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Will an exotic species thrive in a new territory? What are the best management options
to eradicate a population (pest species) or to facilitate population recovery (endangered
species)? Population modeling helps answer these questions by integrating mathemat-
ics and biology.

Often, a single species cannot be properly modeled as one population, but instead
is best treated as a structured population, where the individuals in the population are
partitioned into classes, or stages. As an example of a stage structured population, it
is natural to partition an insect population into egg, larva, pupa, and adult stages. The
choice of the stages and the breakdown of the population into stages depend heavily on
the type of population, and are informed by biological intuition. For instance, fecundity
(number of offspring per capita) in animals often varies with age, while in plants,
fecundity typically depends on size. This implies that for mammals, the stages might
be best determined by age, so that age is a good stage variable for mammals, while
size might be a good stage variable for plants. Furthermore, for many animals there are
natural classes of ages—the egg/larva/pupa/adult partition of an insect population—
while for many plants, the stages can be better described as a continuous function
of stem diameter, or another indicator of size. When the stages are discrete, a matrix
model is used, and when the stages are continuous, an integral model is used. Both
integral and matrix models are commonly used in population viability analysis and
are both important tools in guiding population management [4, 19]. These models
are used to predict long-term and transient behavior of a population, and they inform
wildlife managers about which populations are in danger of going extinct or of growing
unacceptably large.

Another basic modeling choice is whether time is modeled as a discrete variable
or a continuous variable. Field data is often collected at regular time intervals, for
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instance on a yearly or seasonal basis, so it is often easier and more practical to model
time discretely. There is some controversy about the relative merits of discrete-time
versus continuous-time modeling [7]. Nonetheless, in most of the ecological literature
on single-species structured populations, time is modeled as a discrete variable, so in
this article we also model time as a discrete variable.

For a population that is partitioned into finitely many stages and modeled at discrete
times, the evolution of the population can often be described using a Population Pro-
jection Matrix (PPM). The entries in a PPM are determined by the life history param-
eters of the population, and the properties of the matrix—for instance, its spectrum—
determine the behavior of the solutions of the model. In the next section we describe
PPMs in detail.

When stages are described by a continuous variable, one can either maintain the
continuous stage structure, or partition the continuous range of stages into a finite
number of stages. The latter is called a discretization of the population. To do it effec-
tively one must ensure that each stage consists of individuals with comparable growth,
survival, and fecundity, because the accuracy of the approximation depends on the sim-
ilarity of individuals within each stage class. In general, a large number of life history
stages increases model accuracy, but at the cost of increasing parameter uncertainty,
since each nonzero matrix entry needs to be estimated from data, and the more stages
there are, the less data is available per stage. This tradeoff can often be avoided by
maintaining the continuous structure, and using an Integral Projection Model (IPM)
that uses continuous life history functions that are functions of a continuous range of
stages. We discuss IPMs in detail below.

In this article we illuminate the differences and similarities between matrix popu-
lation models and integral population models for single-species stage structured pop-
ulations. We illustrate the use of integral models with an application to Platte thistle,
following Rose et al. [22], showing how the model is determined by basic life history
functions. PPMs are ubiquitous in ecology, but for many purposes an IPM might be
easier and/or more accurate to use. In TABLE 1 we summarize the similarities between AuQ: Relocated

and renumbered
table

PPMs and IPMs. In order to compare the predictions for PPMs and IPMs, enough data
must be available to find the parameters in both models. This is done for models for the
plant monkshood in Easterling et al. [9]. We should mention that if time is treated as a
continuous variable, the analogue of a PPM model is an ordinary differential equation,
and the analogue of a IPM is an integro-differential equation.

