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Abstract Many plant populations have persistent seed banks, which consist of viable
seeds that remain dormant in the soil for many years. Seed banks are important for plant
population dynamics because they buffer against environmental perturbations and
reduce the probability of extinction. Viability of the seeds in the seed bank can depend
on the seed’s age, hence it is important to keep track of the age distribution of seeds in
the seed bank. In this paper we construct a general density-dependent plant-seed bank
model where the seed bank is age-structured. We consider density dependence in both
seedling establishment and seed production, since previous work has highlighted that
overcrowding can suppress both of these processes. Under certain assumptions on the
density dependence, we prove that there is a globally stable equilibrium population
vector which is independent of the initial state. We derive an analytical formula for the
equilibrium population using methods from feedback control theory. We apply these
results to a model for the plant species Cirsium palustre and its seed bank.
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1 Introduction

Many plant populations have persistent seed banks. Seed banks consist of viable
seeds that have been produced in previous years. Instead of germinating, the seeds
have undergone dormancy and can remain viable in the soil for more than one season.
Seed banks buffer plant populations against environmental perturbations like fire or
pest outbreaks. Hence, even if all above-ground plant material is destroyed, seeds ger-
minate from the seed bank and, as a consequence, reduce the probability of population
extinction. Furthermore, seed banks act as a reservoir for genes and/or gene complexes
(Fenner and Thompson 2005; Venable 1989; MacDonald and Watkinson 1981; Kalisz
and McPeek 1992, 1993; Kalisz 1991; Edelstein-Keshet 2005; Mohler 1993; Claessen
et al. 2005; Brown and Venable 1991). The vital role of seed banks for population via-
bility necessitates incorporating seed banks specifically into demographic models to
avoid erroneous model predictions (Kalisz and McPeek 1992, 1993; Damgaard 2005).

Often the survival and/or germination probabilities decrease with seed age (Kalisz
and McPeek 1992; Alexander and Schrag 2003; Charlesworth 1980), in which case
it is important to keep track of the age distribution of seeds in the seed bank. In this
paper we characterize the seed bank as an age-structured population (so that it is
represented by a vector in R™), which is coupled with the dynamics of the associated
plant population. Furthermore we assume that seed production depends on the total
plant density and seedling establishment depends on the density of germinating seeds.
These two density-dependent processes cannot simply be modeled with one nonlinear
function, as density-dependent seed production only suppresses the density of newly
created seeds, but density-dependent seedling recruitment affects the total density of
germinating seeds in the population (which is the sum of new and old germinating
seeds). We assume that the density dependence in seedling establishment is due to
contest competition, and a derivation of this general relationship can be found in
Eager (2012). We consider both contest and scramble competition assumptions for the
density dependence in seed production, as per-capita seed production data in studies
such as Jarry et al. (1995) suggests that either could be the case.

Seed banks have been modeled as structured populations (Kalisz and McPeek 1992;
Brown and Venable 1991; Edelstein-Keshet 2005; Charlesworth 1980), but we are
unaware of any studies of the global asymptotic stability of a density-dependent plant-
seed bank model. We prove that, in the case where seed production is modeled with
contest competition, there is a globally stable equilibrium vector which is independent
of the initial population. In the case where seed production is modeled with scramble
competition, we obtain weaker global stability results. We apply our analytical results
to a plant-seed bank model for Cirsium palustre obtained from Ramula et al. (2009).

We show explicitly how the persistence of the population depends on the age-
dependent survival and germination probabilities of the seeds in the seed bank. In
agreement with Kalisz and McPeek (1992), Kalisz and McPeek (1993) and Damgaard
(2005) our model illustrates that ignoring the seed bank stage (assuming that all non-
germinating seeds die) leads to an overestimation of extinction risk: for some part of
the parameter space our model can predict population extinction in the absence of the
seed bank, but when including the seed bank an otherwise identical model predicted
a non-zero equilibrium population.

@ Springer



Global asymptotic stability

2 Plant-seed bank model
2.1 Plant population

The plant population at time ¢ is described by a vector n,, which is assumed to be in
the cone of non-negative vectors in a Banach space X forr = 0, 1, ... In a population
projection matrix (PPM) model (Caswell, 2001) X is a finite dimensional space R™
(so n; is a population vector), and in an integral projection model (IPM) (Briggs et al.
2010; Childs et al. 2003, 2004; Ellner and Rees 2006; Rebarber et al. 2012; Ramula
et al. 2009) X is often the space L'[L, U] of integrable functions on the interval
of stages [L, U] (so n;(x) is a function of a continuous variable x). In the absence
of a seed bank, and with the assumption that only newly created seedlings compete
with each other for space to establish, the plant population is governed by the abstract
nonlinear population projection model

net = Ang + bf (@1h(c"ny)), (2.1)

which is similar to the model studied in Rebarber et al. (2012) and Townley et al.,
2012. The nonlinear functions f and 2 model density-dependent seedling recruitment
and density dependent seed production, respectively.

The linear terms in (2.1) are as follows: the population projection operator A is in
L(X1), the space of bounded, linear operators from X to itself. An example of such
an A is an integral operator

U

An = / k(x, yn(y) dy,

L

from an IPM, where n € X| = L![L, U]. The operator A models the two ecological
processes of survival and movement from one stage to another. Since this process
cannot create new members of the population, »(A) < 1 (where r(A) is the spectral
radius of A). The vector b € X| models the stage distribution of juvenile plants, which
is assumed to be independent of mother plant, (Ellner and Rees 2006), and ¢’ is a
bounded linear functional on X[, where ¢’ n, gives the abundance of available seeds
produced by the population at time ¢ in a completely density-independent environment.
The notation ¢’ is used instead of ¢ in order to distinguish a functional on X from
a vector in X1, much like a row vector is distinguished from a column vector. An
example of b is a continuous probability distribution J(-) in an IPM representing
the stage distribution of juveniles. This is in contrast to the form that » commonly
takes in a finite-dimensional space like R™, where the juvenile stage distribution is
usually the vector [1 0 - - - 017. 1t X; = L'[L, U], there is no analogue for the vector
[10---0]7 in R™, since a Dirac-Delta distribution centered at the smallest value for
the stage variable, is not in X 1. The size distribution of juvenile plants is not likely to
be concentrated at a single value, as variations inevitably occur within populations, so
a probability distribution is more appropriate in this setting.
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An example of the functional ¢’ in an IPM is
U

c'n= /C(y)n(y) dy,

L
forn € L'[L, U].

2.2 Density dependence

Consider the following feedback between plants, seeds and seedlings, which is
assumed to occur in one time-step:

seed production: plants to seeds;
germination: seeds to seedlings;
establishment: seedlings to plants

We will assume that the seed production and establishment processes can be density
dependent. The seed production density dependence will be modeled with the function
h and the establishment density dependence with f.

Seed production: In many models the number of seeds produced by the plants in
the population is assumed to be density independent (for example the model in Rose
et al. 2005). In the model studied in Sect. 3.1 we assume such a density-independent
relationship by letting 4 (y) = y, so the number of new seeds produced in the popula-
tion during time ¢ will simply be ¢! n;. However, some plant populations experience a
density-dependent relationship between the abundance of plants and seeds produced
(see, for example, Jarry et al. (1995)). Therefore, in Sects. 3.2 and 3.3 we will assume
that the abundance of new seeds produced at time # is 4(c’ n;), where  is a nonlinear
function (which we’ll assume has a maximum of cTn,, the seed production in the
complete absence of density dependence).

Establishment: The density dependence in establishment will be modeled as fol-
lows: The scalar quantity f(y) represents the density of juvenile plants generated by y
available germinating seeds. We assume that y is the sum of newly created seeds that
germinate at time ¢ and the sum of all older seeds that germinate. We assume that seeds
become seedlings (via germination) in a density-independent way. The diminishing
amount of available microsites then causes a density-dependent relationship between
the abundance of germinating seeds (seedlings) and the subsequent abundance of new
plants in the population. Note that we are assuming that density-dependent feedbacks
on seedling establishment are limited to feedbacks from other seedlings. This assump-
tion was used in the IPM in Rose et al. (2005) for the monocarpic plant Platte thistle
(C. canescens). It is certainly possible that adult conspecifics can demonstrate a neg-
ative density-dependent feedback on seedling establishment (Silva Matos et al. 1999;
Pico and Retana 2008), and therefore we will discuss the implications of weakening the
assumption that feedbacks are limited to feedbacks from other seedlings in Sect. 3.4.

