
SIAM J. APPL. MATH. c© 2016 SIAM. Published by SIAM under the terms
Vol. 76, No. 1, pp. 238–275 of the Creative Commons 4.0 license

SIMPLE ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS
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Abstract. Pest management is vitally important for modern arable farming, but models for
pest species are often highly uncertain. In the context of pest management, control actions are
naturally described by a nonlinear feedback that is generally unknown, which thus motivates a
robust control approach. We argue that adaptive approaches are well suited for the management
of pests and propose a simple high-gain adaptive tuning mechanism so that the nonlinear feedback
achieves exponential stabilization. Furthermore, a switched adaptive controller is proposed, cycling
through a set of given control actions, that also achieves global asymptotic stability. Such a model
in practice allows for the possibility of rotating between different courses of management action. In
developing our control strategies we appeal to comparison and monotonicity arguments. Interestingly,
componentwise nonnegativity of the model, combined with an irreducibility assumption, implies that
several issues typically associated with high-gain adaptive controllers do not arise and usual high-gain
structural assumptions are not required.
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1. Introduction. The 21st century is likely to see increasing pressure on world
food production because of growing population and per capita consumption, greater
competition for land use, and climate change [1]. One of the challenges in meeting
the increasing demand for affordable food is to reduce potential losses in crop yield to
animal pests and weeds, while minimizing the environmental impact of agriculture.
The prevalent method for controlling pest populations is the use of chemical pesticides.
Worldwide, in both 2006 and 2007, it is estimated that farmers applied about 2.5
billion kg of pesticides [2] and spent nearly $80 billion in doing so. Despite widespread
pesticide application, yield loss is still significant. Indeed, in the early 1990s it was
estimated that 37% of all potential food crops grown in the U.S. was destroyed by
pests [3]. More recently, during 2001–2003 total global potential loss varied from
about 50% in wheat to more than 80% in cotton production [4]. From the farmers’
perspective pesticide application is still economically beneficial (generally each dollar
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 239

invested in pesticide control returns about $4 in protected crops [5]).
With such huge social and economic costs associated with crop losses to pests, it

is clear that significant research and development in pest management must continue.
The academic literature contains a myriad of theoretical approaches to pest control
and the related issue of management of unwanted species. Examples include detailed
analysis of predator-prey–type differential [6] and difference [7] equation models, linear
programming [8], linear quadratic optimal control [9], and stochastic dynamic pro-
gramming applied to Markov decision processes [10, 11, 12]. To our knowledge, the
prevailing approaches are mostly based on deterministic or stochastic optimal control-
type tools where a control, denoting a management or intervention strategy, is chosen
to achieve some desired dynamic behavior as well as to minimize a specified cost.
Although minimizing costs is of course appealing, there are disadvantages. To name
but three, the computation of optimal controls is typically intractable analytically or
expensive computationally (suffering, for example, from the “curse of dimensionality,”
coined in [13]; see more recently [14]), and so optimal controls can be impractical to
implement. Second, and often overlooked, in applied contexts it is not always clear
that “off-the-shelf” optimal control approaches will respect positivity of the system
states. Third, and most pressingly, models of pest dynamics are inevitably highly
uncertain as they seek to describe often novel species in novel environments. Uncer-
tainty is a broad term in ecology and ecological modelling, although codices of the
term may be found in [15] or [16]. In our study uncertainty encompasses choice of
model structure (for example, type of model, number of stage-classes, or any mod-
elled density-dependence), parametric uncertainty (for instance, how to accurately fit
vital rates for a chosen model), and unknown disturbances of the dynamics (such as
sampling error).

Control engineers observed in the 1970s that optimal control techniques need
not be robust to the above sources of uncertainty and overoptimization leads to
fragility [17]. Therefore, owing to the sources of uncertainty expected to be present
in models for pest species, approaches to pest management must be robust and must
qualify and quantify the uncertainty they can handle. When seeking strategies to
stabilize highly uncertain systems, and to avoid fragility, control engineering has fo-
cused on two approaches: H∞-control theory, based on [18], and adaptive control
theory [19, 20, 21, 22]. We argue that there is considerable scope and value in ex-
ploring adaptive control approaches in pest management. The pest dynamics and
management strategy may be modelled as a control system with input, state, and
output denoting the pest control, the pest population, and some measurement of that
population, respectively. The aim is to design a management strategy, or course of
management action, to eradicate a pest population (or at least reduce its abundance)
which corresponds to a control objective of determining an input that stabilizes the
model, that is, drives the state variables to zero. Importantly, both the state variables
and the model parameters are uncertain, if not entirely unknown, and thus an input
is desired that achieves stabilization in the presence of such a paucity of information.

