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Abstract Modelers have to make choices about which
functional forms to use for representing model components,
such as the relationship between the state of individuals and
their vital rates. Even though these choices significantly
influence model predictions, this type of structural uncer-
tainty has been largely ignored in theoretical ecology. In
this paper, we use integral projection models (IPMs) for
Platte thistle as a case study to illustrate that the choice of
functional form characterizing density dependence in
seedling recruitment has important implications for predict-
ing transient dynamics (short-term population dynamics
following disturbances). In one case, the seedling recruit-
ment function is modeled as a power function, and in the
other case, we derive density dependence in seedling
recruitment from biological first principles. We chose
parameter values for the recruitment functions such that
both IPMs predicted identical equilibrium population
densities and both recruitment functions fit the empirical
recruitment data sufficiently well. We find that the recovery
from a transient attenuation, and the magnitude of transient
amplification, can vary tremendously depending on which
function is used to model density-dependent seedling
recruitment. When we loosen the restriction of having
identical equilibrium densities, model predictions not only
differ in the short term but also in the long term. We derive

some mathematical properties of the IPMs to explain why
the short-term differences occur.
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Introduction

For structured population models, where members of the
population are classified by one or more characteristic
stages, most researches have been focused on analyzing
long-term, asymptotic population characteristics, such as a
population’s asymptotic growth rate or equilibrium popula-
tion density. However, when a population is forced away
from its equilibrium stage distribution by disturbances such
as environmental catastrophes or management actions, the
subsequent dynamics of this population can change
considerably in the short term (transient dynamics), making
the analysis of such dynamics extremely relevant (Hastings
2004). For example, sudden changes in some vegetative
distributions can significantly change the structure of
associated animal communities (Snyder 2009; Weller and
Spratcher 1965). The impacts of such disturbances on
population dynamics can often not be elucidated with
equilibrium analysis alone.

The majority of investigations of transients in discrete-
time, structured population models have focused on models
that are density independent (Caswell 2007, 2008; Koons
et al. 2005; Tenhumberg et al. 2009; Townley et al. 2007;
Townley and Hodgson 2008; Stott et al. 2010). However,
many systems are driven by density-dependent mecha-
nisms, but the signal for density dependence in empirical
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data sets is often weak. A typical example of this is the
seedling recruitment data of Rose et al. (2005, Fig. 1): the
data are few, very noisy, and collected over a limited range
of seed densities. It is challenging to find sensible functions
that fit such noisy data well, and commonly used criteria to
choose among different candidate functions such as Akaike
information criterion (AIC) or Bayesian information criterion
can only provide a relative ranking of “poor” fitting functions.
Moreover, these statistical criteria do not consider the ability
of a function to project dynamics outside the rage of observed
data. This is particularly relevant if one is interested in
dynamics outside the range of data collection, which is often
the case when studying the effect of large perturbations that
can cause transient dynamics. When projecting dynamics
outside the range of data collected, we might consider
functional forms that are derived from first principles, but do
not rank first based on information criteria, and evaluate the
effect of structural model uncertainty on model predictions.

In this paper, we use the density-dependent integral
projection model (IPM) for Platte thistle (Cirsium canescens)
developed by Rose et al. (2005) as a case study to evaluate
the impact of structural model uncertainty on short-term
behavior. Rose et al. (2005) represent density-dependent
seedling recruitment with a power function of the form

f ðxÞ ¼ xn; where x is the density of seeds produced by the
population in one time-step, f(x) is the density of seedlings
that result from these seeds and the parameter v is fit to data.
If 0 < n < 1(which is essential to describe negative density-
dependent dynamics), the power function has mathematical
properties which include having an unbounded derivative for
low seed densities and being unbounded for large seed
densities. These extreme values of x are outside the range of
seed densities considered in the statistical analysis of Rose
et al. (2005). When studying transient dynamics, extreme
values of x are highly relevant. Therefore, we derived an
alternative function for seedling recruitment based on
biological principles that takes into account these extreme
values and ask the question: How sensitive are the predicted
transient dynamics to the choice of the function used to
characterize density-dependent seedling recruitment? Our
alternative function describes seedling recruitment more
realistically for extreme values of x, as recruitment is
essentially linear for small seed densities and essentially
constant for large seed densities. The resulting function is
identical to the classical Michaelis–Menten, Beverton–Holt,
or Holling type II functional response functions. We will
call it the Michaelis–Menten function for the remainder of
the paper.

Other theoretical studies have emphasized that in many
circumstances, statistically well-fitting nonlinear functions
are not ecologically realistic (see, for instance, Cousens
1991; Freckleton et al. 2008; Runge and Johnson 2002).
However, this paper highlights the role that the functional
form of the density dependence plays in short-term,
transient dynamics which, to our knowledge, has not
been addressed.

To create a consistent setting for our derivation, we will
first give a detailed account of the dimension of each
function used in the IPM. We consider it desirable for a
candidate recruitment function to have dimensions that are
consistent with the rest of the IPM. We will then illustrate
the differences in transient dynamics between the IPM
using the power function and the Michaelis–Menten
function by simulating two ecological events. The first
simulation will mimic an ecological catastrophe, like a fire
that destroys all above-ground plant biomass, where the
initial population will consist entirely of seedlings
(recruited from surviving seeds left in the ground). Second,
we will simulate an ecological restoration project where the
initial population consists of large, adult plants. We show
that both IPMs can yield surprisingly large differences in
transient dynamics even though the fit of the Michaelis–
Menten function to the empirical data is comparable to the
power function (Fig. 1) and both IPMs predict the same
equilibrium population density. We derive mathematical
properties of the two models that show why these differ-
ences occur and further verify these results after loosening

Fig. 1 The relationship between seedling recruitment in year t+1 and
estimated seed production in year t. We digitized the data from Fig. 4
in Rose et al. (2005) and calculated the parameter ν in the power
function to obtain an estimate of the AICc (AIC with a correction for
finite sample sizes) value. Our estimate for the parameter ν (ν=0.654)
deviates only by 2% from the one reported by Rose et al. (2005, ν=0.67);
The AIC values of the power function from the digitized data (AICc=
138.4) and the Michaelis–Menten function (AICc=139.3) are similar.
The dotted curve is the power function (f1ðxÞ ¼ x0:67) and the solid
curve the Michaelis–Menten function f2ðxÞ ¼ 3; 482x= 49; 741þ xð Þ.
In Appendix 1, we describe parameter estimation procedure of the
Michaelis–Menten function
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the restriction that the two models predict identical
equilibrium population densities.