Matrix models

Matrix models were introduced in the mid 1940s, but did not become the dominant
paradigm in ecological population modeling until the 1970s. The modern theory is
described in great detail in Caswell [4], which also contains a good short history of
population projection matrices in its Section 2.6. We summarize some of this history
here. The basic theory of describing, predicting, and analyzing population growth by
analyzing life history parameters such as survival and fecundity can be traced back
to Cannan [3] in 1895. Matrix models in particular were developed independently by
Bernardelli [2], Lewis [16], and Leslie [15]. The latter is most relevant to the mod-
ern theory. P. H. Leslie was a physiologist and self-taught mathematician, who, while
working at the Bureau of Animal Population at Oxford between 1935 and 1968, syn-
thesized mortality and fertility data into single models using matrices. We briefly de-
scribe his basic models, which are still used for population description, analysis, and
prediction.

Although he was highly regarded and well connected in the ecology community,
Leslie’s work in matrix modeling initially received little attention. One of the few
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contemporaries who did use the matrix model was Leonard Lefkovitch. He also imple-
mented a matrix model [14], but with an innovation: The populations were partitioned
into classes based on developmental stage rather than age. This made the method more
applicable to plant ecologists, who began defining stage classes by size rather than
age—a change that usually resulted in better predictions.

As Caswell points out [4], it took some 25 years for the ecology community to
adopt matrix projection models after Leslie’s influential work. There were two major
reasons for this delay. The ecology community at that time thought of matrix algebra
as an advanced and esoteric mathematical subject. More importantly, there was a more
accessible method, also contributed by Leslie, called life table analysis [4, Section
2.3].

Before the widespread use of computers, there was no information that a matrix
model could provide that a life table could not. This would change as more sophisti-
cated matrix algebra and computation methods emerged to convince ecologists of the
worth of matrix models. For instance, using elementary linear algebra, one can predict
asymptotic population growth rates and stable stage distributions from the spectral
properties of the matrix. Also, the use of eigenvectors facilitated the development of
sensitivity and elasticity analyses, giving an easy way to determine how small changes
in life history parameters effect the asymptotic population growth rate. This is an es-
pecially important question for ecological models, which are typically very uncertain.
Sensitivity and elasticity analyses are sometimes used to make recommendations about
which stage class conservation managers should focus on in order to increase the pop-
ulation growth rate of an endangered species.

Transition matrices To set up a matrix model we start with a population partitioned
into m stage classes. Let t ∈ N = {0, 1, 2, . . . } be time, measured discretely, and let
n(t) be the population column vector

n(t) = [n(1, t), n(2, t), . . . , n(m, t)]T ,

where each entry n(i, t) is the number of individuals belonging to class i at time t . A
discrete-time matrix model takes the form

n(t + 1) = An(t), (1)

where A = (ki j ) is the m × m PPM containing the life-history parameters. It is also
called a transition matrix, since it dictates the demographic changes occurring over
one time step. We can write (1) as

n(i, t + 1) =
m∑

j=1

ki j n( j, t), i = 1, . . . n. (2)

The entry ki j determines how the number of stage j individuals at time t affects the
number of stage i individuals at time t + 1. This is the form we will generalize when
we discuss integral equations.

In their simplest form, the entries of A are survivorship probabilities and fecundi-
ties. What we call a Leslie matrix has the form

A =

⎛
⎜⎜⎜⎜⎝

f1 f2 · · · fm−1 fm

p1 0 · · · 0 0
0 p2 · · · 0 0
... 0

. . . 0 0
0 · · · · · · pm−1 0

⎞
⎟⎟⎟⎟⎠ ,
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where pi is the probability that an individual survives from age class i to age class
i + 1, and fi is the fecundity, which is the per capita average number of offspring
reaching stage 1 born from mothers of stage class i . The transition matrix has this
particular structure when age is the stage class variable and individuals either move
into the next class or die. In general, entries for the life-history parameters may appear
in any entry of the m x m matrix A.