Within the framework of adaptive control, much attention has been devoted to
so-called simple (also known as nonidentifier based) adaptive controllers originating in
the 1980s in the work of Willems and Byrnes [23, 24], Mareels [25], Mårtensson [26, 27],
Morse [28], Nussbaum [29], and others. We refer the reader to the survey pa-
pers [30, 31] for more background and development of simple adaptive controllers.
The power of these adaptive controllers is twofold: (a) they achieve global asymptotic
stability of the state (here denoting the pest population) around zero, with minimal
knowledge of the to-be-controlled system, often just a measured variable, and (b) they
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240 GUIVER ET AL.

are straightforward to compute (and thus, in theory, implement). The nomenclature
“simple” refers to the nonidentifier property of the controller, meaning that it does not
seek to update the underlying dynamical model over time (for instance, by inferring
or estimating parameters). That said, in an applied context the management strategy
determined by a simple adaptive controller changes over time in response to how the
measured variable changes. In that sense, there are parallels between adaptive control,
an example of feedback control more generally, and (at least the technical, modelling
aspects of) the academic discipline of adaptive management [32, 33, 34], as known in
the resource and ecological management literature. The connections between robust
feedback control and adaptive management have been explored by other authors as
well: Heinimann [35] proposes principles from control theory as a concept for scholars
and practitioners in adaptive ecosystem management.

The application of simple adaptive control to pest management is to the best of
our knowledge novel and, owing to its potential societal and economic value, worthy
of consideration. The present mathematical investigation is additionally motivated
by the observation that existing simple adaptive controllers are typically not designed
for models where the state variables are constrained to take nonnegative values, as is
evidently the case not only in applied pest management contexts, but also in models
for harvesting, scavenging, culling, or predation. One exception that we are aware
of is [36, Chap. 15], where adaptive control for positive dynamical systems is con-
sidered, and we compare those results with ours. Dynamical systems that leave a
positive cone invariant—such as the nonnegative orthant in n-dimensional Euclidean
space—are called positive dynamical systems. Correspondingly, the state variable of
positive dynamical systems take only nonnegative values, typically denoting abun-
dances, densities, or concentrations. Positive dynamical systems arise as models in
a diverse range of fields from biology, chemistry, ecology, and economics to genet-
ics, medicine, and engineering [36, p. xv], and are understandably well studied, with
textbooks [37, 38, 39]. Control of positive dynamical systems leads to positive input
control systems [40], where the input variables are assumed to be positive as well. In
a pest management context, the input variable is naturally allowed to take negative
values, provided that a nonnegative number or distribution of pests remains, leading
to the concept of so-called positive state systems [41]. Such a framework allows the
modelling of control actions that are essential for pest management but, importantly,
fall outside the existing positive input systems theory.

The purpose of the present paper is twofold. On the one hand, for those interested
in applications, but possibly not familiar with adaptive control theory, we seek to
describe how ideas from adaptive control may be used in pest management. We
present a suite of tools that explore the utility of adaptive control techniques in
pest management to eradicate or reduce pest abundance. Ultimately, we seek to use
adaptive control methods to reduce pesticide usage, which in turn reduces the cost of
food production and decreases consequential but undesirable costs of pesticide usage
such as the humanitarian and economic cost of human pesticide poisoning and other
pesticide-related illnesses, the destruction of beneficial insects (predators, pollinators),
pesticide resistance evolution, and contamination of ground and surface water [42]. On
the other hand, for those familiar with classical nonidentifier-based adaptive control,
we describe how the typical structural assumptions on the set of (unknown) systems,
such as minimum phase, relative degree, minimality, and knowledge of the high-
gain response, can essentially be replaced by componentwise nonnegativity and an
irreducibility or primitivity assumption.

Therefore, we present and develop two ideas from adaptive control in the con-
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 241

text of pest management, developed for discrete-time, positive state linear systems.
First, we derive a so-called high-gain result (section 2). We present several extensions,
including a continuous-time analogue and an input-to-state stability-type estimate.
Second, we present a so-called switching or universal adaptive control scheme (sec-
tion 3). The results are applied to a model for Diaprepes root weevil, an invasive
species threatening U.S. citrus production (section 4). Section 5 contains some con-
cluding remarks. Proofs of certain results appear in the appendix.