Model

Density-dependent integral projection model IPM
for Platte thistle

An IPM can be used to describe how a population with a
continuously varying stage structure changes in discrete
time (Easterling et al. 2000). The use of IPMs in plant
ecology has grown tremendously over the last decade
(Ramula et al. 2009). See Briggs et al. (2010) for a tutorial
on constructing IPMs. The population is characterized by a
function, n(x,t), where

Zxþdx

x�dx

nðy; tÞdy ð1Þ

gives the total density of the population near stage x and
time t, with dimension plants(area)−1. This function can be
thought of as a continuous-stage analog to population
vectors n(t) in population projection matrix models (e.g.,
Caswell 2001). We have chosen to use an IPM because the
ability to capture the transient dynamics is often linked to
model dimension (the number of life history stages)
(Tenhumberg et al. 2009; Stott et al. 2010). In a general
IPM, the population n(x,t) satisfies the integrodifference
equation,

nðx; t þ 1Þ ¼
ZU

L

Kðx; yÞnðy; tÞdy; ð2Þ

where K(x,y) is called the kernel of the IPM and L and U
are the smallest and largest observed value for the stage,
respectively. We decompose the kernel into two parts:

Kðx; yÞ ¼ p1ðx; yÞ þ p2ðx; yÞ; ð3Þ
where p1(x,y) describes survival and growth, which models
the probability of “movement” from stage y to stage x in
one time-step. The “fecundity” portion of the kernel, p2(x,y),
models the density of stage x individuals that are produced
by stage y individuals.

We use a version of the model of Rose et al. (2005) that
ignores the effect of seed predation (Briggs et al. 2010); this
modification does not affect the way density dependence is
implemented in the model. The natural logarithm of the
plant’s root crown diameter is used as an indicator of plant
size (the stage variable); the time-step is 1 year. We start by
mentioning the dimension of each of the model components
to contrast the two seedling recruitment functions (Michaelis–

Menten and power function) on the basis of dimensional
analysis. The Platte thistle population’s distribution, n(x,t),
has the dimension of plants(size)−1(area)−1. Let s(y) and fp(y)
be the survival and flowering probabilities, respectively, of
members of the population with size y. If we call the growth
function g(x,y) where

Zxþdx

x�dx

gðz; yÞdx ð4Þ

is the probability of a size y plant growing to a size near x in
one time-step (which is a probability distribution for each
fixed y), then we have

p1ðx; yÞ ¼ sðyÞð1� fpðyÞÞgðx; yÞ; ð5Þ

where the functions s(y) and fp(y) are dimensionless, while
g(x,y) has the dimension of (size)

−1
(with

Rxþdx

x�dx
gðz; yÞdz being

dimensionless).
The probability of not flowering, 1− fp(y), is incorporated

into the survival part of the kernel because Platte thistle is a
monocarpic plant and, as a consequence, flowering is fatal.
The model assumes that survival, flowering, and growth are
independent events and that seedling size is independent of
the size of the mother plant (a low maternal effect on
seedling size has also been reported for other plant species
(Weiner et al. 1997; Sletvold 2002)).

The fecundity portion of the kernel is

p2ðx; yÞ ¼ pesðyÞfpðyÞSdðyÞJðxÞ; ð6Þ

where Sd (y) is the number of seeds produced by members
of the population with size y (with dimension of (seeds)
(plant)−1), and J(x) is the probability distribution of the size
of seedlings, with dimension of (size)−1. The term pe (with
dimension of plants(seed)−1) is the probability of a seed
establishing to become a seedling by the next time-step, that
is, the probability that a seed germinates and survives until the
next population census. Seed establishment probability for
Platte thistle is density-dependent (Rose et al. 2005). Thus, if
y(t) is the density of seeds produced by the population at
time t, the seed establishment probability is given by

peðtÞ ¼ gðtÞn�1; ð7Þ
where the estimated value for v in Rose et al. (2005) is 0.67,
which is the value we use in this paper. The function
describing the size structure of seedlings, J(x), is independent
of y, and from the construction of the kernel, we see that the
density of seeds produced is

gðtÞ ¼
ZU

L

sðyÞfpðyÞSdðyÞnðy; tÞdy: ð8Þ
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Thus, the full density-dependent IPM is

nðx; t þ 1Þ ¼
ZU

L

p1ðx; yÞnðy; tÞdy

þ
ZU

L

gðtÞn�1JðxÞsðyÞfpðyÞSðyÞnðy; tÞdy:

ð9Þ
More concisely,

nðx; t þ 1Þ ¼
ZU

L

p1ðx; yÞnðy; tÞdyþ JðxÞgðtÞn: ð10Þ

Notice that the model in Eq. 10 is the sum of a density
independent growth and survival and density-dependent
seedling recruitment. We write a general seedling recruit-
ment function as f ðgðtÞÞ ¼ peðgðtÞÞgðtÞ; in order to stress
that this function is the product of the seed establishment
probability and the density of seeds at time t. When pe(γ(t))
is as in Eq. 7, we have that f ðgðtÞÞ ¼ gðtÞn ¼ peðgðtÞÞgðtÞ.
We must note that some authors have used the term
“recruitment” to mean the same as “establishment proba-
bility” (see, for instance, Runge and Johnson 2002). In this
paper, these terms are used to describe two distinct, albeit
related, concepts, as seedling recruitment is the product of
seed establishment and seed density.

In general, a seedling recruitment function, f (+ (t)), has
the dimension of plants(area)−1, which is consistent
dimensionally with the rest of the model. Hence, peðgðtÞÞhas
the dimension of plants(seed)−1. Since n 2 ð0; 1Þ, the
function peðgðtÞÞ ¼ gðtÞn�1 does not have these dimensions
for any choice of n 2 ð0; 1Þ: In the next section, we derive a
seedling recruitment function from first principles so that
every parameter has a clear biological interpretation from
the dimensional analysis point of view.

Derivation of seedling recruitment function

To mechanistically derive the seedling recruitment function,
f (+ (t)), we follow in the spirit of the derivation of the
Holling type II functional response in classical predation
theory (Holling 1959). We envision seeds participating in
“predation of space”, with the analogy of “handling time”
by Holling in classical predation theory becoming “handling
space” in our derivation. In this model, we only consider
intraspecific competition. In the “Discussion” section, we
will talk about how to include interspecific competition in
this framework.