It is natural to view f(y) as the product of the number of germinating seeds y
available and the probability g(y) that a germinating seed eventually becomes a new
plant in that time-step. Thus
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fO) =g»y. (2.2)

We will call the function g the establishment probability (which is sometimes known
as the recruitment in the literature).
We consider the following conditions on f and g:

(D1) g € C(0, 00), g is a decreasing function on (0, 00), f(0) = 0, and f is strictly
increasing and concave down.

These are the same as the conditions on g and f assumed in Rebarber et al. (2012)
and Townley et al. (2012). Some ecologically motivated functions that satisfy these
assumptions are power functions of the form

f(y) = By* witha e (0,1) and B > 0, 2.3)

and Michaelis—Menten type functions of the form

o

) = ﬁ witha > 0 and 8 > 0. 2.4)

See Eager et al. (2012) for a derivation of the Michaelis—Menten function for seed-
to-plant density dependence in a general plant population at its equilibrium.

When seed production is density independent (so there is only one nonlinearity),
the global asymptotic stability of the plant-seed bank population is a corollary of the
work in Rebarber et al. (2012). When seed production is density dependent the two
nonlinearities f and & are coupled. The analysis of global stability in Sects. 3.2 and 3.3
will therefore require a substantial modification of the results in Rebarber et al. (2012)
and Townley et al. (2012), which is the main mathematical novelty in this paper.

General global stability results can be found in Hirsch and Smith (2005) and Smith
and Thieme (2011). However, for many ecological applications, these results cannot
be readily applied. This is because of the types of Banach spaces X and the types of
vectors b and functionals ¢’ that are likely to appear in the applications we consider.
In particular, in order to apply Hirsch and Smith (2005), X cannot be L! [L,U], a
standard space for Integral Projection Models. since the positive cone in L'[L, U]
has empty interior. Furthermore, since b represents the stage distribution of newborns
after one time step, we expect it to have some entries which are zero, which makes it
difficult to apply Hirsch and Smith (2005)—see Sect. 2 of Rebarber et al. (2012) for
a discussion about this.

2.3 Age-structured seed bank model

We assume that the seed bank is structured with respect to the age of the seeds, in the
sense that the survival and germination probabilities of the seeds in the seed bank are
a function of age. There is evidence that this is true in general (Alexander and Schrag
2003; Kalisz and McPeek 1992; MacDonald and Watkinson 1981). We further assume
that there is an age after which a dormant seed in the seed bank is either no longer
viable or is placed in a final class of “old” seeds.
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We will use the following notation: the seed bank at time ¢ has N discrete age
stages, S1,r, 82,1, - - - SN, Where s , are seeds that are j time-steps old at time ¢. Then
st = [S1,6, 82,4, - - - sN,t]T is the seed population vector at time ¢. As previously stated,
the number of available germinating seeds y, at time ¢ is the sum of newly created
seeds and available old seeds at time 7. Written mathematically,

~ T
Ve i=arh(c ny) +azsi +azsy + -+ ANLISN g,

where a; € (0, 1) is the probability that a (j — 1)-year old seed germinates in one
time-step.

Weuse y; € (0, 1) to denote the probability of not germinating and survival in one
time step from the (j — 1)th age class to the jth age class, for j = 1,2,..., N. The
number yx 41 is the product of not germinating and survival in one time step from the
Nth age class to all later ages. Because old seeds cannot directly create new seeds we
assume thataj +y; < 1forall j =1,2,..., N + L

The seed population vector at time ¢ + 1 is obtained from the seed population
vector at time ¢ by the following: s1 /41 consists of the number of seeds produced
by plants which survive and do not germinate in the current year. Later seed classes
sj.1+1 consists of seeds that do not germinate and survive from seed class s;_1 ,, for
Jj =2,...N —1.Thelast seed class sy ; contains all ages N or higher, so sy ;41 also
contains seeds that do not germinate and survive from sy_1 ; and sy ;.

Hence the seed bank population {s;}7°, evolves in RY for some integer N which
represents the oldest seed class. The resulting plant-seed bank model can be written
as

~ ~ T
niy1 = Ang +bf (3r), ¥r = arh(c’ ny) +azs1+ -+ anpISN
T
S1,t41 = y1h(c’ ny)
82,141 = V2Sit
(2.5)
SN—1,t+1 = YN—1SN-2,¢
SN,t+1 = YNSN—1,t + VN+1SN t-
N+1 N+1

In applications {c} =1 and {y;} =1 will be decreasing, but we do not insist upon
this in our results.

2.4 Abstract formulation

We will write (2.5) as an abstract first-order system, in order to prove the desired global
stability results. Let the norm on the Banach space X be denoted by || - || x,, and let
X, be RN with associated 1-norm

N
T
I x2. - xn 1T =D 1x1,
—
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which measures total seed population. We wish to work with nonnegative vectors in,
and nonnegative operators on, X1 and X5. Let K1 and K3 be reproducing cones for X
and X», respectively, with the partial ordering > (see Krasnosel’skij et al. (1989) for a
general theory). We will call vectors in K| and K, non-negative vectors. An example
of a reproducing cone in R is {[xy, x2, ..., x,]7|x; > 0 for j = 1,2,..., N}. An
example of a reproducing cone in LY[L,Ulis {f e L[L, Ullf(x) > 0a.e}. In both
of these examples the idea of a non-negative vector is consistent with intuition.

For i = 1,2 we will call an operator on X; that maps non-negative vectors to
non-negative vectors a non-negative operator. An example of such an operator is an
N x N matrix A with all non-negative entries, acting on RV

The following hypotheses are natural in the study of plant-seed bank dynamics.
First, we state the conditions on the data for the plant population, (A, b, ¢).

(E1) A € L(X)) is a non-negative operator with spectral radius r(A) < 1;

(E2) b is a non-negative vector in X \ {0};

(E3) ¢T: X, > Risa strictly positive, continuous, linear functional, i.e. there exits
Cmin > 0 such that

c'n = cminlln|l, foralln > 0; (2.6)

(E4) Thecoefficientsaj, y; € (0, 1)forall j =1, 2, ... N+1.Furthermore o j+y; <
1forall j =1,2,...N + 1.

Conditions (E1) and (E2) are not restrictive for most plant population models.
Condition (E3) is needed for us to prove the global stability of the nonzero equilibrium
population for general X, but can be weakened in the case where X; = L'[L, U]
and A is an integral projection operator in an IPM. We discuss this case further after
the proof of Theorem 3.3, and show via Corollary 3.1 that our global stability results
hold under the weaker assumption that c¢'n>0forallne L'Y[L,UIT.

We can describe the coupled system (2.5) by a single first order system. The state
of this system is

n; = [ny s,]T CX: =X ®X>.

All convergence discussed in this paper is in the Banach space norm defined on X by

-0=10-lx, + 1.
Let
b
. A9 - 0 o
A:=|:FS], b= 2k ¢ i=laph(c™) al ],
0

Here ¥ :=[0 O --- 0] € L(X2, X1) where O represents the zero vector in X1;

[ :=[nh) 0" - 071" e £L(Xy1, X2)
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where 07 is the zero functional on X; and S € £(X3) is the N x N substochastic
shift matrix

00 ---0
»0 -0
§—|0 -0

0 - yn YN+
anda? :==[ap a3 -~ an+1]. We can write the coupled system (2.5) as

il = Al +bf G, Fr =& iy 2.7)

Notice that, unless 4 is linear, I" is a nonlinear operator, which makes A a nonlinear
operator. The nonlinearity of / also implies that the functional ¢7 is nonlinear. These
nonlinearities are the substantial difference between the model in this paper and that
in Rebarber et al. (2012) and Townley et al. (2012).

3 Global stability results
3.1 Density independent seed production

In this section we consider density independent seed production, i.e. where A(y) =y
for all y. We will obtain global asymptotic stability results for (2.7), and hence for
(2.5) by applying Rebarber et al. (2012). To do this we will need the concept of the
stability radius of the linear system

A1 = Afy, + pbéT iy,

where p is a scalar and f(y) is replaced with f(y) = py. The stability radius p, is the
smallest positive p such that r(A 4+ pbé”) = 1. See Hinrichsen and Pritchard (2005)
for details, and for the fact that

=@Ed-A""p .