Notation. We collect mathematical notation and terminology used in what fol-
lows. The symbols N and R denote the sets of positive integers and real numbers,
respectively. The symbol N0 denotes the set of nonnegative integers. For n,m ∈ N,
R

n and R
n×m denote usual n-dimensional Euclidean space and the set of n×m matri-

ces with real entries, respectively. The superscript T denotes both matrix and vector
transposition. With the conventions that Rn×1 = R

n and R
1 = R, for M,N ∈ R

n×m

with entries mij and nij , respectively, we write

M ≤ N (or N ≥M) if mij ≤ nij (or nij ≥ mij) ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},
M < N (or N > M) if M ≤ N and M �= N (or N ≥M and M �= N),

M � N (or N � M) if mij < nij (or nij > mij) ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} .
We let Rn×m

+ denote the set of nonnegative matrices, that is, M ∈ R
n×m
+ if M ≥ 0.

We call M positive or strictly positive if M > 0 or M � 0, respectively, noting that
there are different conventions present in the academic literature for the term positive
matrix.

We recall that a square matrix M ∈ R
n×n with entries mij is said to be reducible

if there exist nonempty, disjoint subsets J1, J2 ⊆ {1, . . . , n} such that J1 ∪ J2 =
{1, . . . , n} and mij = 0 for all (i, j) ∈ J1 × J2. If M is not reducible, then it is said
to be irreducible. If M is additionally nonnegative, then M is irreducible if and only
if for each i, j ∈ {1, 2, . . . , n} there exists k ∈ N such that the (i, j)th entry of Mk is
positive. A nonnegative matrixM is primitive if there exists k ∈ N such thatMk � 0
and the index of primitivity is the smallest such k. The matrix M is called Metzler
(also known as quasi-positive or essentially nonnegative) if every off-diagonal entry
is nonnegative (see, for example, [39, Chap. 6]). We let r(M) and α(M) denote the
spectral radius and spectral abscissa of M , respectively, which we recall are given by

r(M) := max{|λ| : λ ∈ σ(M)} and α(M) := max{Re λ : λ ∈ σ(M)} ,
where σ(M) denotes the set of eigenvalues of M , its spectrum. For v ∈ R

n, ‖v‖ and
‖M‖ denote the one-norm of v and the operator induced one-norm ofM , respectively.
We let K denote the set of so-called comparison functions

K := {f : R+ → R+ : f is continuous, strictly increasing and f(0) = 0} ;
see, for example, [43, p. 172].

2. Adaptive control schemes for pest management: In the spirit of
high-gain. We assume a discrete-time, age- or stage-structured model for the pest
population, which, when the state space is finite-dimensional, is called a matrix Pop-
ulation Projection Model (PPM) in the ecology literature. We refer the reader to the
monograph [44] for more background on matrix PPMs. Specifically, the structured
population x, effect of the pest control v, and measurement y are modelled as

(2.1)
x(t+ 1) = Ax(t) + v(t) , x(0) = x0,

y(t) = Cx(t) ,

}
t ∈ N0 ,
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242 GUIVER ET AL.

where n, p ∈ N, A ∈ R
n×n
+ is a population projection1 matrix, and C ∈ R

p×n
+ records

the stages (or combinations of stages) measured. In pest control applications, r(A) > 1
so that uncontrolled, the pest population is increasing exponentially, at least asymp-
totically. The variable y(t) in (2.1) denotes some measured portion of the population
and is the variable that is available to inform management strategies—in applications
we do not expect to have exact knowledge of the state variables x(t) at all times owing
to, for example, the difficulty or unreliability of measuring certain stage-classes.

For a biologically realistic and meaningful model, the control effect v satisfies the
following three properties:

(i) v is targeted in that it affects only specific life-stages;
(ii) for those stages targeted, v is proportional to the pest population present;
(iii) v is a (possibly nonlinear but) increasing function of some applied control

effort u.
Properties (i)–(iii) motivate a v of the form

(2.2) v(t) = −BΦ(u(t))Fx(t) , t ∈ N0 ,

where B ∈ R
n×m
+ , F ∈ R

m×n
+ for some m ∈ N and u(t) ∈ R+ denotes the applied

control effort. The B in (2.2) is determined by which age- or stage-classes are affected
by the pest control, and F is determined by the underlying biology. The inclusion
of the function Φ : R+ → R

m×m
+ in (2.2) models the efficacy on various life stages

of the control effort at time-step t, i.e., u(t), which, for example, could denote the
mass of active pesticide ingredient used. For what follows we record an assumption
of functions Φ arising in (2.2):

(A1) Φ : R+ → R
m×m
+ has nonzero components belonging to K and mapping

R+ → [0, 1].
We note that if Φ satisfies (A1), then the limit Φ∞ := limω→∞ Φ(ω) exists.