For any matrix A and t ∈ N, let At denote the t th power of A for any natural number
t . It follows from (1) that

n(t) = At n(0). (3)

The long-term behavior of n(t) is determined by the eigenvalues and eigenvectors of A.
We say that A is nonnegative if all of its entries are nonnegative, and that A is primitive
if for some t ∈ N, all entries of At are positive. This second condition is equivalent to
every stage class having a descendent in every other stage class at some time step in
the future. PPMs are generally nonnegative and primitive, thus the following theorem
is extremely useful [23, Section 1.1]:

PERRON-FROBENIUS THEOREM. Let A be a square, nonnegative, primitive ma-
trix. Then A has an eigenvalue, λ, known as the dominant eigenvalue, that satisfies:

1. λ is real and λ > 0,
2. λ has right and left eigenvectors whose components are strictly positive,
3. λ > |λ̃| for any eigenvalue λ̃ such that λ̃ �= λ,
4. λ has algebraic and geometric multiplicity 1.

This theorem is important in the analysis of population models because the domi-
nant eigenvalue is the asymptotic growth rate of the modeled population, and its asso-
ciated eigenvector is the asymptotic population structure. To see this, assume that A is
primitive. Let n = [n1, n2, . . . , nm], and ‖n‖ denote the �1 norm:

‖n‖ = |n1| + |n2| + . . . |nm|. (4)

Denote the unit eigenvector associated with λ by v , so

lim
t→∞

‖n(t + 1)‖
‖n(t)‖ = λ and lim

t→∞
n(t)

‖n(t)‖ = v. (5)

Thus as time goes on, the growth rate approaches λ and the stage structure approaches
v. In particular, the dynamics of a long-established population is described by λ and v.

Problems with stage discretization To use a population projection matrix model,
the population needs to be decomposed into a finite number of discrete stage classes
that are not necessarily reflective of the true population structure. As mentioned pre-
viously, if stage classes are defined in such a way that there is at least one class in
which the life history parameters vary considerably, then it might not be possible to
accurately describe individuals in that stage class, which might result in erroneous
predictions. Easterling [8] and Easterling et al. [9] give an example of such a “bad”
partition of the population.

Fortunately it is often possible to decompose a particular population in a biolog-
ically sensible fashion. Vandermeer [24] and Moloney [18] have crafted algorithms
to minimize errors associated with choosing class boundaries. Such algorithms help
to derive more reasonable matrices, but for many populations they cannot altogether
eliminate the sampling and distribution errors associated with discretization. For in-
stance, for many plants size is the natural stage variable, and no decomposition of
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size into discrete stage classes will adequately capture the life history variations. Fur-
thermore, sensitivity and elasticity analyses have both been shown to be affected by
changes in stage class division, Easterling, et al. [9].

Regardless of how well the population is decomposed into stages, there is also the
problem that in a matrix model individuals of a given stage class are treated as though
they are identical through every time step. That is, two individuals starting in the same
class will always have the same probability of transitioning into a different stage class
at every time step in the future, which is not necessarily the case for real populations.

For many populations, these difficulties can be overcome by analyzing a continuum
of stages, which is discussed in the next section.

Integral projection models

An alternate approach to discretizing continuous variables such as size is to use In-
tegral Projection Models. These models retain much of the analytical machinery that
makes the matrix model appealing, while allowing for a continuous range of stages.
Easterling [8] and Easterling et al. [9] show how to construct such an integral projec-
tion model, using continuous stage classes and discrete time, and they provide sensi-
tivity and elasticity formulas analogous to those for matrix models. In Ellner and Rees
[10] an IPM analogue of the Perron-Frobenius Theorem is given. In particular, there
are readily checked conditions under which such a model has an asymptotic growth
rate that is the dominant eigenvalue of an operator whose associated eigenvector is the
asymptotic stable population distribution.