The asymptotic behavior of (2.7) depends upon the relationship between the func-
tion g (see (2.2)) and the stability radius p,. Roughly speaking, the nonlinear estab-
lishment probability function g needs to be able to achieve the value p, for there to be
a non-zero equilibrium. In particular, if g(y) < p, for all y > 0, then the population
dies out. Furthermore, g needs to be able to eventually fall below p, for the population
to settle down, i.e. if g(y) > p, for all y > 0 the population can grow without bound.
If p. is between these two thresholds the population has a globally asymptotically
stable, strictly positive equilibrium vector. Let

8oo i= lim g(y), go:= lim g(y). (3.1
y—00 yNO
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Theorem 3.1 Let h(y) = y and suppose that (D1), (El), (E2), (E3) and (E4) hold.

(1) If pe > go, then the zero vector is a globally stable equilibrium for (2.7) in the
sense that for every non-negative n,

t—00

Furthermore, for every € > 0, there exists § > 0 such that |n;|| < € forallt € N
whenever ||ng] < 6.
(2) If pe < goo, then there exists a non-negative initial vector ngy such that

lim sup ||72; || = oo.
11— 00

(3) If pe € (goo» £0) then there exists y* such that f (y*) = pey*. The vector n* given
by

7t = pey* (I = H)7'b

is a strictly positive globally asymptotically stable equilibrium of the system (2.7)
in the sense that for every positive ng € X1 ® X»

lim 7, = i*.
t—00

Furthermore, for every € > 0, there exists § > 0 such that |n; — n*|| < € for all
t € N whenever ||ng — n*| < 4.

Proof We need to show that when (E1), (E2), (E3) and (E4) are satisfied then (2.7)
will satisfy conditions (A1), (A2) and (A3') in Rebarber et al. (2012), and we will
be able to apply Theorems 3.1, 3.2 and 3.3 in that paper to obtain (1), (2) and (3) of
Theorem 3.1, with p, replaced by p.. Since b > 0 in X, it immediately follows that
b>0inX = X1 ® X», showing that (A2) is satisfied for b.

Foreveryn € X1 ® X»,

di=aic’n+als > arcminlinllx; + @minllsllt, min := min{e;} > 0.
Thus ¢7 71 > Eminll71||, where
Cmin = Min{e’| Cmin, *min},
verifying (A3’) for ¢. Since r(A) < 1 and yn+1 € (0, 1),
r(A) = max{r(A), yn+1} < 1,
verifying (A1) for A. O
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It is important to note that, while Theorem 3.2 in Rebarber et al. (2012) suggests
that (2) in Theorem 3.1 should state that lim,_, « ||7;|| = oo we can only actually
say that lim sup,_, . ||I7;]| = oo in both Theorem 3.2 in Rebarber et al. (2012) and
Theorem 3.1 in this paper.

While the proof of Theorem 3.1 is a simple corollary of Theorems 3.1, 3.2 and 3.3
in Rebarber et al. (2012), the above analysis reveals an interesting observation with
regard to plant-only models and analogous plant-seed bank models. Notice that, by a
simple calculation

~ Pe

— , 32
Pe = Tl (T =5 T, G2

where 'y = [y 0 --- 017 and De = ' (I = A)~'b)~L. Note that if one replaces the
term

flath(cne))
in the plant-only model (2.1) with
paictny,
one has
ni1 = (A + paibe'ny,

from which it follows that the stability radius of the plant-only model (2.1) is p =
Pe/ai.

By inspection it is clear that if a seed bank is present (i.e y1, ap > 0) the stability
radius of the plant-seed bank model will be smaller than that of the plant-only model,
ie.

ﬁ _ De <&
T ay+aefd =57 ]

as (I —8)~! # 0 and > 0 entry-wise. Therefore, since the conditions needed to have
a positive globally stable equilibrium are p, < go (in the plant-seed bank case) and
Pe/a1 < go (in the plant-only case), if

~ Pe Pe

Pe = el -5, " a

then the plant-seed bank model will predict persistence while the plant-only model
will predict extinction.
Furthermore, it follows from another simple calculation that

_ -1, 17
M] , (3.3)

Pe

(I-A)"'h= [(1 —A)
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which implies that

-5 1"
" = (pey”) [(1 —A)7 b (p#] . (3.4)

Therefore, the long-term structure of the plant population ((/ — A)~1b) is the same
in both the plant-seed bank and plant-only models. The only difference is that

Pe Pe
< —,
aq -I—O[T(I - S)—1F1 o1

ﬁe =
and therefore the solution y* of the equation

F ) = pey

is larger than the solution y* of the equation
p
f) ==y
o1

Since f is assumed to be increasing, the equilibrium recruitment f(y*) = p.y*
in the plant-seed bank model will be larger than the equilibrium recruitment f(y*) =
Pe/c1y* in the plant-only model (see Fig. 1a). Therefore having a seed bank increases
the size of the equilibrium plant population, while keeping the equilibrium population
structure (I — A)~!b the same.

If the equilibrium population in the plant-only model is already at or near saturation,
the increase in equilibrium population achieved through having a viable seed bank

(@)_ (b)

fly)

— fly) — f)
---- Plant-Only ---- Plant-Only
........ Plant-Seed Bank = Plant-Seed Bank
0 1000 2000 3000 4000 5000 0 50000 100000 150000
y b

Fig. 1 An illustration of the differences between having and not having a viable seed bank through the
calculation of the equilibrium recruitments p,y*/a; (“plant-only”) and p.y* (“plant-seed bank™) used in
the calculation of n* and 77*. a Illustrates the effect of having a seed bank when the equilibrium recruitment
is not near saturation and b illustrates the effect of having a seed bank when the equilibrium recruitment is
near saturation. The differences between the horizontal dashed lines indicates roughly the long-term effect
of having a viable seed bank on the size of the equilibrium plant population
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will be negligible. An example of this occurring can be seen in Fig. 1b. Therefore,
while having a viable seed bank in the absence of environmental stochasticity (i.e.
y1, a2 > 0) will always be advantageous for the plant population in the long-term
(sometimes even elevating it from extinction), the degree to which the seed bank
positively impacts the long-term plant population size is determined by how close the
equilibrium population in the plant-only model is to its carrying capacity without help
from the seed bank.

3.2 Density-dependent seed production: contest competition

We now assume that & € C[0, co) is increasing and concave down into [0, 00), with
h(0) = 0. In this case the seed production nonlinearity models contest competition
(Anazawa 2012), where it is assumed that when there are many competitors some
competitors obtain all the resources they need for seed production, while the rest
obtain insufficient resources. The mathematical assumptions on % are reflecting the
idea that, as the number of potential seed production events increases, so does the
number of successful seed productions, but at a decreasing rate. We also assume that
h(y) <y for every y > 0, so the maximum density-dependent seed production is no
greater than the density-independent seed production. For the remainder of the paper
we will assume that

8o = lim g(y) =0,
y—00

i.e. the establishment probability goes to zero as the number of seedlings goes to
infinity.

We now motivate what we expect for the equilibrium vector. Since there are two
nonlinearities f and & in this model, it is reasonable that our results should depend
upon two stability radii, as A is a nonlinear operator. The presence of the second
stability radius actually gives us an extra degree of freedom to identify a nonzero
equilibrium vector. To see this, assume for the moment that 4(y) = p»y for some
fixed p2 € (0, 1). The number p; is what we envision as the equilibrium proportion of
maximum seed production ¢’ ;. This would indeed be a constant if y is an equilibrium
population. Now consider the system (2.5), with h(cTny) replaced by pchnt. This
modified system is equivalent to

firgl = Apii +bf (i), §i =ity 3.5)
with

. A 0 _
A, ::[Fms}’ &l =1[porc’ a1, T, == [payic’ 0 ... 077

Notice that A p» isnow alinear operator. It follows from Theorem 3.1 that,if g > p1
the system has a globally stable equilibrium vector
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it = piy* (I = Ap)~'b,
with stability radius

pr=@hLd— Ay "h™!
and y* is the positive solution of

fO™ = pry*. (3.6)

Since the linear data A D2 bandé p, are non-negative pj is the only positive number

p such that r(A pt pl;EIT,z) = 1. Theorem 3.1 then implies that if gy < p; the

equilibrium is the zero vector and if gop > p; the equilibrium is a non-zero vector. We

will show in the upcoming theorem that this informal discussion actually coincides

with the model predictions when we allow & € C[0, co) to be increasing and concave

down into [0, c0), with #(0) = 0, instead of h(y) = p>y.

