^{\gamma-1}=518 \mathrm{~K} .
$$

(d) The rejected heat in $d \rightarrow a$

$$
\left|Q_{C}\right|=n C_{V}\left(T_{d}-T_{a}\right)=78 \mathrm{~J} .
$$

The efficiency

$$
e=\frac{Q_{H}-\left|Q_{C}\right|}{Q_{H}}=0.61
$$

The Carnot efficiency

$$
e_{\text {Carnot }}=1-\frac{T_{C}}{T_{H}}=1-300 / 1332=0.775
$$

is larger as should be.

A1.

$$
\begin{array}{ll}
P-T-m_{1} g=m_{1} a & P_{1}=m_{1} g \quad P_{2}=m_{2} g \\
T-m_{2} g=m_{2} a &
\end{array}
$$

$$
\begin{gathered}
\text { add: } \quad P-\left(m_{1}+m_{2}\right) g=\left(m_{1}+m_{2}\right) a \\
a=\frac{p-\left(m_{1}+m_{2}\right) g}{m_{1}+m_{2}}=\frac{p-\left(p_{1}+p_{2}\right)}{p_{1}+p_{2}} \\
T=m_{2}(g+a)=m_{2}\left(g+\frac{p-\left(m_{1}+m_{2}\right) g}{m_{1}+m_{2}}\right)=\frac{m_{2} p}{m_{1}+m_{2}}
\end{gathered}
$$

(a)

$$
\begin{aligned}
& \quad \frac{T}{P}=\frac{m_{2}}{m_{1}+m_{2}}=\frac{P_{2}}{P_{1}+P_{2}}=0.8 \\
& a=g \frac{150-125}{125}=0.2 \mathrm{~g}
\end{aligned}
$$

The energy loss is -mgh
is equal to the energy coss due to Friction
$-m g h=-\frac{\Delta E}{L} \times$ where x is the distance traveled

$$
x=L \frac{m g h}{\Delta E}=\frac{2.407}{0.688} L=3.50 \mathrm{~L}
$$

So it transfers the flat region 3.5 times, therefore it travels to the left when slops.

$$
\begin{aligned}
& \Delta E=F L=\mu m g L \\
& \mu=\frac{\Delta E}{m g L}=\frac{0.688}{2.407}=0.286
\end{aligned}
$$

(A3.

$$
\begin{aligned}
& x(t)=A \cos \omega t \\
& y(t)=-A \omega \sin \omega t
\end{aligned}
$$

for $t=t_{1} \quad x\left(t_{1}\right)=\frac{1}{2} A=A \cos \omega t_{1} \rightarrow \omega t_{1}= \pm \frac{\pi}{3}$

$$
\begin{aligned}
& v\left(t_{1}\right)=0.3=-A \omega \sin \omega t^{\prime} \\
& 0.3=\mp A \omega \sin \frac{\pi}{3}=\mp A \omega \frac{\sqrt{3}}{2}, A=0.1 \mathrm{~m} \\
& \omega=\frac{2}{\sqrt{3}} \frac{0.3}{0.1}=2 \sqrt{3} \mathrm{rad} / \mathrm{s} \\
& m=\frac{k}{\omega^{2}}=\frac{6 \mathrm{~N} / \mathrm{m}}{12 \mathrm{~s}^{-2}}=0.5 \mathrm{~kg} \\
& T=\frac{2 \pi}{\omega}=\frac{\pi}{\sqrt{3}} \mathrm{~s}
\end{aligned}
$$

AM.