Just as ecologists were slow to adopt matrix models, they have, so far, not used inte-
gral models widely. Stage structured IPMs of the type considered in this paper have ap-
peared in the scientific literature since around ten years ago [5, 6, 8, 9, 10, 11, 21, 22].
There is a large literature on integral models for spatial spread of a population [12, 13].
The structure of the integral operators describing spatial spread can be very different
from those for IPMs. For instance, the integral operators discussed in this paper are
compact, while the operators describing spatial spread might not be compact. Com-
pact operators have many properties that are similar to those of matrices [1, Chapter
17], and these properties make the spectral analysis, and hence the asymptotic analysis,
more analogous to matrix models.

Continuous stage structure and integral operators Let n(x, t) be the population
distribution as a function of the stage x at time t . For example, if ms is the minimum
size, and Ms is the maximum size, as determined by field measurements, then x ∈
[ms, Ms] would be the size of an individual.

The analogue of the matrix entries ki, j for i, j ∈ {0, 1, . . . m} is a projection ker-
nel k(y, x) for y, x ∈ [ms, Ms], and the role of the matrix multiplication operation is
analogous to an integral operator. The kernel is time-independent, which is analogous
to the time-independent matrix entries. The time unit t = 1 represents a time interval
in which data is naturally measured; in the example in this paper the unit of time is a
year. The analogue of (2) is

n(y, t + 1) =
∫ Ms

ms

k(y, x)n(x, t) dx, y ∈ [ms, Ms]. (6)

In particular, the kernel determines how the distribution of stage x individuals at time
t contributes to the distribution of stage y individuals at time t + 1, in much the same
way that in (2) the (i, j)th entry of a projection matrix determines how an individual
in stage j at time t contributes to stage i at time t + 1.
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The kernel is determined by statistically derived functions for life history param-
eters such as survival, growth, and fecundity. At first the construction of an integral
operator model might seem more difficult than the construction of a matrix model.
However, the life history functions are assumed to have a particular distributional
form, often with only a few parameters to be determined for each function. Hence
the total number of parameters to be estimated can be smaller than the number of ma-
trix entries. This of course would not work if the life history functions did not have
an appropriate distributional form. Fortunately, ecologists have a toolbox of functional
forms for different biological parameters. For instance, size is usually described by
a lognormal distribution or truncated normal distribution. TABLE 2 shows all of the
life history functions needed to construct the kernel for a particular integral projection
model for the Platte thistle [22]. An advantage of the integral approach is that data
over the entire distribution can be used to estimate the parameters of the life-history
functions, thus minimizing parameter uncertainty. In contrast, the transitions between
life history stages in matrix models are estimated from subsets of the data.

The stage variable x need not be a scalar, but the range of stage variables should be
a compact metric space. In cases where x is not a scalar, the Riemann integration over
a subset of R will be replaced by more general integration over a product space; see
[10] for such an example.

Integral equations such as (6) can be analyzed in much the same way as matrix-
based models of the form (1). Consider the L1-norm

‖ f ‖ :=
∫ Ms

ms

| f (x)| dx,

which is analogous to (4). The space

L1(ms, Ms) = { f : (ms, Ms) → R | ‖ f ‖ < ∞}
is a complete normed linear space (that is, a Banach space). For every t > 0, the

TABLE 2: Life history functions for the Platte thistle [22],
where variables x and y are in ln(crown diameter)

Demography Equation

Survival s(x) = e−0.62+0.85x

(1 + e−0.62+0.85x)

Flowering Probability f p(x) = e−10.22+4.25x

(1 + e−10.22+4.25x)

g(x, y) = Normal Distribution
Growth Distribution in y with σ 2 = 0.19

and μ(x) = 0.83 + 0.69x

Individual Seed Set S(x) = e0.37+2.02x

J (y) = Normal Distribution
Juvenile Size Distribution with σ 2

f = 0.17
and μ f = 0.75

Germination Probability

Pe = .067 density independent
or

Pe = ST (t)−0.33 density dependent
where ST (t) is the total seed set
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population distribution n(·, t) is in L1(ms, Ms), and the total population is ‖n(t)‖.
Hence L1(ms, Ms) plays the same role in an IPM that R

m (with norm (4)) plays in a
PPM.