We can determine (p1, p2, y*) at the equilibrium easily through a system of three
equations and three unknowns, in terms of the original system data. Note that

- o [u—-a! 7

= Ap) = [(1 — ) T (1 — A7 (1= $)7! } ’

Hence, by a simple computation,

P2l +al (I —8)7'Ty)
Pe '

pil=a d—Ap) b= (3.7)

where p, := (¢! (I — A)~'b)~!. Furthermore,

ST -9t 7"
ﬁ*:ply*(I_Apz)—lbz[n* S*]sz]y* [([ _ A)—lb p2( > ) 1} . (38)
e

T, % _ py*
=

and, since ¢

p2p1y*
pe

h(cTn*) = ppc’n* = 3.9)

We can think of Egs. (3.6), (3.7) and (3.9) as the following three (slightly rewritten)
equations in the three unknowns pp, pp and y*:

g(y") = pi
_ Pe
PP = G e (I — 5)1Ty)
* *
h(ply ) _ oyt (3.10)
Pe Pe
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From the above discussion and component-wise calculation on (3.8) we see that if
(p1, p2, y*) satisfies (3.10), then 72* is a non-zero equilibrium for (3.5).

Since p1, p2 > 0 (by the second equation in (3.10)), either y* = 0 or the point
(p1, p2, y*) isin (0, go) x (0, 1) x (0, 00). If (p1, p2, y*) € (0, go) x (0, 1) x (0, 00)
one can obtain the triple (p1, p2, y*) easily via (3.10) and compute the equilibrium
n*=py *(I — pz) 15, whose global asymptotic stability is the subject of the next
theorem.

Theorem 3.2 Suppose that (E1), (E2), (E3), (E4) and (D1) hold, and that h(y) is
continuous, strictly increasing, and concave down on [0, o0o0) with h(0) = 0. Further
assume that h(y) <y on [0, c0).

N

Pe
ap +al (I = 8)~'Ty

=@d-An7"h)" > g,

then the zero vector is a globally stable equilibrium for the system (2.7) in the
sense that for every non-negative n,

lim 7n; = 0.
t—00

Furthermore, for every € > 0, there exists § > 0 such that |n;| < € forallt € N
whenever ||ngl|| < 8.

(2) If there exists a solution (p1, p2, y*) of (3.10) in (0, go) x (0, 1) x (0, o), then
the vector n* given by

i = pry*(I = Ap)~'b

is a strictly positive globally asymptotically stable equilibrium of the system (2.7)
in the sense that for every positive ng € X1 ® X»

—00

Furthermore, for every € > 0, there exists § > 0 such that |\n, — n*| < € for all
t € N whenever ||ng — n*| < 8.

The somewhat lengthy proof of this theorem has been put in Appendix A. The
above result implies that the plant and seed bank populations converge to unique equi-
librium populations, independent of non-zero initial populations, provided seedling
establishment and seed production are limited by contest competition. Implicit in the
statement of Theorem 3.2 is that if one writes the model (2.7) as

niy1 = Ty,
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where T : X+ — X, and if g and h are assumed to be differentiable at 0, then T is
Fréchet differentiable at the zero vector in X, with Fréchet derivative

T'(0) = Ay + gobé! .
A triple (p1, p2, ¥*) in (0, go) x (0, 1) x (0, co) solves (3.10) if and only if
L ea(Ap, + pibé)).

To show that r (A + gobéT) > 1 when (p1, pa, y*) isin (0, go) x (0, 1) x (0, c0),
we note that the stability radius

pr=@EhLd—A, "p™!
of the linear data (A P l;, Egz) is greater than the stability radius
p=@Cd-A)'p"!

of the linear data (A1, b, ElT), (expand (I — A(.))’l by its Neumann series and use the
fact that p» < 1). Since go > p1, this implies that

r(Ay + gobé™) > 1.

We now rule out that r(A; + gOEElT) = 1. Suppose that it is. Then from Kras-
nosel’skij et al. (1989) (see also Theorem B.6 in Lubben et al. (2009), which places
Krasnosel’skij et al.’s work into this (A(.yb, ¢(.)) framework) there is an eigenvector v
such that

(A~1 + g()l;EIT)f) =17.
Using a standard manipulation we get that
go=Cld-A)"D) " =p<p
which contradicts that gg > p;. Thus, r(T'(0)) > 1 implies that 7* is positive, as
expected.
We’ve also shown in Theorem 3.2 (1) that
@ d =AD"~ > g
implies that 7i* = 0. But (¢] (I — A;)~'h)~" > g if and only if

r(A1 + gobé]) = r(T'(0)) < 1.

Thus, r(T'(0)) < 1 implies that 7* = 0, as expected.
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3.3 Density-dependent seed production: scramble competition

In this section we consider the case where the function 4 models scramble competition
(Anazawa 2012).

In scramble competition, when there are many competitors, the available resources
are insufficient for any one competitor. This is often assumed to be the case for plant
populations (Symonides et al. 1986). In this case we no longer require / to be increasing
and concave down, since for large y it is possible that seed production eventually
decreases to zero. However, a function & that describes scramble competition may, for
small y > 0, look much like a function that describes contest competition (increasing,
concave down, with #(0) = 0), only to eventually level off and decrease so that
limy .0 h(y) =0.

A key to the proof of Theorem 3.1 is the fact that & is sector bounded, which means
here that

|h(y) = h(y)] < paly — ¥ (3.1
forall y > 0.
It is clear that 4 does not need to be strictly increasing for this to occur. In this

section we will consider the Ricker function proposed in Jarry et al. (1995) for seed
production density dependence:

hr(y) = yexp(—=y/cm), (3.12)
where y = ¢, elicits the maximum seed production ¢, exp(—1). This function may

or may not be sector bounded, see Fig. 2. We will show that some of Theorem 3.2
holds for h = hpg.

Sector-Bounded Not Sector-Bounded

1.0
08

hR(y)
hR(y)
04

02

Fig.2 Anexample of a Ricker function 4 g (modeling scramble competition), with sectors defined by lines
with slopes £ py (dotted). The figure on the left has py € (exp(—2), 1), which implies that i g is sector-
bounded, while the figure on the right has pp < exp(—2), which implies that /2 g is not sector bounded
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Theorem 3.3 Suppose that (E1), (E2), (E3), (E4) and (D1) hold and h = hp.

@)) If(ElT T-A)~ b1 > 80, then the conclusions in part 1) of Theorem 3.2 hold.

(2) If there exists a solution (p1, p2, y*) of (3.10) in (0, go) x (exp(—2), 1) x (0, 00)
then the conclusions in part (2) of Theorem 3.2 hold.

(1) Ifthere exists a solution (p1, p2, y*) of (3.10) in (0, go) x (0, exp(—2)) x (0, co0)
and f is further assumed to be C 1 (0, 00), with

i AT
r(A+inppr T F OO in(paypy) < 1

then n* is asymptotically stable.

The proof of this theorem is in Appendix B. The assumptions and conclusions of
Theorem 3.3 are very similar to that of Theorem 3.2, with the exception that the second
stability radius p» cannot be so small that the decrease in seed production #, as the
the number of maximum seed production events increases, is too steep at equilibrium
(see Fig. 2). Biologically this means that the equilibrium proportion of potential seed
production events that actually produce seeds needs to be large enough to avoid the
harsh consequences of scramble competition.