Let N(t) be the density of seedlings that are recruited
between time t and t+1, i.e., the density of seeds produced

that survive to become a seedling within one time-step.
First, we make the assumption that the number of seedlings
between time t and t+1 increases with the space available
for seeds to establish, S(t), which has the dimension of area.
Also, assume that N(t) increases (as a function of γ(t)) with
the establishing efficiency rate a, where a has the
dimension plants(seed)−1(area)−1. A first attempt at a
relationship between N(t) and γ(t) yields

NðtÞ ¼ aSðtÞgðtÞ: ð11Þ
To obtain a more realistic relationship between N(t) and

γ(t), it is reasonable to assume that the space available to
establish will decrease with the number of seedlings, so S(t)
is decreasing with respect to N(t). We envision a seed
addition experiment where only seeds compete among
themselves for the available microsite area. If we define the
constant Se to be the space taken up (as a proportion of the
total space available) by one seed that establishes and
becomes a seedling, where Se has dimension area(plant)−1,
we can re-write S(t) as follows:

SðtÞ ¼ Stot � StotSeNðtÞ ¼ Stotð1� SeNðtÞÞ; ð12Þ
Where Stot is a fixed characteristic of the population’s

environment and is the total area of the space available for
the plant population’s seeds to establish. Substituting
Eq. 12 into Eq. 11 and solving for N(t) yields:

NðtÞ ¼ aStotgðtÞ
1þ aStotSegðtÞ : ð13Þ

Or, more concisely,

NðtÞ ¼ agðtÞ
b þ gðtÞ ; ð14Þ

where

a ¼ ðSeÞ�1; b ¼ ðaStotSeÞ�1� ð15Þ
The dimensions of α and β are plants(area)−1 and seeds

(area)−1, respectively. Eq. 14 is the Michaelis–Menten
function. Notice that, if we let N(t)= f(γ(t)), we can write

f ðgðtÞÞ ¼ a
b þ gðtÞ

� �
gðtÞ ¼ peðgðtÞÞgðtÞ: ð16Þ

Using the Michaelis–Menten function for seedling
recruitment, we can clearly interpret the parameters and
their dimensions in a way that is consistent with the rest of
the model. For example, the function pe(+ (t)) has dimension
of plants(seeds)−1 and decreases to zero as the number of
seeds grows to infinity, as one should expect in the dynamics
of negative density-dependent seed establishment. Also,
when + (t)≈0, we see that peðgðtÞÞ � aðb�1Þ ¼ aStot; which
describes the probability of a seed establishing in the total
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absence of density dependence. β is an analog for the
familiar half-saturation constant in classical predation theory
(Vandermeer and Goldberg 2003) and is here the seed
production needed to attain half of the maximum total
seedling recruitment, α.

The Michaelis–Menten function is a limiting case of the
derivation of a general seedling recruitment function of
Duncan et al. (2009), which considers “safe sites” for seeds
to establish and makes assumptions about the distribution
of seeds after flowering and dispersal. The derivation in this
paper is considerably simpler and, given that we are not
modeling space explicitly as a variable in the population,
perhaps more appropriate for this setting.

For the remainder of this paper, we call the IPM that
uses the power function for seedling production the “power
function” model, and we call the IPM that uses the
Michaelis–Menten function the “mechanistic” model. Note
that the survival, growth, seed production, and distribution
of seedlings portions remain identical in the two models,
and therefore, these names are simply to distinguish the
way the seedling recruitment is implemented in the IPMs.

Results

To compare the two Platte thistle IPMs fairly, we initially
calibrated the parameters of theMichaelis–Menten function to
obtain the same equilibrium population density as the power
function model (see Appendix 1). Therefore, the subsequent
comparisons in Example 1a and 1b are of two IPMs having
identical equilibrium population densities and size distribu-
tions. The fit of the calibrated Michaelis–Menten to the
empirical recruitment data was comparable to the fit of the
power function used in Rose et al. (2005) (see Fig. 1).

We define the transient function T(t,ρ) to be the per-
capita difference in the total population density from one
time-step to another, dependent on the initial population
distribution, ρ(x). Mathematically,

Tðt; rÞ :¼ nð�; tÞk k � nð�; t � 1Þk k
nð�; t � 1Þk k ; t ¼ 1; 2; :::; ð17Þ

where k krefers the L1 norm defined by

8 ð�; tÞk k :¼
ZU

L

8 ðx; tÞdx; ð18Þ

which equals the total population density of φ(x,t), with
dimension plants(area)−1. This transient function definition
is similar to the GR metric used in Koons et al. (2005) for
matrix models and is a function of t and ρ alone, as n(x,t)
implicitly depends on the initial population ρ. The “⋅”
symbol indicates that the stage variable, x, is integrated

away. This measurement of transients compares the
population’s current total density with its total density in
the previous time-step. We say that the population experi-
ences a transient attenuation at time t0 if Tðt0; rÞ < 0and a
transient amplification if Tðt0; rÞ > 0: Note that we can re-
write the transient function as the per-capita growth rate
minus unity. This makes clear our intention to have the
cutoff between transient attenuation and amplification at
zero. Therefore, using our definition, if a population has a
transient attenuation (amplification), it has a smaller (larger)
density than it had one time-step ago.

We have made certain to explicitly write that the
transient function depends on the initial population
distribution because the transient dynamics of a single-
species, structured population tend to depend on the
population structure that is remaining after the ecological
disturbance corresponding to t=0. For examples of this
phenomenon in density independent matrix models, see
Townley et al. (2007) and Koons et al. (2005). Next, we
illustrate that the stage structure of the initial population is
the key determinant of the transient dynamics predicted
by the Platte thistle IPMs and provide the proof in
Appendix 2. For a non-zero population n(x,t), which
solves the density-dependent IPM

nðx; t þ 1Þ ¼
ZU

L

p1ðx; yÞnðy; tÞdyþ f ðgðtÞÞJ ðxÞ; nðx; 0Þ ¼ rðxÞ;

ð19Þ
the value of the transient function at time t0+1 can be
re-written as

Tðt0 þ 1; rÞ ¼ Enð�;t0Þðð1� fpðxÞÞsðxÞÞ � 1

þ f ð nð�; t0Þk kEnð�;t0ÞðcðxÞÞÞ
nð�; t0Þk k ; ð20Þ

where c(x) = s(x)fp(x)S(x) and Enð�;jÞðzÞis the expected
value of z subject to the probability density function
defined by Pðx; jÞ :¼ nðx; jÞð nð�; jÞk kÞ�1. More specifically,
the initial value of the transient function is