For a population distribution n(x, t), it is sometimes useful to distinguish between
the function n(x, t) of two variables and the L1(ms, Ms)-valued function of a single
variable n(t) = n(·, t); we refer to n(t) as a “vector” in L1(ms, Ms). Define the oper-
ator A : L1(ms, Ms) → L1(ms, Ms) by

(Av)(·) :=
∫ Ms

ms

k(·, x)v(x) dx .

It is not hard to show that A is bounded on L1(ms, Ms). In fact, since

∫ Ms

ms

∫ Ms

ms

|k(x, y)|2 dx dy < ∞,

it is well known that A is compact [1, p. 403], which implies that A has nice spectral
properties, in a certain sense [1, Ch. 21]. Then (6) is equivalent to

n(t + 1) = An(t), (7)

which is analogous to (1).
Ellner and Rees [10] show that for a large class of kernels k, the integral operator

A satisfies an analog of the Perron-Frobenius Theorem for matrices. In particular, for
a certain class of operators discussed [10, Appendix C], A has a dominant real eigen-
value λ that is the asymptotic growth rate and an associated unit eigenvector v that is
the stable stage distribution. In this case the eigenvectors are functions in L1(ms, Ms),
rather than vectors in R

m . Additionally

lim
t→∞

‖n(t + 1)‖
‖n(t)‖ = λ and lim

t→∞
n(t)

‖n(t)‖ = v,

where the convergence of the second equation is interpreted as L1(ms, Ms) conver-
gence.

The kernel To construct the kernel, we construct a growth and survival function
p(y, x) and a fecundity function f (y, x), and let

k(y, x) = p(y, x) + f (y, x).

Here p(y, x) is the density of probability that an individual of size x will survive to be
an individual of size y in one time step. Therefore, for each y ∈ [ms, Ms],

∫ Ms

ms

p(y, x) dx ≤ 1.

The function f (y, x) is the distribution for the number of offspring of size y that an
individual of size x will produce in one time step. The fecundity function allows for
the possibility of a seedling or newborn moving, in one time step, to a large size, but
in practice the probability of this happening is virtually zero.
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Estimating the kernel for Platte thistle We now show how a specific model is
constructed, using a modification of the model for Platte thistle (Cirsium canescens)
found in Rose et al. [22]. Platte thistle is an indigenous perennial plant in the midgrass
sand prairies of central North America. The species is in decline in its native environ-
ment, possibly due to a biocontrol agent introduced to manage a different thistle, that
is considered invasive. The time unit in this example is one year. It is strictly mono-
carpic, meaning that plants die after reproducing, so the flowering probability must
be incorporated into the kernel. The Platte thistle lives 2–4 years [17]. In this model,
the continuous class variables x and y are the natural log of the root crown diame-
ter (measured in mm). The maximum and minimum root crown diameter are taken
as ms = ln(.5) and Ms = 3.5, respectively; we found that making Ms larger does not
appreciably change the results. To best illustrate the basic concepts, we simplify the
model by ignoring the effects of herbivores on fecundity and the possible slight effect
of maternal size on offspring size.

We start with some component life-history functions. These are estimated from the
data using standard statistical methods. For instance, logistic regression analysis can be
used to describe survival as a function of size. Below is a description of these functions,
and formulas are given in TABLE 2. All functions are defined for x ∈ [ms, Ms].
• s(x) is the probability that a size x individual survives to the next time step. It is

statistically fit to the logistic curve

s(x) = eax+b

1 + eax+b
,

where b < 0.
• f p(x) is the probability that a size x plant will flower in one time step. This function

is chosen to have the same logistic form as s(x).
• g(y, x) is the density of probability that an individual of size x will have size y at

the next time step. This can describe both the probability of growing to a larger size
and the probability of shrinking to a smaller size. The growth function g(y, x) is a
normal distribution in the variable y.

• S(x) is the number of seeds produced on average per plant of size x . It is assumed
to be an exponential function.