Example 2.1. If a pest management strategy (2.2) targets only the first stage-
class, usually denoting juveniles in an animal model, seeds or seedlings in a plant

model, or egg or larval stages in an insect model, thenm = 1 and B =
[
1 0 . . . 0

]T
in (2.2). The row vector F in (2.2) has entries taken from the corresponding entries
in the first row of A. Possible Φ : R+ → R+ are sigmoid-type functions, taking values
between zero and one, such as

(2.3) Φ(u) = 1− e−k1u, Φ(u) = tanh(k2u), or Φ(u) =
k3u

1 + k3u

for constants k1, k2, k3 > 0. We comment further on possible choices of Φ in applica-
tions in section 4.

The combination of (2.1) and (2.2) yields

(2.4)
x(t+ 1) = (A−BΦ(u(t))F )x(t) , x(0) = x0 ,

y(t) = Cx(t) ,

}
t ∈ N0 ,

where the sequence of control efforts u is still to be determined. The premise of the
present contribution is that A, B, F , and Φ are uncertain or unknown, and so it is
generally not possible to determine a constant choice û > 0 in (2.2) or (2.4) such that

(2.5) r(A −BΦ(û)F ) < 1 ,

1This is not to be confused with a projection or idempotent matrix.
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 243

which, in pest management applications, would lead to eradication of the pest. How-
ever, we seek to exploit the idea that the choice of pest management (2.2) is able to
eradicate the pest, at least for a sufficiently large, but crucially unknown, control ef-
fort. To capture this property mathematically, we record a second assumption which
pertains to the triple (A,B, F ) ∈ R

n×n
+ × R

n×m
+ × R

m×n
+ that appears in (2.4) and a

function Φ : R+ → R
m×m
+ satisfying assumption (A1):

(A2) For all ω ∈ [0,∞), the matrix A − BΦ(ω)F is nonnegative and irreducible,
and r(A −BΦ∞F ) < 1, where Φ∞ := limω→∞ Φ(ω).

Remark 2.2. Assumption (A2) is in the spirit of “high-gain” in the control
engineering literature as it posits that when u(t) (the “gain”) is sufficiently large,
the “closed loop” matrix A − BΦ(u(t))F is stable. Assuming that A − BΦ(ω)F
is irreducible for every positive, finite ω is not restrictive for reasonable ecological
models [45]; in other words, the directed graph (see, for example, [39, Definition 2.4,
p. 29]) associated with the population projection matrix A − BΦ(ω)F is strongly
connected for every ω. Recalling that the directed graph of a population projection
matrix models the life-cycle of a stage-structured population (see [44, p. 57]), loosely
speaking, a consequence of the irreducibility assumption in (A2) is that effects of the
pest management strategy are (eventually) felt by every stage-class (although they
perhaps target only a single stage-class).

To exploit the biologically reasonable assumptions (A1) and (A2) in pest man-
agement we propose an adaptive control scheme:

(2.6)

x(t+ 1) = (A−BΦ(u(t))F )x(t) , x(0) = x0,

y(t) = Cx(t) ,

u(t+ 1) = u(t) + ψ(‖y(t)‖) , u(0) = u0,

⎫⎪⎬
⎪⎭ t ∈ N0 ,

where u0 ≥ 0 and ψ ∈ K are design parameters. The term u0 is the initial control
effort, and the function ψ provides a recipe for converting current measured pest
abundance ‖y(t)‖ into an increase of control effort at the next time-step and dictates
“how fast” the control effort u increases. In practice, ψ will depend on the units of the
(currently dimensionless) control effort u, such as mass or volume. The upshot is that
the control scheme (2.6) continues to increase the control effort at time-step t, i.e., u(t),
so long as the measured variable y(t) is nonzero. Our first result demonstrates that,
on the basis of only (A1) and (A2) holding and a minor constraint on ψ, the adaptive
control scheme (2.6) is globally asymptotically stable and that rate of convergence of
the state to zero is exponential. In particular, the sequence of nondecreasing control
efforts u converges.

Theorem 2.3. Given the adaptive control scheme (2.6), assume that Φ satisfies
(A1), (A,B, F ) ∈ R

n×n
+ ×R

n×m
+ ×R

m×n
+ and Φ satisfy (A2), ψ ∈ K, and C ∈ R

p×n
+ ,

C �= 0. For positive x0 and nonnegative u0, let (x, u) denote the solution of (2.6).
Then, there exist M > 0 and γ ∈ (0, 1) such that

(2.7) ‖x(t)‖ ≤Mγt‖x0‖ , t ∈ N0 .