Tð1; rÞ ¼ Erð�Þðð1� fpðxÞÞsðxÞÞ � 1

þ f ð rð�Þk kErð�ÞðcðxÞÞÞ
rð�Þk k : ð21Þ

This identity states that the transient function is the sum
of expected probability of death (due to flowering and
mortality) and expected per-capita seedling production. At
equilibrium, the transient function is roughly zero, and
therefore, per-capita seedling production offsets mortality.
However, when a population is not at equilibrium, we can
expect that the right-hand side of Eq. 20 will not be zero.
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Note that the presence of the expected values in Eqs. 20
and 21 strengthens what is widely believed about the size
distribution’s impact on single-species transient dynamics.
For example, in a plant population where the smallest
plants have the lowest survival probability and produce the
fewest seeds, one should expect that the largest transient
attenuations would occur with an initial population largely
consisting of small plants. This is due to the fact that the
expected survival probability, seed production, and subse-
quent seedling recruitment for small plants will be small.
This will result in the first term of the transient function
plus the per-capita seedling recruitment being small relative
to unity, resulting in negative transient function values.

A surprising result in this paper is that the total
population density alone can explain why the predicted
transient dynamics differ between the two models. For
instance, if the population density in the power function
model becomes sufficiently low (as in transient attenua-
tion), the mathematical properties of the power function
force the transient function to have extremely high values.
Notice that in the power function model, the transient
function can be re-written as:

Tðt0 þ 1; rÞ ¼ Enð�;t0Þðð1� fpðxÞÞsðxÞÞ � 1

þ Enð�;t0ÞðcðxÞÞn
nð�; t0Þk k1�n : ð22Þ

Assume that the initial population distribution is a
predetermined density, M, of seedlings, i.e., ρ(x) = MJ(x).
In subsequent time-steps, the only new members of the
population are seedlings, distributed according to J(x).
Because not all seedlings survive to their second year (for
example, EJ ð�Þðð1� fpðxÞÞsðxÞÞ ¼ 0:502 in Rose et al. 2005)
and grow to a much larger size, the stage distribution stays
roughly the same for small t (see Eq. 10). Let us assume that
the total population density changes in the right-hand
side of Eq. 22 without changing the stage distribution at
time t0. This implies that the expected values in Eq. 22 are
also unaffected. When n 2 ð0; 1Þ, Eq. 22, viewed as a
function of nð�; t0Þk k , is unbounded as nð�; t0Þk k approaches
zero. This is due to the fact that the derivative of the power
function, f 0ðxÞ ¼ nxn�1;goes to infinity as x approaches zero.
Thus, for every positive real number N, there exists a total
population density nð�; t0Þk k ¼ MN such that for all total
population densities smaller than MN, we have

Tðt0 þ 1; rÞ > N : ð23Þ

This conclusion in Eq. 23 states that, given a fixed stage
distribution for the population, the power function model
predicts that there exists a population density that ensures
the beginning of a recovery (i.e., the population density
starts rapidly increasing towards the equilibrium), once the

total population density dips below this value. For instance,
in the power function model, it is possible that a population
of largely non-reproducing plants (seedlings) starts to grow
once the population density drops below a particular
threshold. We will illustrate this idea in Example 1a.

The previous mathematical artifact is not present in the
mechanistic model, whose transient function can be written as

Tðt0 þ 1; rÞ ¼ Enð�;t0Þð1� f ðxÞÞEnð�;t0ÞðsðxÞÞ � 1

þ aEnð�;t0ÞðcðxÞÞ
b þ nð�; t0Þk kEnð�;t0ÞðcðxÞÞ

: ð24Þ

When viewed as a function of nð�; t0Þk k; Eq. 24 is a
bounded function. Therefore, no threshold population
density exists below which a population is guaranteed to
increase. For instance, a population of seedlings cannot grow
until some of the plants grow sufficiently large to reproduce.

When transient amplification occurs, the differences
in the predictions of the two models stem from the
properties of the two seedling recruitment functions
when the seed production is greater than the equilibrium

seed production g
» ¼ RU

L
sðyÞfpðyÞSðyÞn»ðyÞdy (here n*(y)

is the equilibrium population). Because the power function
f ðxÞ ¼ xngoes to infinity as x goes to infinity, in theory, the
power function will eventually predict much larger seedling
recruitment than the Michaelis–Menten function, and thus,
everything else being equal, the power function model will
have larger densities than the mechanistic model when seed
production is large. In Example 1a and 1b, we chose model
parameters so that equilibrium populations of the power
function model and the mechanistic model are the same (see
Appendix 1), thus

ðg»Þn ¼ ag
»

b þ g» : ð25Þ

Assume that +* in Eq. 25 is the largest seed production
such that the two seedling recruitment functions intersect
(as it is the Example 1a and 1b, see Fig. 8). In a way that is
analogous to the argument for transient attenuation, for any
initial population rð�Þand specified difference N between
total population densities in the two models, there exists a
seed production +N that elicits (at least) this difference at
time t=1. To see this, let n1ð�; tÞand n2ð�; tÞ and solve
Eq. 19 with the same initial condition rð�Þ; but with
different seedling recruitment functions f1ð�Þ and f2ð�Þ:
Then, since the survival and growth portions of the kernel
are the same for both models, one has

ð n1ð�; 1Þk k � n2ð�; 1Þk kÞj j ¼ f1ðgð0Þ � f2ðgð0ÞÞj j
ZU

L

JðyÞdy:

ð26Þ
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We then have that

ðn1ð�; 1Þk k � n2ð�; 1Þk kj j ¼ f1ðgð0ÞÞ � f2ðgð0ÞÞj j ð27Þ
because Jð�Þ is a probability distribution and the fiðgð0ÞÞ0s
are independent of x. If f1ð�Þ is the power function, we have
that if gð0Þ ! 1; it follows that f1ðgð0ÞÞ ! 1. In contrast,
if f2ð�Þ is the Michaelis–Menten function, gð0Þ ! 1
implies that f2ðgð0ÞÞ ! a; which confirms the claim of the
existence of a γN that elicits a difference of at least N
between the two models. Furthermore, because

gð0Þ ¼ rð�Þk kErð�ÞðcðxÞÞ; ð28Þ
it follows that, given an initial probability density function
for the population, one can find rð�Þk kN such that for
rð�Þk k > rð�Þk kN ; we have

n1ð�; 1Þk k � n2ð�; 1Þk k > N : ð29Þ

In Example 1b, we will assume a homogeneous initial
population and display this result by showing how
increasing rð�Þk k increases the difference between the
predicted populations after only one time-step.