Now we consider specifically the case where X| = LY[L,U]and

X =L"L, U =nelL' L, Ulnx) >0a.e}. (3.13)

Here, we assume the population projection operator A € L(X1) is an integral
operator

1%

An = /k(x, yn(y)dy, (3.14)
L

from an IPM, and that the functional ¢’ is given by

U

cTn= /C(y)n(y) dy, (3.15)

L
forn € L'[L, UTT. If condition (E3) is changed to

U

c'n= / c(n(y)dy >0 (3.16)
L

forall n € Ll[L, U]" (.e. c(x) = O forall x € [L, U]), we can obtain the results in
Theorems 3.1, 3.2 and 3.3. Equation (3.16) is a weaker hypothesis than (E3), which
insists upon the existence of a cpin > 0 such that ¢(x) > cpin for all x € [L, U].
L'[L,U]" is a natural mathematical space for an IPM, and (3.16) is a reasonable
assumption for an IPM to satisfy. Formally,
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Corollary 3.1 Suppose that X' = L'[L, U] and X7, A and cT are given by (3.13),
(3.14) and (3.15), respectively. Assume further that (E'1), (E2), (E4), (D1) and (3.16)
hold.

(1) If h(y) =y, then the conclusions of Theorem 3.1 hold.

(1) Ifhisincreasing, concave down, with h(0) = 0, then the conclusions of Theorem
3.2 hold.

(1) If h = hg, then the conclusions of Theorem 3.3 hold.

The proof of this corollary is in Appendix C.
3.4 Nonlinear feedbacks from adult plants

As alluded to in Sect. 2, in perennial plant populations adult conspecifics can elicit
a negative density-dependent feedback on seedling establishment (Silva Matos et al.
1999; Pico and Retana 2008). To incorporate a negative feedback from adult con-
specifics on seedling establishment we will assume that f is a function of y;, and of
some measurement of the amount of resources that are taken up by adult plants at time
¢, which we will call Z, := dT An,. Here, d is a functional from X; to Rt modeling
the amount of resources that a seedling would use for establishment that is taken up
by the surviving plants in the plant population at time ¢. It is reasonable to assume, as
before, that f (-, z) is increasing, concave down in y with f(0, z) = O for each fixed
z. To model the negative feedback from adult plants we will then assume that f(y, -)
is a decreasing function in z for each fixed y. Examples of functions that incorporate
these assumptions are a modified power function of the form

By

0= Gy

witha € (0,1) and B > 0,

or a modified Michaelis-Menten-type function of the form

f) = i

——— witha >0 and 8 > 0.
B+z+y

With these new assumptions, (2.7) becomes
firrr = Afiy + b f (51, Z0). (3.17)
Because f no longer satisfies

[f ey z0) — FO5 291 < pilye — Y7,

the methods used in Theorems 3.1, 3.2, 3.3 cannot be used to establish the global
stability of the plant-seed bank population in (3.17) under these assumptions. However,
if we assume that / is either linear or models contest competition, we can use the results
from Theorems 3.1 and 3.2 to show that, in many cases, the plant-seed bank population
is eventually bounded between two globally stable plant-seed bank populations. To
see this, note that since f is decreasing in z and # is increasing, (3.17) is bounded
from above by the model
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iyl = Ay +bf (3, 0) (3.18)

forall + > 0. Let

o F(y,2)
g0(z) := lim sup .
y>0 y

Theorems 3.1 and 3.2 imply that, if (¢7 (1 — A1)7'b)~! > g(0), then 2, has a
nonzero, globally stable equilibrium population 72*. Since 7; is always less than 7;,
there exists an My € N such that, for all ¥ > M,

i, < ii*. (3.19)

Using this we find that, since f is decreasing in z, 7, is greater than n, for all
t > My, where 7* := dT Ai* and

ney =An +bf(y, 7). (3.20)

By Theorems 3.1 and 3.2, if (ElT(f — AD7'h)7 > go(z*) then n, has a positive,
globally stable equilibrium population n* and there exists a M| > M such that, for
allt > My,

fi, > n*. (3.21)

The estimates (3.19) and (3.21) for large ¢ provide an asymptotic estimate for n;. As
long as n* # 0 one could continue to in this way to construct a decreasing sequence

{fzj. };?0 o that overestimates the population in (3.17) and an increasing sequence {n j ?‘;0

that underestimates the population in (3.17). The global stability of 7, would then
follow if the limits of the two sequences are the same, which remains an open question.

4 Example

We now illustrate the utility of our results with a modified IPM model for the plant
C. palustre L. (Asteraceae) and its seed bank (Ramula et al. 2009). Cirsium palustre
is a tall, short-lived, monocarpic herb that is widely distributed throughout northern
Europe and eastward to central Asia. Reproduction is usually fatal for C. palustre. In
this model the plant’s rosette diameter x is a continuous stage variable. We denote
the plant population at each time ¢ with the function n(x);, and the operator A is an
integral operator, which takes the form

U U

An :z/p(x,y)n(y)dy =/S(y)(l = fr(egx, y)n(y)dy,

L L
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for n € L'[L, U], where s(y) is probability of survival, fp(y) the probability of
flowering, and g(x, y) the probability of plants that were size y becoming plants of
size x in one time-step. L and M are the minimum and maximum sizes for the plant
population, respectively. The (1 — f,(-)) is presentin p(-, -) because flowering is fatal.
The functional ¢’ takes the form

U U

c'n ::/F(y)n(y)dy =/fp(y)fd(y)n(y)dy,
L

L

where f;(y) is the seed production of a plant of size y in each time-step. The vector
b is assumed to be a (truncated) normal probability distribution J(-)

In the model by Ramula et al. (2009) the seed bank was assumed to be one dimen-
sional. We we modify this assumption to allow for a two-dimensional seed bank, where
seed survival in the seed bank is s; for one-year old seeds and s? for seeds two years
and older. Since the seed bank is two-dimensional we are assuming that all seeds two
years and older have the same survival and germination probabilities as two-year old
seeds. The germination rate for fresh seeds is s, and the recruitment (germination)
probability of older seeds is s,. Thus, a1 = s, 00 = @3 = 55, ¥1 = (1 — s¢) and
Y = (1 — sr)ssz. We will first assume that f and & are Holling functions of the form

oy _ _my
f(y)——ﬁ+y h(y) P

where « is the maximum density of established seedlings, ¢;, is the maximum possible
seed production, and B is seedling establishment’s half-saturation constant. In this
scenario we are assuming that density dependence in seed production is subject to
contest competition. With these assumptions, our model becomes

U U
n(x)1 =/p(x, ny)dy + J(x) f | seh /F(y)n(y)tdy + 5,(S1,0 +52,1))
L L
U
Stast = (1= so)h / F()n(y)dy
L
2,41 = (1 — 85,8551 + (1 — 5,)5252,.- (4.1)

Using the data in Ramula et al. (2009), with the assumption that «, 8, ¢;, > 0, (4.1)
clearly satisfies the conditions (E1),(E2),(E4), (D1) and (3.16). Figure 3 shows trajec-
tories of the solutions to (4.1) with two different («, 8, ¢;;) combinations and several
initial populations, as well as the (pi, p2, y*) combinations elicited by these para-
meter combinations. Notice that, while both parameter combinations elicit eventual
convergence to the equilibrium vector, transient amplifications and attenuations can
be very pronounced depending on the initial population structure.
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(a) g (b)
@ | -=-- Analytic Equilibrium Population ~~"~ Analytic Equilibrium Population
o 8
g1 c
O
o
— = 9Q
g £%
o 8 |
g g
o o 4 -t & -- =h=teo;
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t t

Fig. 3 Example population trajectories from the model (4.1) for the following (c, B, ¢;) combinations:
a (2,000, 2,500, 10,000) and b (200, 400, 10,000), with (pj, p2,y*) combinations (a)
(0.509, 0.861, 1429) € (0, gg) x (0,1) x (0, 00) = (0,0.8) x (0,1) x (0, 00) and (b) (0.648, 1,0) ¢
(0,0.500) x (0, 1) x (0, 00). The model in (a) predicts global asymptotic stability of a non-zero popu-
lation vector, while the model in (b) predicts the population will go extinct. The initial populations are
|lngl] = 500, 1, 000, 1, 500, 2, 000 both distributed uniformly accross plant sizes and skewed towards
smaller plants

o
(a) § b ---- Analytic Equilibrium Population (b) o ! -=-- Analytic Equilibrium Population
g | 81
o
© f=3
o
o 'l
o o~
el
N o
j=3
= % T p— &
£ g £ g/
o 4 -_
3 <
o
- g
[= 2! o
T T T T T T T T T T
5 10 15 20 25 5 10 15 20 25
t t