If additionally ψ has the property that

(2.8) ∀ δ > 0 , ∀ λ ∈ (0, 1) :
∑
j∈N0

ψ(δλj) <∞ ,

then u converges, and its limit u∞ ≥ 0 (which depends on x0, u0, and ψ) is stabilizing,
that is,

(2.9) r(A−BΦ(u∞)F ) < 1 .
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244 GUIVER ET AL.

Proof. For any nonnegative sequence u, the state x is bounded by

x(t+ 1) ≤ Ax(t) , x(0) = x0 , t ∈ N0 ,

and thus (2.7) trivially holds if r(A) < 1. We therefore assume that r(A) ≥ 1.
Assumption (A2) now implies that Φ �= 0, and thus by (A1), Φ is componentwise
strictly increasing in its nonzero components, so that

(2.10) 0 ≤ u1 < u2 ⇒ Φ(u1) < Φ(u2) .

In the arguments that follow we shall make use of monotonicity of the spectral radius:

(2.11) A1, A2 ∈ R
n×n, 0 ≤ A2 < A1 and A2 irreducible ⇒ 0 ≤ r(A2) < r(A1) ;

see, for example, [39, Corollary 1.5, p. 27]. Let u∗ ≥ 0 be such that A∗ := A−BΦ(u∗)F
has r(A∗) = 1. The existence of such a u∗ is ensured by the intermediate value theorem
applied to the continuous, strictly decreasing function

[0,∞) � ω �→ κ(ω) := r(A −BΦ(ω)F )− 1 .

That κ is continuous follows from the continuity of the spectral radius and the con-
tinuity of the nonzero components of Φ. The monotonicity of κ follows from (2.10)
and (2.11). Clearly, κ(0) = r(A)−1 ≥ 0, and, by assumption (A2), limω→∞ κ(ω) < 0.

We consider two exhaustive cases: either (a) u(t) ≤ u∗ for all t ∈ N0, or (b) there
exists some τ ∈ N such that u(τ) > u∗. Seeking a contradiction, we assume that (a)
holds. By its construction in (2.6), u is a nondecreasing sequence that is assumed
to be bounded from above and hence convergent to some z ≤ u∗. Consequently, the
sequence (ψ(‖y(j)‖))j∈N0 is summable, that is, belongs to �1 as

N∑
j=0

ψ(‖y(j)‖) =
N∑
j=0

[
u(j +1)− u(j)

]
= u(N +1)− u(0) → z − u0 <∞ as N → ∞,

necessarily implying that

(2.12) ψ(‖y(j)‖) → 0 as j → ∞ .

Since ψ ∈ K, the convergence in (2.12) yields that

(2.13) y(j) → 0 as j → ∞ .

The assumption that u(t) ≤ u∗ for every t ∈ N0 and (2.10) together imply that

−BΦ(u(t))F ≥ −BΦ(u∗)F , t ∈ N0 ,

and thus

(2.14) x(t + 1) = (A−BΦ(u(t))F )x(t) ≥ (A−BΦ(u∗)F )x(t) = A∗x(t) , t ∈ N0 .

From the convergence in (2.13) and difference inequality (2.14) we infer the following:

x(t) ≥ At
∗x

0 , t ∈ N0, ⇒ y(t) ≥ CAt
∗x

0 , t ∈ N0,

⇒ 0 = lim sup
t→∞

y(t) ≥ lim sup
t→∞

CAt
∗x

0 .
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 245

The combined properties that C and x0 are positive and that A∗ is irreducible with
r(A∗) = 1 yield the contradiction

0 = lim sup
t→∞

CAt
∗x

0 > 0 .

We deduce that (b) holds, and so there exists τ ∈ N such that

(2.15) u(t) ≥ u(τ) > u∗ , t ∈ N , t ≥ τ ,

as u is a nondecreasing sequence. Invoking (2.10) again, it follows from (2.15) that

(2.16) A−BΦ(u(t))F ≤ A−BΦ(u(τ))F < A−BΦ(u∗)F = A∗ , t ∈ N , t ≥ τ ,

and as A−BΦ(u(τ))F is irreducible, (2.11) implies that

(2.17) r(A −BΦ(u(τ))F ) < r(A∗) = 1 .