Example 1a: transient attenuation

To illustrate the consequences of the preceding mathematical
discussions for predicted transient dynamics, we first
envision a brief ecological disturbance, like a fire, that wipes
out the entire population of plants, with the exception of
seeds in the soil that germinate to become seedlings in the
following year, but does not significantly alter the long-term
environmental conditions. While this is clearly an oversim-
plification, the goal of this example is to merely evaluate if
the way we implement density dependence influences
predicted transient dynamics.

To simulate this event, we will let rðxÞ ¼ MJ ðxÞ be the
initial population, which consists entirely of seedlings, so
ρ(x) is the population distribution of M seedlings(area)−1.
Very small plants do not reproduce, and seed production
increases with plant size (see Rose et al. 2005), but plants
of all sizes can die. Thus, we expect that a population
consisting entirely of seedlings will decrease initially,
before rising back to its equilibrium population density.
Accordingly, for small t both IPMs predict transient
attenuation because c(x) is increasing and survival and the
probability of not flowering are always below unity.

The main difference in transient dynamics between the
two models is how quickly the population increases to its
equilibrium density following the disturbance event (equal
to speed of recovery from transient attenuation). We began
our simulations with M values equal to 10, 15, 25, and 50
seedlings(area)−1 using identical initial size distributions of
the seedlings, J(x) in each simulation. As expected, in both

IPMs, the population density values decline initially (see t=1
in Fig. 2). However, the power function model predicts a
faster recovery than the mechanistic model and the smaller
the M value the larger is the difference between the predicted
recovery patterns For example, if M=10 and t=10, the
power function model predicts a population that is 4.75
times larger than that of the mechanistic model. This is in
accordance with the mathematical observation in Eq. 23.
Initially, the total population densities and size distributions
of the populations are very similar for both models.
However, when the population density becomes small
enough, the transient function of the power function model
has large positive values (relative to the mechanistic model),
and faster recovery begins (see t=1 years in Fig. 3).

Example 1b: transient amplification

We expect transient amplification when the initial size
distribution is skewed toward larger plants with higher
reproductive value relative to the stable size distribution
because the seed production c(x) is increasing. We envision
a restoration scenario where plants are grown in a
greenhouse, until they reach a large target size and then
transplanted into the field. In this case, the initial population
consists entirely of large plants. To simulate this hypothetical
situation, we used an approximation to the Dirac Delta
distribution (an explanation of the Dirac Delta distribution
can be found in Appendix 3), centered at nine tenths of U,
the largest root crown diameter in the population. Thus,
rðxÞ ¼ Mdðx� 0:9UÞ; with initial population densities, M,
of 10, 15, 25, and 50. As Fig. 4 illustrates, the power
function model predicts transient amplifications that are
much larger relative to the mechanistic model, and this
difference is more extreme for large initial population
densities. If recruitment is modeled by the power function,
the large seed densities produced by a population of large
plants correspond to larger seedling densities compared to
recruitment being modeled by the Michaelis–Menten func-
tion. This difference grows with the initial density because,
naturally, large initial populations of seed-producing plants
correspond to large seed production values, and thus, when
large seed production values are the input for an unbounded
power function, the model subsequently predicts larger
seedling densities than that if we used the (bounded)
Michaelis–Menten function. For example, in our simulation,
a density of 50 large plants(area)−1 produces 1,021,754
seeds. This is larger than the equilibrium seed production of
+*=111,398 seeds (see Appendix 1 for this calculation), and
thus, we would expect from Eq. 29 that the differences in
recruitment would be quite large. In fact, the power function
allows 1.03% of these seeds to become seedlings while the
Michaelis–Menten function allows only 0.32% of these seeds
to become seedlings. This difference in seed establishment
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Fig. 2 Predicted transient
population dynamics for the two
Platte thistle models resulting
from simulating the ecological
event in Example 1a. The initial
densities, M, are a 10, b 15,
c 25, and d 50 seedlings/area;
in each simulation, the size
distribution of the seedlings was
identical to that reported in
Rose et al. (2005)

Fig. 3 Predicted transient
function values for the two
Platte thistle models resulting
from simulating the ecological
event in Example 1b. The initial
densities, M, are (a) 10 (b) 15
(c) 25 and (d) 50 seedlings/area;
in each simulation, the size
distribution of the seedlings was
identical to that reported in
Rose et al. (2005)

394 Theor Ecol (2012) 5:387–401



probability corresponds to an order-of-magnitude difference
in transient amplification between the two models.

Example 2a: transient attenuation in models
without identical equilibrium populations

Ecologists do not know the equilibrium population density;
thus, when deciding which function best describes density-
dependent seedling recruitment given the data, ecologists
will independently estimate both parameters of theMichaelis–
Menten function, rather than attempting to estimate the
parameters to obtain a desired equilibrium. This approach
produces differences in predicting the equilibrium dynamics
and magnifies the difference in the short-term dynamics
compared to the models with forced equal equilibriums. So,
for this example, we used nonlinear regression analysis in
R (R Core Development Team 2006) to estimate both
model parameters from the data in Rose et al. (2005).
Interestingly, this revised Michaelis–Menten function (which
we will call the revised Michaelis–Menten function) predicts
a much smaller saturation constant α (see Fig. 5). This yields
a much smaller equilibrium seed production +* and,
consequently, a smaller equilibrium population density
( n

»�� �� � 429 plantsðareaÞ�1). Since the revised equilibrium
density is much closer numerically to the density at t=0 in
simulations with similar initial conditions to Example 1a, the

Fig. 4 Predicted total
population densities for the
two Platte thistle models
resulting from simulating the
ecological event in Example 1b.
The initial densities, M, are a
10, b 15, c 25, and d 50; in each
simulation, M was distributed
according to the Dirac Delta
distribution centered at nine
tenths of the largest observable
plant’s size. The dashed line
illustrates the equilibrium
population density (~5,082
plants/area). For more on the
Dirac Delta distribution, see
Appendix 3

Fig. 5 The relationship between seedling recruitment in year t+1 and
estimated seed production in year t. The dotted curve remains the
power function f1ðxÞ ¼ x0:67as in Rose et al. (2005) and the solid
curve the revised Michaelis–Menten function fitted independently
f2ðxÞ ¼ 219:6x

756:7þx : Note that the revised Michaelis–Menten function
appears to be approaching its asymptote closer to the range of
observable seed production. The AICc value for the revised
Michaelis–Menten function (AICc=140.6) is very similar to that of
the power function of the digitized data in Rose et al. (2005) (AICc=
138.4) and the original Michaelis–Menten (AICc=139.3) function
used in Example 1a and 1b
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revised mechanistic model will converge to its equilibrium
population density much faster. However, the mathematical
observation in Eq. 23 about the transient function still holds,
as when the initial population becomes smaller the difference
between T(1,ρ) in the two models grows (Fig. 6).