Fig. 4 Example population trajectories from the model (4.1) with the same («, B, ¢;;) combinations as
in Fig. 3, with (py, pp, y*) combinations (a) (0.520, 0.858, 1349) € (0, gg) X (efz, 1) x (0,00) =
(0,0.8) x (0, 1) x (0, c0) and (b) (0.648, 1, 0) ¢ (0, 0.500) x (e_z, 1) x (0, 00). The model in (a) predicts
global asymptotic stability of a non-zero population vector, while the model in (b) predicts the population
will go extinct. The initial populations are ||r2g|| = 500, 1, 000, 1, 500, 2, 000 both distributed uniformly
accross plant sizes and skewed towards smaller plants

We now assume that density dependence in seed production is subject to scramble
competition. Figure 4 shows trajectories of the solutions to (4.1) with & equal to the
Ricker function

hr(y) = ye /",

where now ¢, /e is the maximum possible seed production. These trajectories were for
the same («, B, ¢;,,) combinations and initial populations as Fig. 3. Notice that, much
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Equilibrium Plant Population Distribution
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Fig.5 The long-term distribution of the plant population from (4.1), which is proportional to (/ — A~ 1p

like the model with contest competition, both parameter combinations elicit eventual
convergence to the equilibrium vector, with transient amplifications and attenuations
that can be very pronounced depending on the initial population structure. This global
asymptotic stability was present for all biologically realistic («, 8, ¢;;) combinations.
Thus, while Theorem 3.3 states that there are (pg, p2, y*) combinations that do not
elicit global asymptotic stability, in this example these combinations do not appear to
occur.

Figure 5 shows the long-term size distribution of the plant population which, pro-
vided that the equilibrium is non-zero, will always be proportional to the vector
(I = A1, regardless of what («, B8, ¢;;) and h are.

5 Discussion

We proved the existence and global stability of an equilibrium population for a class
of density-dependent structured plant population models with an age-structured seed
bank. We showed mathematically how a plant-only model can predict extinction, while
the addition of a seed bank (i.e. assuming that seeds that don’t germinate initially are
still viable after one year) can cause the prediction of persistence of the same plant
population as t — oo. We applied our theoretical results to a plant-seed bank model
for C. palustre. The techniques we used include so-called “small gain” arguments and
the use of different stability radii that are common in engineering problems involving
feedback systems, which have been modified from Rebarber et al. (2012) and Townley
et al. (2012). When the seed production is density independent, the modification is
minor, see Sect. 3.1. However, if the seed production is density dependent (i.e. & is
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nonlinear) there are two nonlinearities present in the model. In his case the global
stability properties are determined by the relationship (3.10) between the two stability
radii p; and p; (determined by the linear part of the system) and the nonlinearities g
and . These techniques point the way towards analysis of more complicated density
dependence.

We provide an explicit formula for the equilibrium population, which can then be
analyzed using sensitivity analysis to gain biological insight with regard to how differ-
ent life-history traits influence the size and structure of the population at equilibrium.
Also, one could use the results of this model to study the upper bound, lower bound,
mean or moments of a stochastic population model with a deterministic signature
similar to that of (2.7).

The results in this paper are applicable to different types of density-dependent
plant-seed bank models in ecology due to the fact that we assumed very little about
the mathematical object used to model the plant population. For example, many ecolo-
gist use integral projection models (IPMs) for plant populations (because fecundity and
survival typically depend on plant size, which is a continuous stage variable (Childs
et al. 2003, 2004; Rose et al. 2005; Ellner and Rees 2006; Ramula et al. 2009). One
limitation of the mathematical analysis in this paper is that we initially assume that
density-dependent feedbacks only occur from seedlings to other seedlings and ignore
density-dependent feedbacks from adult plants. While the ramifications of this over-
simplification is dependent on the biological system of interest (whether the plant is
an annual or perennial, for example), we showed that, in the case where / is linear
or models contest competition, when one adds the assumption of negative density-
dependent feedbacks from adult plants the resulting population is often eventually
bounded between two positive, globally stable equilibrium populations. This suggests
that, in many cases, our initial oversimplification is not an egregious one.

In addition to addressing feedback from adult plants, other future research related
to the results in this paper include broadening the class of ecologically plausible
functional forms for A, structuring the seed bank with respect to a variable other
than age (e.g. how deep the seeds are buried in the soil), as well as incorporating
stochasticity into the model.
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helpful comments about the mathematical model during the final stages of this work. The authors would also
like to thank Associate Editor Sebastian Schreiber and the two anonymous reviewers for their constructive
suggestions that greatly improved the quality of the manuscript.

Appendix A
Proof of Theorem 3.2 Without loss of generality, we can assume that ng is in K \ {0}.
Ifitis not, thens; # Oforsomei = 1,2, ... N, which would imply thatn; € K\ {0}.

To prove part (1) of Theorem 3.2, since (EIT(I~ — A p) > 80 = supy_o g(y)
and h(y) <y,

i < Ay +bgElapel i, < Ay + mbél iy,
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for some m < pj. By induction
iy < (Ay +mbél)'ip, teN.
Since p1 = (€7 (I — A1)~'b)! is the stability radius of (A1, b, ¢]'), we have that

r(A; +m551T) < 1. Thus

=00

The (¢, §) conclusion follows from the boundedness of A; + ml;ElT.
For (2), with the triple (p1, p2, y*) € (0, go) x (0, 1) x (0, co) satisfying (3.10)
define the functional

~T ~T (7 n -1
Wl =l (1 — Ay~ 6.1)

It is straightforward to verify that
W) (Ap, + pi1be)) =], 6.2)
Applying wT to (2.7),
Wl iy =00 At + B0 bf (). (6.3)

If y, < y* and cTnt <c n* then, since both f and & are 1ncreasmg, concave
down with f(0) = h(0) = 0, we have that f(3,) > p1y; and h(cTn;) > prcn;, so
(6.3) implies that

firg1 = W) (Ap, + p1be}, )i, = ), iy (6.4)

p2 P2

If 3, < y*and ¢T'n; > ¢Tn*, then £(3;) > p13; and h(c'n;) = pacTn*, so (6.3)
implies that

W) A1 = b Aty + b)) prb(eih(c ng) + o’ ) = papran), be n*. (6.5)
If y, > y*, then f(y;) > p1y*, so (6.3) implies that
B, i1 = Wy, Afty + Wy, prby* = priy, by*. (6.6)

Hence (6.4), (6.5) and (6.6) imply that

W) i, > min{w] g, papreiw),be’ n*, prb] by*). (6.7)
By Holder’s inequality
~T ~ 1 ~T ~
Wy = W, 7, so il = T ot (6.8)

” p2
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Using again that either A(c"n;) > pacTn, or h(c'n,) > pacTn* = %ﬁy*, it
follows from (6.8) that

- . min{og p2Cmin, “min} 7 . *
5 = arth(c"ny) +a’s; > min{ tipy o mia) i, APIP2Y
W, Il De
Finally, since 7 is a positive vector in X| ® X,
o0
(I = Apy)~'iig =g+ Y AX 7ig > fio. (6.9)
j=1
Thus,
W) g =&, (I — Ap,)~'iig > min{e; pacmin. emin} [0l (6.10)

Similarly, p> plozlzbgzl;cTn*, and zl)gzl; p1y* are positive, so ¥, is bounded away
from zero for all ¢+ > 0. Also, using condition (E3) and the fact that ny € K; \ {0},
c’'n, is bounded away from zero for all # > 0, by a similar argument. Thus, since f

and / are increasing and concave down (see Fig. 6), from the secant slopes

LG — FOMI h(c"ne) = h(c"n®)|
- T < <

‘ ). ©6.11)
57 — 7| Tn,—cTnr| P
94
g -
=
[y
=
z
N
.
T T T T T T T
0 50 100 150 200 250 300
Y

Fig. 6 Example nonlinearities f or 4 which satisfy (D1) with sectors defined by lines with slopes £ p1 or
+p7 (dotted), showing how (6.12) holds
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we can find m| < pj and my < pj such that for all # > 0,