Hence, for t ∈ N, t > τ , we estimate

x(t) =
t∏

j=0

(A−BΦ(u(j))F )x0 =
t∏

j=τ

(A−BΦ(u(j))F )
τ−1∏
j=0

(A−BΦ(u(j))F )x0

≤ (A−BΦ(u(τ))F )t−τAτx0 ,

from which the bound (2.7) readily follows. To see that u converges, we prove that u
is bounded. For T ∈ N we have that

u(T ) = u0 +
T−1∑
j=0

(
u(j + 1)− u(j)

)

= u0 +

T−1∑
j=0

ψ(‖Cx(j)‖) ≤ u0 +

T−1∑
j=0

ψ(γjM‖C‖‖x0‖) <∞ ,

the final inequality being independent of T ∈ N, and where we have used the condi-
tion (2.8). Finally, the conjunction of (2.15)–(2.17) necessitates that (2.9) holds, as
required.

The next section discusses extensions motivated by Theorem 2.3, before which
we remark on the above theorem.

Remark 2.4.

(i) For each fixed x0, the inequality (2.7) ensures that the x(t) component of
the solution (x, u) of (2.6) converges to zero exponentially. However, the
positive constants M and γ that appear in (2.7) both depend on the initial
conditions x0 and u0. Therefore, (2.7) does not yet imply that (2.6) is globally
exponentially stable.

(ii) The condition (2.8) is a growth rate property of ψ ∈ K at zero; in other
words, it states that the action of ψ respects the decay of geometric series. It
does not seem overly restrictive. For example, (2.8) holds if ψ ∈ K is Hölder
continuous, with any positive exponent, which includes Lipschitz continuous
functions and power laws R+ � x �→ xν , ν > 0. Elementary analysis demon-
strates that for all c1, c2 > 0, R+ � x �→ c1 ln(1 + c2x) also satisfies (2.8).
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246 GUIVER ET AL.

(iii) The conclusions of Theorem 2.3 need not hold if the assumption that A −
BΦ(ω)F is irreducible for every ω ∈ [0,∞) in (A2) is relaxed. For example,
consider

A =

[
f1 0
0 f2

]
, B =

[
1
0

]
, F =

[
f1 0

]
, C =

[
0 1

]
, v �→ ψ(v) = v ,

where f1 > 1 and f2 ∈ (0, 1). Here A− δBF is reducible for every δ ∈ [0, 1).
Furthermore, y(t) = f t

2x
0
2 → 0 exponentially as t→ ∞, and thus

u(t) = u0 +

t−1∑
j=0

‖y(t)‖ → u0 +
x02

1− f2
=: u∞ <∞ as t→ ∞.

However, for all x01 > 0, u0, x02 ≥ 0, and f2 ∈ (0, 1), there exists Φ : R+ →
[0, 1), Φ ∈ K, such that f1(1− Φ(u∞)) > 1 and thus

x1(t+ 1) = f1(1− Φ(u(t)))x1(t) ≥ x1(t) �→ 0 as t→ ∞.

(iv) If x0 = 0, then x(t) = 0 for all t ∈ N0, and hence (2.7) trivially holds. In this
case, u(t) = u0 for all t ∈ N, and so (0, u0) is an equilibrium of (2.6) for all
u0 ∈ R+. Note that u∞ = u0 need not satisfy (2.9). However, one striking
property is that for all nonzero x0, and any u0 ≥ 0 the limiting control effort
u∞ is stabilizing.

2.1. Extensions. Here we present directions in which the simple adaptive con-
trol model (2.6) may be extended. The motivation for doing so is, first, to show how
the model (2.6) may be tailored to accommodate some of the nuanced scenarios likely
to be encountered in pest management (Propositions 2.5 and 2.7) and, second, to
demonstrate how the ideas behind (2.6) may be extended to different classes of model
(Propositions 2.11 and 2.14).

A disadvantage of the scheme (2.6) is that the limiting control effort u∞ en-
sured by Theorem 2.3 may be impractically large, becoming prohibitively expensive
or risking environmental damage. Therefore, the first two extensions proposed are
alternative strategies that seek to reduce a pest population with a smaller control
effort.

A rate-limited adaptive control scheme. Consider first the adaptive control
scheme

(2.18a)

(2.18b)

t ∈ N0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(t+ 1) = (A−BΦ(u(t))F )x(t) , x(0) = x0,

y(t) = Cx(t) ,

u(t+ 1) =

{
u(t) + ψ(‖y(t)‖) , u(t) ≤ θ(t) ,

u(t) , u(t) > θ(t) ,
u(0) = u0,

where the strictly increasing, unbounded sequence θ is an additional design parameter.
The terms in (2.18a) and their interpretation are the same as those in (2.6). The
scheme (2.18) differs from (2.6) by the inclusion of θ in the update law for u in (2.18b).
The interpretation of (2.18b) is that θ acts as a bound on the size of permitted control
actions. While u(t) is no greater than θ(t), the control effort u(t) of the adaptive
scheme (2.18) is updated in the same manner as that in (2.6). When u(t) is larger
than θ(t), then u(t+1) = u(t), that is, u(t) is maintained at its current level. In effect,
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 247

the inclusion of θ further limits the rate at which u may increase and in applications
may reflect economic, capacity, or legislative constraints.