Example 2b: transient amplification in models
without identical equilibrium populations

We used similar initial conditions as in Example 1b to
compare the transient amplifications of the two models.
Allowing for different equilibrium population densities
produces larger differences in the short-term dynamics
between the power function model and the revised
mechanistic model compared to the previous models that
forced the same equilibrium dynamics (Fig. 7). As Eq. 29
suggests, the population density in the power function
model can get very large in one time-step (relative to the
revised mechanistic model) due to the lack of a restrictive
upper bound. In contrast, the revised Michaelis–Menten
function has a relatively low saturation constant, and the
equilibrium population recruitment is at saturation level, i.e,
ag»

bþg» � a. This is because the straight line hðgÞ ¼ p
»
eðgÞ

intersects the revised Michaelis–Menten function well into
its asymptote (see Appendix 1). This means that the total
population density at t+1 cannot grow larger than the total
population density at t plus the maximum seedling

recruitment α, and therefore, population trajectories from
the revised mechanistic model remain relatively constant.

Discussion

Using Platte thistle as a case study, we have shown that the
predicted transient dynamics can vary considerably depend-
ing on how we implement density dependence in recruit-
ment, even if the equilibrium dynamics are the same. We
have also shown that that these differences occur in models
where the parameters are fit independently. Through
mathematical arguments we verify that these differences
in transient dynamics between these two models are due to
the differences in functional form, and not simply a product
of parameter uncertainty, as the results in Eq. 23 and Eq. 29
are for general power functions and general Michaelis–
Menten functions. So while some parameter values may
display these differences more drastically than others, the
results in this paper suggest that for some ecological
outcomes the predicted transient dynamics will differ,
regardless of parameter values used, and these differences
do not have a bound.

It is interesting to note that when the parameters in
the Michaelis–Menten function were fit independently,
the resulting equilibrium population density ( n

»�� �� �
429 plantsðareaÞ�1) was similar to the beginning population

Fig. 6 Predicted transient
function values for the power
function model and the revised
mechanistic model resulting
from simulating the ecological
event in Example 2a. The initial
densities, M, are a 0.25, b 0.5,
c 0.75, and d 1 seedlings/area;
in each simulation, the size
distribution of the seedlings was
identical to that reported in
Rose et al. (2005)
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size reported in Fig. 1a in Rose et al. (2005) prior to the
invasion by Rhinocyllus. This would appear to build on the
suggestion made in this paper that mechanistic modeling,
followed by standard methods of parameter estimation,
offers the ideal prospect for obtaining a useful model when
the data are poor.

The importance of choosing the most appropriate
functional form for density-dependent recruitment has been
recognized in other contexts. For example, Runge and
Johnson (2002) have shown that the functional form used
for recruitment can influence the optimal harvesting
strategy for duck populations in a nontrivial way. They
argue that the differences between these functions often lie
outside the range of observed, or even anticipated, data, and
therefore, statistical methods are limited in determining
what functional relationships in vital rates are most
appropriate. To address the effect of the resulting structural
uncertainty on model predictions, the authors advocate for
active probing of models that vary in their implementation
of vital rates, which means exploring model predictions
outside the realm of data collection. The benefit of this
active scrutiny is often overlooked because “model valida-
tion” typically focuses on replicating previously observed
phenomena (Maki and Thompson 2006). In the study by
Rose et al. (2005), there were no empirical recruitment data
for very low or very high seed densities available and the

two alternative recruitment functions differ mainly in the
unobserved data range (Fig. 1). The sensitivity of the
predicted transient dynamics to the choice of the recruit-
ment function highlights the value of active probing of
model components.

Density dependence occurs due to the regulatory nature
of limited resources in a system. The strength of density
dependence should be highest at some carrying capacity,
and population growth should not be limited at low
population density, resulting in essentially linear dynamics.
The Michaelis–Menten function is essentially linear for
small seed densities (provided that β is sufficiently large).
This implies that the density dependence does not influence
population dynamics until the seed density is sufficiently
high, which is what we expect to see. In contrast, when
using the power function, seedling recruitment is never
linear for low seed densities. Thus, the power function may
poorly predict the dynamics at low density levels. In other
words, while the population might not be experiencing the
biological effects of density dependence, we are still
predicting its dynamics subject to the mathematical effects
of density dependence (Hastings 2004). In Example 1a, we
discovered that the power function model’s transient
function can become arbitrarily large when the population’s
density becomes sufficiently small (Eq. 23). This is due to
the fact that the power function’s derivative is unbounded

Fig. 7 Predicted total
population densities for the
power function model and the
revised mechanistic model
resulting from simulating the
ecological event in Example 2b.
The initial densities, M, are a 5,
b 10, c 15, and d 20; in each
simulation, M was distributed
according to the Dirac Delta
distribution centered at nine
tenths of the largest observable
plant’s size
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for seed production densities close to zero, which causes
seed establishment probability to be greater than unity for
small seed densities. For example, if + (t)=0.75, then

gðtÞn ¼ ð0:75Þ0:67 ¼ 0:82; ð30Þ

which implies that pe(t)=1.09, which is clearly false, as
seed establishment probability needs to be bounded above
by a number smaller than unity to make sense. The largest
seed establishment value for the Michaelis–Menten func-
tion is much smaller than unity, as peð�Þ � ab�1 ¼ 0:07:

In the case where the total seed production is much
larger than the available number of microsites, a constant
number of seedlings are recruited for each time-step. No
such limiting value will be obtained in the power function
because it is unbounded for large seed values, and the
number of seedlings always increases with the number of
seeds produced. Even though models using the power
function to represent density-dependent recruitment predict
equilibrium population densities, the lack of an upper
bound for recruitment may still lead to poor predictions of
annual seedling recruitment if populations are skewed
toward individuals with high reproductive value. The result
is an overestimation of the potential magnitude of transient
amplification (Eq. 29, Figs. 4 and 7). In contrast, the
Michaelis–Menten function is more realistic in this situa-
tion because as the number of seeds produced goes to
infinity, the density of recruited seedlings approaches the
constant α. This constant is determined by the number of
available microsites.