• J (y) is the distribution of offspring sizes. It is assumed to be a normal distribution.
• Pe is the average probability that a seed will germinate. This is also known as the

recruitment probability. We first assume that it is constant, but in a more realistic
model it will be a function of the number of seeds.

Growth and survival kernel: To construct the growth and survival kernel, note that
the probability that a size x individual does not flower is 1 − f p(x). Since the Platte
thistle dies after reproduction, the probability that a size x individual survives to the
next time step is the survival probability s(x) times the probability of not flowering, or
s(x)(1 − f p(x)). Hence the growth and survival kernel is

p(y, x) = s(x)(1 − f p(x))g(y, x).

Fecundity kernel: Each plant will produce seeds, and these seeds must germinate
for an offspring to be included in the next population count. For a Platte thistle to pro-
duce seeds, it must survive through a year and flower. Thus, each plant of root crown
diameter size x will produce s(x) f p(x)S(x) seeds on average, so the total number of
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seeds resulting from a population distribution of n(x, t) at time t is

ST (t) =
∫ Ms

ms

s(x) f p(x)S(x)n(x, t)dx (8)

and the total number of germinated seeds at time t is Pe ST (t). Finally, we also need to
distribute the offspring into the various sizes by J (y). The distribution of offspring at
time t + 1 resulting from a population distribution of n(x, t) at time t is

Pe J (y)ST (t) = Pe J (y)

∫ Ms

ms

s(x) f p(x)S(x)n(x, t) dx .

Therefore the fecundity kernel is

f (y, x) = Pe J (y)s(x) f p(x)S(x). (9)

FIGURE 1 shows a graph of the total kernel

k(y, x) = p(y, x) + f (y, x) = s(x)(1 − f p(x))g(y, x) + Pe J (y)s(x) f p(x)S(x).

log(Stem
 Diam

eter) at t + 1

–0.5
0.0

0.5
1.0

1.5
2.0

2.5

3.0

3.5

log(Stem Diameter) a
t t 

–0.5

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

k(y,x)

0

50

100

150

200

250

Platte Thistle Kernel

Figure 1 The kernel for the Platte thistle integral projection model

Numerical solution of the integrodifference equation Analytic evaluation of the
integral operator is difficult if not impossible to perform. Thus, we use numerical in-
tegration to obtain an estimate of the population. A conceptually easy and reasonably
accurate method is the midpoint rule. Let N be the number of equally sized intervals,
and let {x j } be the midpoints of the intervals. Then

(An)(y, t) =
∫ Ms

ms

k(y, x)n(x, t) dx ≈ Ms − ms

N

N∑
j=1

k(y, x j )n(x j , t). (10)
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Let

ki j = Ms − ms

N
k(xi , x j ) for i, j = 1, 2, . . . N , AN = (ki j )

and

nN (t) = [n(x1, t), n(x2, t), . . . n(xN , t)]T .

Then nN (t) is a discrete approximation of n(x, t), AN is a discrete approximation of
the integral operator A, and

AN nN = Ms − ms

N

N∑
j=1

k(xi , x j )n(x j , t).

Since k(x, y) is continuous, the Riemann sum uniformly approximates the integral as
N → ∞. Hence the integrodifference equation n(t + 1) = An(t) can be approximated
at the midpoints x j by nN (t + 1) = AN nN (t).

This matrix model can be analyzed much like a traditional matrix model. Since
the dominant eigenvalue λN of AN converges to the dominant eigenvalue λ of A as
N → ∞ [10, 8], the long term growth rate is easily estimated. FIGURE 2 shows this
convergence of λN to λ = 1.325 as N increases. The leading eigenvalue of A5 is 1.332,
so we see that fairly small dimensional approximations of A lead to very good approx-
imations of the long-term growth of the system.
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Figure 2 The leading eigenvector of the numerical approximation of the integral projec-
tion model as a function of number of subintervals in the Riemann sum