Simulations of the rate-limited adaptive control scheme (2.18) are contained in
Figure 3, where it is demonstrated that, although the exponential stabilization may
take longer than in (2.6), the rate of increase is further controlled and the limiting
control effort u∞ may be smaller than that produced by (2.6).

Proposition 2.5. Given the rate-limited adaptive control system (2.18), assume
that Φ satisfies (A1), (A,B, F ) ∈ R

n×n
+ ×R

n×m
+ ×R

m×n
+ and Φ satisfy (A2), ψ ∈ K,

θ is a strictly increasing, unbounded sequence, and C ∈ R
p×n
+ , C �= 0. Then, for every

positive x0 and nonnegative u0, the conclusions of Theorem 2.3 hold.
Proof. The proof is very similar to that of Theorem 2.3, and so we provide only

an outline. Letting u∗ > 0 be such that A∗ := A−BΦ(u∗)F has r(A∗) = 1, we again
seek a contradiction and assume that u(t) ≤ u∗ for all t ∈ N0. Note that u defined
by (2.18b) is still a nondecreasing sequence, and the assumption that it is bounded
implies that it converges, say with limit z ≤ u∗. The assumptions that θ is unbounded
and strictly increasing imply that there exists s ∈ N such that z < θ(s) < θ(t) for all
t ∈ N, t > s. Therefore, for such t, u(t) ≤ z ≤ θ(t), and hence the sequence ψ(‖y‖) is
summable as

T∑
j=s

ψ(‖y(j)‖) =
T∑

j=s

[
u(j + 1)− u(j)

]
= u(T + 1)− u(s) ≤ z − u(s) <∞

for all T ∈ N. The proof now follows that of Theorem 2.3, joining at the convergence
in (2.12).

Remark 2.6. The conclusions of Proposition 2.5 do not hold in general if the
increasing threshold θ for u is bounded or replaced by a constant. Although θ may
increase arbitrarily slowly, loosely speaking, the smaller θ is and the slower it increases,
the larger we might expect transient growth of the state x to be.

A neutral-zone adaptive control scheme. The second extension is

(2.19a)

(2.19b)

t ∈ N0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(t+ 1) = (A−BΦ(u(t))F )x(t) ,

y(t) = Cx(t) ,
x(0) = x0,

u(t+ 1) =

⎧⎪⎨
⎪⎩
u(t) + ψ(‖y(t)‖) , L1 ≤‖y(t)‖ ,
u(t) , L2 ≤‖y(t)‖ < L1 ,

μu(t) , ‖y(t)‖ < L2 ,

u(0) = u0,

where L1 ≥ L2 > 0 and μ ∈ (0, 1) are additional design parameters. The terms
in (2.19a) and their interpretation are the same as those in (2.6). The interpreta-
tion of the update law for u in (2.19b) is that when the output y(t) is larger than
some prescribed level, meaning L1 ≤ ‖y(t)‖, the control effort u increases as before.
When the output is deemed small enough—smaller than the threshold L2—then the
control effort decreases geometrically. Between L1 and L2 a constant control effort is
maintained: there is no adaptation of u, hence the nomenclature “neutral-zone.” In
control engineering the terms “dead-zone” or “deadband” are also sometimes used.
The motivation for (2.19) is to trade off the cost of increasing the control effort u
against the possible increase in observed pest population y.

Simulations of the neutral-zone adaptive control scheme (2.19) are contained in
Figure 4. As suggested there, when r(A) ≥ 1, we should not expect the scheme (2.19)
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248 GUIVER ET AL.