Apart from being more realistic, deriving functional
relationships from first principles allows us to incorporate
other relevant ecological mechanisms such as interspecific
competition for limited microsites. In the presence of
interspecific competition, density dependence would intensify
and the maximum recruitment density would be lower. We
can expand our derivation of the Michaelis–Menten function
and insert a term for interspecific competition. If we let the
aggregate seed density of other species competing with Platte
thistle be denoted by ω(t), then our Michaelis–Menten
function would have the form (Mangel 2006):

f ðgðtÞ;wðtÞÞ ¼ agðtÞ
b þ gðtÞ þ wðtÞ : ð31Þ

This function has similar properties of the Michaelis–
Menten function for seedling recruitment, that is,
f ðgðtÞ;wðtÞÞis close to linear for low gðtÞ þ wðtÞvalues
and is roughly constant if + (t) becomes large. One
additional property of f ðgðtÞ;wðtÞÞ is that it becomes small
if ω(t) becomes large because all microsites are occupied by
the competing species. In contrast, the power function has
no similar, intuitive extension for incorporating interspecific
competition.

We have shown that the choice of the functional forms
such as density-dependent recruitment can have profound
effects on predicted transient dynamics. This suggests
that more emphasis should be placed on functional
relationships that are derived based on mechanistic
ecological principles.
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Appendix 1: Calculating parameters to ensure common
equilibrium values

This section demonstrates how to find the parameter
values for the seedling recruitment function in the mecha-
nistic model that ensures that the power function and
mechanistic model have a common equilibrium population.
For our particular model, Rebarber et al. (2011) ensure that
this equilibrium population exists for Eq. 19 and is globally
stable, independent of non-zero initial population. To find
this equilibrium population, we begin by writing Eq. 19 in
abstract form. To do this, we define the bounded operator

Fig. 8 The relationship between seedling recruitment in year t+1 and
estimated seed production in year t. The intersection of the two
recruitment functions with hðxÞ ¼ p

»
ex elicits the equilibrium seed

production +*. We used this intersection to find the equilibrium
population density (see Appendix 1). Note that the equilibrium seed
production is much larger than the observed data in Rose et al. (2005),
which are indicated by the dots near the origin
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A0 : L1ðL;UÞ ! L1ðL;UÞ; the bounded functional cT :
L1ðL;UÞ ! <; and the L1(L,U) vector b by

A0u ¼
ZU

L

p1ð�; xÞuðxÞdx; cTu ¼
ZU

L

cðxÞuðxÞdx; b ¼ J ðxÞ:

ð32Þ
In this abstraction, A0 is the survival/growth operator, cT

is the reproductive functional, and b is the distribution of
newborns. We can now write our model as

nðx; t þ 1Þ ¼ A0nðx; tÞ þ bf ðcTnðx; tÞÞ
¼ A0nðx; tÞ þ peðcTnðx; tÞÞbcTnðx; tÞ: ð33Þ

To calculate the equilibrium population, we first need the
concept of the stability radius of the real, positive
systemðA0; b; cT Þ. This is the smallest positive number pe*
such that the spectral radius of the operator A0 þ pe

»
bcT is

equal to unity. It is proved in Hinrichsen and Pritchard
(2005) that pe* is given by the formula

pe
» ¼ ðcT ðI � A0Þ�1bÞ�1: ð34Þ

Suppose that f is increasing, concave down and f(0)=0,
and let +* be the solution of the equation

pe
» ¼ peðgÞ: ð35Þ
It is shown in Rebarber et al. (2011) that the equilibrium

population is given by the formula

n
»ðxÞ ¼ ðpe»g»ÞðI � A0Þ�1b; ð36Þ

and that +* is the limiting seed production. Using the kernel
functions in Table 2 of Rose et al. (2005), we compute that
pe*=0.0216, which we note, is independent of the choice of
seedling recruitment function f ðgðtÞÞ ¼ peðgðtÞÞgðtÞ: To find
the limiting seed production, +*, for both models, we solve
Eq. 35. This equality is what we need to match in the two
seedling recruitment functions to obtain identical equilibrium
populations. For the power function model, Eq. 35 becomes

ðg»Þ�0:33 ¼ 0:0216; ð37Þ

from which we obtain +*=111,397.68. To match the
mechanistic model, we need to choose parameter values
α and β in the Michaelis–Menten function in Eq. 14 such
that pe* = pe(+*), where +*=111,397.68 and pe*=0.0216.
The Michaelis–Menten function has two parameters, which
will allow us to use one parameter to ensure that
aðb þ g

»Þ�1 ¼ pe
»
; with one additional parameter left to fit

the empirical recruitment data in Fig. 4 of Rose et al. (2005).
In this paper, we will allow β to be the free parameter,

to be fitted to data, and solve for α in terms of β to obtain
the common equilibrium population. In particular, a ¼
0:0216ð111; 397:68þ bÞ: Finally, we used nonlinear
regression to obtain β=49,741 from the data from
Fig. 4 of Rose et al. (Fig. 1).

The calculation of pe* and all other simulations of the
IPMs in this paper use the numerical integration techniques
described in Ellner and Rees (2006). All numerical
techniques in this paper were carried out using the
statistical software R (R Development Core Team 2006),
and codes are available upon request.

Appendix 2: Proof of the identity in equation Eq. 18

To prove the identity in Eq. 20, we must first explicitly write
the definition for the transient function at time t0+1 with a
given initial population ρ(x). By the definition of p1(x,y) in
Eq. 5 and Pðy; t0Þ :¼ nðy; t0Þ nð�; t0Þk kð Þ�1; we have

Tðt0 þ 1; rÞ ¼

RU
L
p1ð�; yÞnðy; t0Þdyþ f ðgðtÞÞJ ð�Þ

����
����� nð�; t0Þk k

nð�; t0Þk k
ð38Þ

¼
ZU

L

ZU

L

sðyÞð1� fpðyÞÞgðx; yÞPðy; t0Þdydx

þ f ðgðtÞÞ
nð�; t0Þk k

ZU

L

JðxÞdx� 1

ð39Þ

¼
ZU

L

ZU

L

sðyÞð1� fpðyÞÞgðx; yÞPðy; t0Þdydx

þ f ðgðtÞÞ
nð�; t0Þk k � 1;

ð40Þ

as the integral of the probability density function J(x) is
equal to unity. Since we are assuming that the functions in
the kernel are all positive, sufficiently smooth functions,
with fpðyÞ < 1 for every y, we can use the Fubini–Tonelli
Theorem (Folland 1999) to change the order of the
remaining integral. Therefore,

ZU

L

ZU

L

sðyÞð1� fpðyÞgðx; yÞPðy; t0Þdydx

¼
ZU

L

ZU

L

sðyÞð1� fpðyÞgðx; yÞPðy; t0Þdxdy

ð41Þ
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¼
ZU

L

sðyÞð1� fpðyÞÞPðy; t0Þ
ZU

L

gðx; yÞdxdy

¼
ZU

L

sðyÞð1� fpðyÞÞPðy; t0Þdy;

ð42Þ

as g(x,y) is a probability distribution for each fixed y. By the
definition of P(y,t0), we see that the right-hand side of
Eq. 42 equals Enð�;t0ÞðsðyÞð1� fpðyÞÞÞ: Finally, note that for
every t, + (t) has the property that

gðtÞ ¼
ZU

L

cðyÞnðy; tÞdy ¼ nð�; tÞk kEnð�;tÞðcðyÞÞ; ð43Þ

which completes the proof.