We should emphasize the difference between a PPM and the matrix model obtained
from an IPM. In the former every nonzero entry is estimated directly; a large matrix
of this type is not intended to approximate an IPM, and is subject to the discretization
problems we described above. In the latter, the life history functions are estimated,
giving rise to a kernel, and this kernel is used to obtain a matrix that approximates the
integral operator for large N . As indicated above, an IPM is often preferable to a PPM,
and in these cases the matrix model based on the IPM is also preferable to a PPM.
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We now turn to the stable size distribution, that is, the limiting distribution given by
the second equation in (5). This can be found by approximating the leading eigenvector
of A, and normalizing it so that it has L1(ms, Ms) norm of 1. This eigenvector is the
curve labeled “Density Independent” in FIGURE 3. Note that the x-axis is in mm rather
than ln(mm). The curve is obtained by computing the unit leading eigenvector of AN

for large N , and noting that this is a good approximation of the unit leading eigenvector
[10].
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Figure 3 Stable state population densities of Platte thistle

Density dependence In the Platte thistle model above, we made the simplifying as-
sumption that the germination probability, Pe, is constant, and obtained a density inde-
pendent model. By “density independence” we mean that n(t + 1) is a linear function
of n(t), or equivalently, that the operator A does not depend upon n(t). Using the
average germination probability, the growth rate of 1.325 we obtain from this model
does not match the observed data. In particular, the data in Rose et al. [22] does not
indicate that there is a constant growth rate, but rather shows a leveling off of the
population over time. Furthermore, ecologists consider density dependent recruitment
more realistic, since as the total number of seeds increases, the chance that each indi-
vidual seed will germinate declines. Therefore, the germination probability is taken to
be a nonlinear function of ST (t), the total number of seeds produced at time t , instead
of a constant. Since the number of seeds produced depends on n(x, t), the resulting
system will be density dependent. In [22] the germination probability is modeled by
Pe(t) = (ST (t))−.33. The resulting nonlinear system is

n(y, t + 1) =
∫ Ms

ms

p(y, x)n(x, t) dx + J (y)(ST (t))−.33

∫ Ms

ms

s(x) f p(x)S(x)n(x, t) dx

=
∫ Ms

ms

p(y, x)n(x, t) dx + J (y)(ST (t)).67.
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The solutions to the resulting nonlinear system matches the data better than the solu-
tions to the linear system.

This nonlinearity substantially changes the qualitative and quantitative nature of the
model. For instance, as discussed above, in the linear model an asymptotic growth rate
is determined by the leading eigenvalue and a stable age structure is determined by the
eigenvector associated with the leading eigenvalue. We prove in another paper that for
this nonlinear model the solutions n(·, t) converge in L1(ms, Ms) as t → ∞, and that
this limit is independent of the initial population vector (provided that the initial pop-
ulation vector is nonzero) [20]. We denote the limit by w(·), and the normalized limit
v(·) = w(·)/‖w(·)‖. This latter vector is the stable age distribution for this system, and
is shown by FIGURE 3 (the “Density Dependent” curve). It follows from the Domi-
nated Convergence Theorem that the total population N (t) = ‖n(·, t)‖ converges to
‖w‖ as t → ∞, and that the limiting total population is independent of the initial pop-
ulation vector. This is illustrated in FIGURE 4, where the total population as a function
of time is shown for five different initial conditions.
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Summary A single species is often modeled as a structured population. In a matrix projection model, individ-
uals in the population are partitioned into a finite number of stage classes. For example, an insect population can
be partitioned into egg, larva, pupa and adult stages. For some populations the stages are better described by a
continuous variable, such as the stem diameter of a plant. For such populations an integral projection model can
be used to describe the population dynamics, and might be easier to use or more accurate than a matrix model.
In this article we discuss the similarities and differences between matrix projection models and integral projec-
tion models. We illustrate integral projection modeling by a Platte thistle population, showing how the model is
determined by basic life history functions.
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