G — FON < milFe — v k(e n) — h(e"n*)| < malc"n, — T
(6.12)

We can easily verify from (3.8) that i* = A ,,7i* + plgégzﬁ* = Ait* + b f(y*) by
construction. Thus

At —i* = Aty — AR+ b fGr) — bf (). (6.13)
Since A is nonlinear, the variation of parameters formula becomes

iy — it = A({(- - A(Any + bf(o) + BFGI) +++7)
+bf(51-2)) +bfGi—1) — A* — b f(y*) (6.14)

3 Since the X; — X; and X» — X; components of A ([A @]) are linear, and
b =[b 0] we have that the X| component of 7, — 7i* satisfies

1—1
g —n* = Al(ng —n*)+ D ATITB(FF)) — ). (6.15)
j=0
Multiplying (6.15) on the left by E[T,z, we have
arpact (n; — n*) = oy pacT Al(ng — n*)
t—1

+aipr p TATIT(F )~ FOM), (6.16)

Jj=0
Taking absolute values and using positivity gives us that

|t pac” (0, — n*)| < @1 pale” A'(ng — n*)]
t—1
taipy T AT G = FOM (6.17)
j=0

Using (6.12),

t—1
et pac” (ny = n)| < erpale” Ao — )| +arpamy D T AT b(e k(e n )
j=0
—h(c"n*)| + 1l (sj —s))
t—1
< aipale” A'(ng — n*)| + i pamy Y~ " ATI D
j=0
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x(ozlmzlcTnj —cT'n¥ + IaT(sj — 5.
Summing from ¢t = 0 to M, where M is large, we have

M M
D larpac” (0 —n)| < D" e pale” Al (ng — n*)|

t=0 =0
M t—1
+ay pamy Z Z clA=i=1p
t=0 j=0

x (oumzlcTnj — T + o (s, —s*)|). (6.18)

Since r(A) < 1 the first term in (6.18) converges as M — oo. If we rearrange the
second sum and use the fact that the system is positive, we have

M 00
T T
D larpac” (= n*) < D" e pale” Al (ng — n*)|
=0 =0
M—1
T T T
+aq pam Z(almzlc nj—cn*l+la’ (sj —sM
Jj=0

M
x S T ariT,
t=j+1

Adding more terms and changing indices

M oo
D leipac” (= n) < D arpale” Alng —n*)|

=0 1=0
M-1
+arpami Y (eimale"n, — ¥+ e (s = s7))
1=0
o0 o0
X ZCTAkb < Za1p2|cTA’(no —n™)|
k=0 t=0

M
oy pamg
+———> (imalc"n; — "n*| + |o” (s, — ).
Pe 2o

(6.19)
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The X, component of 71; satisfies
t—1 j—1
so= D 8 he Alng + " " AT b)) | + S's0. (6.20)

j=0 k=0

where I'; :=[y; 0 --- 0]. Since

j—1
T Alng + " AT bf(50) = T
k=0
it follows that
t—1 )
5, = Z SR ny) | + Stso. (6.21)
j=0

Since 71* was is a fixed point of our system, if we insert [n* s*]7 for [ng so]” in
(6.20) we obtain

t—1 j—1
s* = ZS’_A/_llﬂlh(cTA-"n*—l—ZcTAj_k_lbf(y*)) + S's*

j=0 k=0
—1 '

- ZS’_/_lFlh(cTn*) + S's*, (6.22)
j=0

Thus, subtracting (6.22) from (6.21), and multiplying by a” on the left gives us
-1
ol (s = sH)= D " ST (h(c nj)=h(c"n®)) | +aT S (s9—s%), (6.23)
j=0
Using (6.12), and the positivity of the system, we have that
-1
e (s —s) < | D oS T imale nj—cTn¥| |+l S (5o — s¥). (6.24)
Jj=0
Putting
j—1
cTnj =clTAlng + ZCTAJ_k_lbf(fk)

k=0
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and
j—1
cI'n* =cT Aln* + ZCTAJ*k*]bf(y*)
k=0

back into (6.24) we obtain

t—1 j—1

el (sr =5 < [ D e ST T imale” Alng + D" T AT b (i) — T ATn*
j=0 k=0
j—1
+ 2, ATE I )] ) S (50 = 7))
k=0

-1
laT S (so — s™)| + ma ZaTSt_j_lrl lcT A (ng — n*)|
=0

IA

t—1 j—1

tmy > > el ST T AT £ G — £

j=0 k=0

Summing from ¢t = 0 to M, for M large, and rearranging we have

M M -1
Dl (s = 57| <Z|aTSf<so SO +ma D > ol ST e Alng — |
t=0 t=0 t=0 j=0
M-2 M t—1
tmy D 1fGO = fOO D, D el ST AT
k=0 t=k+2 j=k+1

Adding more terms and changing indices, we have

M t—1

kaT(st—s )| < Z|aTSf(s0 s +my D > oS |e" ATng — n*|
t=0 j=0
) o0
+m2 Z 1f G0 = FOO ZaTan > Akp,
=0 j=0 k=0
Using (6.12) again,
M t—1
ka (s — ™) <Z|aTsf(so—s*>|+mZZZaTsf I AT (ng — n®)
=0 =0 =0 j=0
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M 00 0
tmimy Y 15 =y D el ST Y T Ak
t=0 j=0 k=0

M M t—1
< D 1T o =M +ma Y D> ol ST T AV (no — n)|
t=0 t=0 j=0
M
+mimy Z larh(cTny) +als, — arh(cTn®)
t=0

o0 o0
—als*| ZaTij‘l Z cT Akp.
=0 k=0

Using the triangle inequality, as well as (6.12) again,

M M M t—1
Dol =M< D lal S 0 = s +ma D D> ol ST AV (ng — n)]
1=0 =0 1=0 j=0
M
+mimy Y (armale"n, = n*| + |o” (s, — 7))
t=0
oo o0
x>’ ST > T ARD.
j=0 k=0

Since Z?O:o S/ = -8 ""and 32, A = (I — A)~! we have

M M M t—1
D lal (si—=s) < D a8 (so — s +ma DDl ST T A (ng — 0¥
=0 1=0 1=0 j=0
mlmzozT(I — S)_1F1 M T T s
+ Z(a1m2|c n; —c'n*|
Pe pe
+la" (s — ™)) (6.25)

The first two terms of (6.25) converge as M — oo, since r(A) < 1 and y; < 1 for
all i. Define

o0 o
L= aipale” A'(no —n*)| + D la” S (so — 5%

t=0 t=0
ook

+my ZZS/F1|CTAk(n0 —n")| < co.
k=0 j=0
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Adding the (6.19) and (6.25) together, we obtain

M . y
arpomi +momia’ (I —S)7'T
Z(|a1P20T(n,—n*)|+|aT(st_s*)|) <L+ 1p2mi amia’ ( ) !
1=0 Pe
M
x > (cimaleTn—c"n* +laT (s =57).
t=0

Since m < p1 and my < p7, and using (3.7) there exists an m < 1 such that

a1 pamy + momie (I — S)™'Ty ar+al (I =97y pamy
= pamj < <m < 1.
Pe Pe p1p2

Hence

M
> (eipac” (ny = n*)| + e’ (s, = s%)))

t=0
M
< L+m Y (emale’n —cTn* + o’ (s = s,
t=0
which implies that
M
> (ei(pa = ma)e" (= n*)| + la” (s = s < (1 =m)"'L  (6.26)
t=0

This bound is independent of M. Therefore the sequence
fare” (ne —n)| + la" (st = s € L1,
)
Jim (lac” (r = n)] + o (5 = 55)]) =0, (6.27)
which, by the continuity of 4, implies that
lim |5 = y*| = 0. (6.28)
By (6.13), (6.28) and assumptions (E1) and (E4) we therefore have that

lim 7, = it*, (6.29)

—00
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as sought. The (e, §) conclusion follows from Holder’s inequality and assumption
(E1). O

Appendix B

Proof of Theorem 3.3 The proof of (1) is identical to the proof of (1) in Theorem 3.2.