Appendix 3: Notes on the Dirac Delta distribution

When used to model a structured population, the Dirac
Delta distribution is the continuous-stage analog of a
population vector that has zeros in all but one entry. In
other words, the Dirac Delta distribution centered at a,
written δ(x − a), roughly describes a population that is
entirely of members whose stage variable equals a.
Formally, δ(x − a) is the limit of a sequence of strongly
peaked functions of the form:

dnðxÞ ¼

0 for x < a� 1

2n

n for a� 1

2n
< x < aþ 1

2n

0 for x > aþ 1

2n

8>>>>>>>><
>>>>>>>>:

ð44Þ

as n ! 1: δ(x − a) has the property that

Z1

�1
fðxÞdðx� aÞdx ¼ fðaÞ ð45Þ

for all sufficiently smooth functions ϕ(x) (Logan 2006). More
specifically, if one allows ϕ(x)=1, then we see that δ(x − a)
is a probability density function and

Edðx�aÞðfðxÞÞ ¼ fðaÞ: ð46Þ

References

Briggs J, Dabbs K, Riser-Espinoza D, Holm M, Lubben J, Rebarber
R, Tenhumberg B (2010) Structured population dynamics and
calculus: an introduction to integral modeling. Math Mag
83:243–257

Caswell H (2001) Matrix population models: construction, analysis
and interpretation, 2nd edn. Springer, New York

Caswell H (2007) Sensitivity analysis of transient population
dynamics. Ecol Lett 10:1–15

Caswell H (2008) Perturbation analysis of nonlinear matrix population
models. Demogr Res 18:59–116

Cousens R (1991) Aspects of the design and interpretation of
competition (inference) experiments. Weed Technol 5:664–
673

R Development Core Team (2006) R: a language and environment for
statistical computing. Vienna, Austria

Duncan RP, Diez JM, Sullivan JJ, Wangen S, Miller AL (2009) Safe
sites, seed supply, and the recruitment function in plant
populations. Ecology 90:2129–2138

Easterling MR, Ellner SP, Dixon PM (2000) Size-specific sensitivity:
applying a new structured population model. Ecology 81:694–
708

Ellner SP, Rees M (2006) Integral projection models for species with
complex demography. Am Nat 167:410–428

Folland GB (1999) Real analysis: modern techniques and their
applications. Wiley, New Jersey

Freckleton RP, Sutherland WJ, Watkinson AR, Stephens PA (2008)
Modelling the effects of management on population dynamics:
some lessons from annual weeds. J Appl Ecol 45:1050–1058

Hastings A (2004) Transients: the key to long-term ecological
understanding? Trends Ecol Evol 19:39–45

Hinrichsen D, Pritchard AJ (2005) Mathematical systems theory I:
modeling, state space analysis, stability and robustness. Springer,
New York

Holling CS (1959) Some characteristics of simple types of predation
and parasitism. Can Entomol 91:385–398

Koons DN, Grand JB, Zinner B, Rockwell RF (2005) Transient
population dynamics: relations to life history and initial population
state. Ecol Model 185:283–297

Logan JD (2006) Applied mathematics, 3rd edn. Wiley, New Jersey
Maki D, Thompson M (2006) Mathematical modeling and computer

simulation. Thomson Brooks/Cole, Belmont
Mangel M (2006) The theoretical biologist’s toolbox: quantitative

methods for ecology and evolutionary biology. Cambridge
University Press, Cambridge

Ramula S, Rees M, Buckley YM (2009) Integral projection models
perform better for small demographic data sets than matrix
population models: a case study of two perennial herbs. J Appl
Ecol 46:1048–1053

Rebarber R, Tenhumberg B, Townley S (2011) Global asymptotic
stability of density dependent integral projection models. Theor
Pop Bio (in press)

Rose KE, Louda SM, Rees M (2005) Demographic and evolutionary
impacts of native and invasive insect herbivores on Cirsium
canescens. Ecology 86:453–465

Runge MC, Johnson FA (2002) The importance of functional form in
optimal control solutions of problems in population dynamics.
Ecology 83:1357–1371

Sletvold N (2002) Effects of plant size on reproductive output and
offspring performance in the facultative biennial Digitalis
purpurea. J Ecol 90:958–966

400 Theor Ecol (2012) 5:387–401



Snyder RE (2009) Transient dynamics in altered disturbance regimes:
recovery may start quickly, then slow. Theor Ecol 2:79–87

Stott I, Franco M, Carslake D, Townley S, Hodgson D (2010) Boom
or bust? A comparative analysis of transient population dynamics
in plants. J Ecol 98:302–311

Tenhumberg B, Tyre TJ, Rebarber R (2009) Model complexity affects
transient population dynamics following a dispersal event: a case
study with pea aphids. Ecology 90:1878–1890

Townley S, Hodgson DJ (2008) Erratum et addendum: transient
amplification and attenuation in stage-structured population
dynamics. J Appl Ecol 45:1836–1839

Townley S, Carslake D, Kellie-Smith O, McCarthy D, Hodgson D
(2007) Predicting transient amplification in perturbed ecological
systems. J Appl Ecol 44:1243–1251

Vandermeer JH, Goldberg DE (2003) Population ecology: first
principles. Princeton University Press, Princeton

Weiner J, Martinez S, Muller-Scharer H, Stoll P, Schmid B (1997)
How important are environmental maternal effects in plants? A
study with Centaurea maculosa. J Ecol 85:133–142

Weller M, Spratcher C (1965) Role of habitat in the distribution and
abundance of marsh birds. Special report 43. Iowa Agriculture
and Home Economics Experiment Station, Ames

Theor Ecol (2012) 5:387–401 401