Coordinates of the bob:

$$
\begin{aligned}
& x_{m}=x+l \sin \theta \\
& y_{m}=-l \cos \theta \\
& T=\frac{1}{2} M \dot{x}^{2}+\frac{1}{2} m\left[(\dot{x}+l \dot{\theta} \cos \theta)^{2}+l^{2} \dot{\theta}^{2} \sin ^{2} \theta\right] \\
&=\frac{1}{2}(M+m) \dot{x}^{2}+\frac{1}{2} m l^{2} \dot{\theta}^{2}+m l \cos \theta \dot{\theta} \dot{x} \\
& V \dot{y}_{m}=l \dot{\theta} \sin \theta \\
& V=-m g l \cos \theta \\
& L=T-V
\end{aligned}
$$

居
(a) From Bernoulli's taw

$$
\begin{gathered}
p_{1}+\rho g y_{1}+\frac{1}{2} \rho v_{1}^{2}=p_{3}+\rho g y_{3}+\frac{1}{2} \rho v_{3}^{2} \\
p_{1}=p_{3}=p_{\text {arm }}, v_{1}=0, \text { therefore } \\
v_{3}^{2}=2 g\left(y_{1}-y_{3}\right)=2 \cdot 9.8 \cdot 8 \\
v_{3}=12.5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

$A_{3} V_{3}=A_{2} V_{2}$

$$
\begin{gathered}
0.048 \cdot v_{2}=0.016 \cdot 12.5 \\
v_{2}=\frac{12.5}{3}=4.17 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

(6) rate $=A_{3} v_{3}=0.016 \cdot 12.5=0.2 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
(c)

$$
\begin{aligned}
& p_{2}+\frac{1}{2} \rho v_{2}^{2}=p_{3}+\frac{1}{2} \rho v_{3}^{2} \\
& p_{2}=p_{3}+\frac{1}{2} \rho\left(v_{3}^{2}-v_{2}^{2}\right)=1.013 \times 10^{5}+\frac{1}{2} \times 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}(156.25-17.36) \\
& =17.07 \times 10^{4} \mathrm{pa}
\end{aligned}
$$

$$
\begin{aligned}
(\infty) T & =\frac{1}{2} m R^{2} \dot{\theta}^{2}+\frac{1}{2} m(R \sin \theta)^{2} \omega^{2} \\
U & =m g R \cos \theta \\
L=T-V & =\frac{1}{2} m R^{2}\left(\dot{\theta}^{2}+\omega^{2} \sin ^{2} \theta\right)-m g R \cos \theta
\end{aligned}
$$

$$
\frac{\partial L}{\partial \theta}=m R^{2} \omega^{2} \sin \theta \cos \theta+m g R \sin \theta
$$

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)=\frac{d}{d t}\left(m R^{2} \dot{\theta}\right)=m R^{2} \ddot{\theta}
$$

$$
\theta-\omega^{2} \sin \theta \cos \theta-\frac{g}{R} \sin \theta=0
$$

(b) equilibrium: $\ddot{\theta}=0$

$$
\begin{gathered}
-\omega^{2} \sin \theta \cos \theta-\frac{q}{k} \sin \theta=0 \\
\theta_{1}=0, \theta_{2}=\pi, \theta_{3}=\cos ^{-1}\left(-\frac{g}{R \omega^{2}}\right)
\end{gathered}
$$

(e) expand the function
$f(\theta)=-\omega^{2} \sin \theta \cos \theta-\frac{q}{R} \sin \theta$ near the equibitrilem

$$
f(\theta)=f\left(\theta_{i}\right)-\left[\omega^{2} \cos 2 \theta_{i}+\frac{q}{R} \cos \theta_{i}\right]\left(\theta-\theta_{i}\right) \quad i=1,2,3, f\left(\theta_{i}\right)=0
$$

forstable equilibrium we need

$$
-\omega^{2} \cos 2 \theta_{i}-\frac{q}{R} \cos \theta_{i}>0
$$

$i=1:-\omega^{2}-\frac{q}{k}>0$ impossible, therefore equilibrium is alavays unstable
(B2), pe

$$
i=2 \quad-\omega^{2}+\frac{q}{k}>0
$$

Stable for $\omega^{2}<\frac{q}{R}$

$$
\begin{aligned}
i= & \cos \theta_{3}=-\frac{g}{R \omega^{2}} \quad \cos 2 \theta_{3}=2 \cos ^{2} \theta_{3}-1=2\left(\frac{g}{R \omega^{2}}\right)^{2}-1 \\
& -\omega^{2}\left[2\left(\frac{g}{R \omega^{2}}\right)^{2}-1\right]+\frac{g}{R} \frac{g}{R \omega^{2}}>0 \\
& -\left(\frac{g}{R \omega}\right)^{2}+\omega^{2}>0 \quad \omega^{4}>\left(\frac{g}{R}\right)^{2}
\end{aligned}
$$

stable for $\omega^{2}>\frac{q}{R}$

The effective force is opposite to the sum of inertial forces in the rotating frame:

Centrifugal $\vec{F}_{0_{f}}=-m \vec{\omega} \times(\vec{\omega} \times \vec{r})$
Coriolis $\quad \vec{F}_{\text {cor }}=-2 k e \vec{\omega} \times \overrightarrow{\vec{F}}$

Tramerseforce $\overrightarrow{F_{\text {trans }}}=-m \dot{\overrightarrow{0}} \times \vec{r}$

$$
\begin{aligned}
& \vec{F} \text { met }=-m \vec{\omega} \times(\hat{\omega} \times \vec{r})-2 m \hat{\omega} \times \overrightarrow{\vec{r}}-m \hat{\vec{\omega}} \times \vec{r} \\
& \dot{\omega}=0 \quad \vec{\omega} \times \vec{r}=\omega r \hat{z} \times \hat{x}=\omega r \hat{y} \\
& \vec{\omega} \times(\vec{\omega} \times \vec{r})=\omega^{2} r(\hat{z} \times \hat{y})=-\omega^{2} r \hat{x} \\
& \vec{F}_{c+f}=\omega^{2} r \hat{x} \\
& \vec{F}_{c o r}=-2 m \hat{\omega} \times \dot{\vec{r}}=-2 m \omega v \hat{z} \times \hat{x}=-2 m \omega v \hat{y} \\
& \vec{F}+\frac{\text { int }}{W}=m \omega^{2} r \hat{x}-2 m \omega v \hat{y}
\end{aligned}
$$

The effective force in the inertial frame $\vec{F}_{\text {eff }}=-\vec{F}_{\text {mart }}$
(b) balawee friction with \vec{F} invt

$$
\begin{aligned}
& \mu m g=\left[\left(m \omega^{2} r\right)^{2}+(2 m \omega v)^{2}\right]^{1 / 2} \\
& (\mu g)^{2}=\left(\omega^{2} r\right)^{2}+(2 \omega v)^{2} \\
& r=\frac{\left[(\mu g)^{2}-(2 \omega v)^{2}\right]^{1 / 2}}{\omega}
\end{aligned}
$$

This is the maximum possible value of r before the ant starts to slip
(B4) Courervation of eaergy

$$
\begin{aligned}
& m g h=\frac{m v^{2}}{2}+\frac{I w^{2}}{2}=\frac{m v^{2}}{2}+\frac{I v^{2}}{2 R^{2}} \\
& m\left(g h-\frac{v^{2}}{2}\right)=\frac{I v^{2}}{2 R^{2}} \\
& I=\frac{2 m R^{2}}{v^{2}}\left(g h-\frac{v^{3}}{2}\right)=m R^{2}\left(\frac{2 g h}{v^{2}}-1\right)
\end{aligned}
$$

Find v from kinematies.
For constant acceleration

$$
\begin{aligned}
& h=\frac{a t^{2}}{2}=\frac{v}{2} t \quad \text { since } a=\frac{v}{t} \\
& v=\frac{2 h}{t}
\end{aligned}
$$

(a) $\quad I=m R^{2}\left(\frac{g t^{2}}{2 h}-1\right)=8.2 \cdot 0.35^{2} \cdot\left(\frac{9.8 \cdot 16}{2 \cdot 12}-1\right)$

$$
=5.56 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

(6) $a=\frac{2 h}{t^{2}}=\frac{24}{16}=1.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
(c) $N=\frac{a}{R}=\frac{1.5}{0.35 \mathrm{~m}}=4.29 \frac{\mathrm{rad}}{\mathrm{s}^{2}}$