For (2) note that if there exists a solution (py, p2, y*) of (3.10) in (0, go) x
(exp(=2), 1) x (0, 00) and m > 0 such that §;, > m and ¢’ n, > m forallt € N, then
hg is sector bounded as in (3.11) (Fig. 2). This follows from the fact that

1
) = (1 — %)exp(—y/cmx W (y) = —<Cl — 2)exp(—y/cm)-

Cm Cm

Thus % has exp(—2) as its maximum negative slope. If , and ¢’ n, are uniformly
bounded away from 0, & g satisfies

lhr(cTny) — hg(c"n®)| < male"n, — cT'n*|

for some my < pj. To see that there exists m > 0 such that y, > m and cTn, > m for
allt € N, wenote thatif 3, < y*and ¢’ n; < ¢T'n*orj, > y* the lower bound follows
as in Theorem 3.2. If y; < y* and ¢Tn, > ¢Tn* we need to show that the solution
{n:}:2, is bounded above. Noting that f(y) < f(y*) 4+ m1y for some m; < p; and

y>0and hr(y) < cpexp(—1) forall y > 0, it follows that
ElTﬁ, < EITAfzt_l +cbf (") + (mieTb + y)emexp(—1) = ElTAﬁ,_l + K,
where

A= |:A Bm,

ro S i|, By, :=[m1bm1b-~-m1b],

and r(A) < 1. Thus élii; < M for some M < oo, which implies that ¢"n, < M/a;
for all + > 0. Thus, if , < y* and ¢"n; > ¢Tn* we have that f(5;) > f(y*) and
hr(cTn;) > min{hg(cTn*), hg(M/ay)} > 0. Letting w,{z be defined as in Theorem
3.2,

b}, = min{d ] o, papreniy, b’ n*, @) bpihg(M/a))},  (1.1)

thus y,, and similarly ¢Tn,, are bounded from below as in Theorem 3.2. The remainder
of the proof for (2) is the same as in Theorem 3.2.
For part (3) note that

Wr(c"n*) = pr(1 +1n(p2)) < —pa, (7.2)
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so we cannot sector-bound 4 y as we did in (2) of this theorem. The linearization about
n* yields

~ e T ~T ~
1 = (A(+In(po) po T f/(y*)bc(l-i-ln(pz))pg)nt'

Thus ifr(A(Hln(pz))pz +f’(y*)l56(Tl+ln(p2))m) < 1then7n*is asymptotically stable,
as sought. O

Appendix C

Proof of Corollary 3.1 To prove (1) we need to show that (A, b, &) satisfies hypotheses
(Al), (A2) and (A3) in Rebarber et al. (2012). We verified that (A1) and (A2) are met
by A and b in the proof of Theorem 3.1. To prove that (A3) is met by &, note that
(3.16) implies that ¢cTn > 0 for all n € X;. This, coupled with (E4) implies that
¢Ti>0forallii € X1 ® X, proving (1).

To prove (2) and (3) note that (E3) is only used in the proof of Theorem 3.2 (2)
and Theorem 3.3 (2), i.e. when 7i1* is positive and globally stable. Also, the only place
where we needed to use (E3) in the proofs of Theorems 3.2 and 3.3 is where we
assert that there exists an m > 0 such that y;, c¢Tn, > mforallt > 0. To prove
this in the case where / is continuous, increasing, concave down, with 2(0) = 0, we
introduce a new IPM system which is “close’” to the original system (2.7). For ¢ > 0,
letIo :=={x € [L,Ullc(x) > €}, X1.¢ := LY(I.) and A, : X1, = X1.e be such that

Aen =/k(x,y)n(y) dy,
Ie
with b, = b|;, and
T, __
eIn = / cn(y) dy.
Ie

It follows that r (A¢) < r(A) < 1, so A, satisfies (E1). It’s straightforward that, for
sufficiently small €, b, satisfies (E2) and that cET satisfies (E3) with cpin = €. Let

pe(€) = (I (I — A)'be) ™!

It follows that lim¢_,¢ p.(€) = p.. Since in Theorem 3.2 (2) the system of Egs.
(3.10) has a solution (p1, p2, y*) € (0, go) x (0, 1) x (0, 0c0), we can choose € > 0
such that the system of equations

g(y*(e)) = pi(e)
De(€)
(a1 +aT(I =871y

p1(e)pa(e) =
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h (Pl(é)y*(é)) _ p2(e)p1(e)y*(e)
Pe(€) Pe(€) '

has a solution (p1(€), pa(€), y*(€)) € (0, go) x (0, 1) x (0, 00). Let [n(€); s(e)/]7
C Xe := X1, ® X3 solve

n(€)i41 = Acn(€); + be f(¥(€)r),
F(€)r = arh(cn(e)) +as(€)i, + -+ an415€)n.s
s 1,41 = yih(cIn(e))
s(€)2,141 = y25(€)1,s

s(E)N-1,+1 = YN-15(6)N-2,1
s(EN,+1 = YNS(EON-1,r + YN15(E)N -

Since (pi1(€), p2(€), y*(€)) € (0, go) x (0, 1) x (0, c0) we have, by the proof of
Theorem 3.2, the existence of an m > 0 such that y(¢), ceTn(e)t > mforallt > 0. By
the monotonicity of f and & and the positivity of (A, b, ¢), {« j}?/;’ll and {yj}?’;’ll we
have ¥, > y(¢); and ¢ n; > cETn(e), for all ¢+ > 0. Thus there exists an m > 0 such
that 3, ¢’ n; > m for all t > 0 and (2) is proved.

For (3) h(y) is equal to hg(y) = ye/°n which is not monotone once y becomes
larger than c,,,. Thus we cannot bound y; and ¢ n; from below by y(€); and c(€) Thie),
forall + > 0, unless cTn, does not exceed ¢, forall t > 0.

In the proof of Theorem 3.3, we showed that there exists an M > 0 (which depends
on 1) such that 5le1[ < M for all + > 0, which implies that cTn, < M /o for all
t > 0.If M/a1 < ¢, we can use the same arguments as in (2), due to the monotonicity
of hg(y) fory < ¢p,. If M/ > ¢, we will construct a seed production function
h that is continuous, increasing, concave down, with #(0) = 0, A’(0) = 1 such that
h(y) < hg(y) forall y € [0, M/a1]. The population in a model with 4 instead of 4 g
will be smaller than 7, for all + > 0. If this smaller population has a nonzero globally
stable equilibrium population than we will have our desired lower bound.

Define the function

My

M ’
M + oy (e‘)‘l"m - 1) y

which is continuous, increasing, concave down, with £(0) = hg(0) = 0, #'(0) =
M

h'(0) = 1 and h(M /o) = hp(M/ay) = M/aje ©1m . Since ¢,, < M /oy implies
that

h(y) =

M
200 (e“l"m — 1) 5
h'(0) = ——— < — = h(0),

M Cm
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Fig. 7 An example of the comparison between 4 g and the increasing, convace down A, with M /a1 = 6.
Notice that if the equation 2 g (y) = pay has a solution (p7, y) € (¢72,1) x (0, 00), then the equation
h(y) = pay has a solution in (0, 1) x (0, c0), as hg(0) = h(0) = 0 and h/R(O) =0 =1

we have that h(y) < hg(y) forall y € [0, M /o] (see Fig. 7). Letni, = [n, gt]T cX
solve

no1 = An, +bf(y),

T
ath(c'ng) +oasy, + - +oanisy,

Y

=t
T
Si41 = V1h(c ny)

$o 141 = V281 ;

SN—1,t41 = VN-1SNy_2
SN+l = VYNSN_1; T VN+ISN ;-

It follows that, if n, = ng, we have that n, < n,, and thus CTQ[ < ¢Tn,, for all
t > 0. Since in Theorem 3.3 (2) the sytem of Egs. (3.10) has a solution (py, p2, y*) €
(0, go) % (6’2, 1) x (0, o0) it follows that the system of equations

§0) = p,

_ Pe
PiPy = (o T o (1= $)1Ty)

W22 ) _ 22
T\ Pe Pe
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has a solution (31’ Py X*) € (0, go) x (0, 1) x (0, 00) (see Fig. 7). This implies, from
the above proof of (2), that i1, converges to a positive, globally stable equilibrium
population 72*. Since i1, > 7, for all # > 0 we have the desired positive lower bound
m for §; and ¢ n,, proving (3). O
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