to result in convergence of x and u. Instead we obtain the following result.
Proposition 2.7. Given the neutral-zone adaptive control system (2.19), assume

that Φ satisfies (A1), (A,B, F ) ∈ R
n×n
+ × R

n×m
+ × R

m×n
+ and Φ satisfy (A2), ψ ∈ K

and satisfies (2.8), and C ∈ R
p×n
+ , C �= 0. For (x0, u0) ∈ R

n
+ × R+, L1 ≥ L2 > 0,

and μ ∈ (0, 1), the solution (x, u) of (2.19) is bounded.
The proof of Proposition 2.7 is elementary, but tedious, and hence is relegated to

the appendix.
Remark 2.8. The proof of Proposition 2.7 is in fact independent of how u

in (2.19b) is defined to decay when ‖y(t)‖ < L2. Consequently, the exponential
decay of u proposed in (2.19b) could be replaced by any scheme with u(t) → 0 when
‖y(t)‖ ≤ L2. Furthermore, Proposition 2.7 remains true in the case that the update
law u(t + 1) = u(t) is omitted, by taking L1 = L2. Although the above result guar-
antees boundedness of the state and control effort, it does not give any indication of
what these bounds are and how they depend on L1, L2, or γ. Again, for practical ap-
plications, one would need to trade off the costs of eradicating a pest against the cost
of not (sufficiently) reducing pest abundance. For example, when the lower threshold
L2 in (2.19b) is small, then control u is only reduced once a pest abundance less than
L2 is observed, and until that point u is either increasing or kept at a fixed level,
which may be costly.

Input-to-state stability. The models considered thus far have overlooked ex-
ternal signals acting on the state or output. In the context of pest management the
former could denote previously unmodelled immigration, and the latter measurement
or sampling error. To incorporate such a situation the model (2.6) becomes

(2.20)

x(t+ 1) = (A− BΦ(u(t))F )x(t) + d1(t) , x(0) = x0,

y(t) = Cx(t) + d2(t) ,

u(t+ 1) = u(t) + ψ(‖y(t)‖) , u(0) = u0,

⎫⎪⎬
⎪⎭ t ∈ N0 ,

where u0 ≥ 0 and ψ ∈ K are design parameters and d1 and d2 are external signals.
We shall assume that d1 and d2 are (locally) bounded and respect the nonnegativ-
ity constraints of state and output. Without further assumptions on the class of
disturbances, however, we should not expect convergence of the state x or control
effort u of (2.20). The following result demonstrates that the state x of (2.20) admits
an input-to-state stability (ISS)-type estimate. We refer the reader to [46] for more
background and information on ISS.

Proposition 2.9. Given the disturbed adaptive control system (2.20), assume
that Φ satisfies (A1), (A,B, F ) ∈ R

n×n
+ × R

n×m
+ × R

m×n
+ and Φ satisfy (A2), ψ ∈

K, and C ∈ R
p×n
+ , C �= 0. Then, for all positive x0 and nonnegative u0 and all

disturbance signals d1 ∈ �∞loc(N0;R
n
+) and d2 ∈ �∞loc(N0;R

p) with the property that for
some δ > 0

(2.21) y(t) ≥ δCx(t) , t ∈ N0 ,

there exist M1,M2 > 0 and γ ∈ (0, 1) such that the solution x of (2.20) satisfies

(2.22) ‖x(t)‖ ≤M1γ
t‖x0‖+M2‖d1‖�∞(0,t−1) , t ∈ N0 .

The constant M2 may be chosen to depend only on x0 and δ.
Proof. We restrict to the case that r(A) ≥ 1 (the result is immediate otherwise).

Let u∗ > 0 be such that A∗ := A − BΦ(u∗)F has r(A∗) = 1. While u(t) ≤ u∗, we
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 249

may estimate for τ ≥ 1

u(τ) = u0 +

τ−1∑
j=0

ψ(‖y(j)‖) ≥
τ−1∑
j=0

ψ(δ‖Cx(j)‖)

≥
τ−1∑
j=0

ψ

(
δ

∥∥∥∥∥CAj
∗x

0 +

j−1∑
k=0

CAj−1−k
∗ d1(k)

∥∥∥∥∥
)

≥
τ−1∑
j=0

ψ
(
δ
∥∥CAj

∗x
0
∥∥) .(2.23)

Since r(A∗) = 1, A∗ is irreducible, δ > 0, and C �= 0, the summation on the right-
hand side of (2.23) is greater than u∗ at some time τ , independently of u0, d1, and
d2. Then, since u is nondecreasing,

u(t) ≥ u(τ) > u∗ ∀ t ∈ N , t ≥ τ .

Arguing as in the proof of Theorem 2.3, writing Aτ := A−BΦ(u(τ))F , we obtain the
estimate

x(t+ 1) ≤ Aτx(t) + d1(t) , t ∈ N0 , t ≥ τ ,

and thus for t ≥ τ + 1

(2.24) x(t) ≤ At−τ
τ x(τ) +

t−1∑
j=τ

At−1−j
τ d1(j) .

Since γ := r(Aτ ) < 1, the inequality (2.24) readily yields for t ≥ τ + 1
(2.25)

‖x(t)‖ ≤ N1r(Aτ )
t−τ‖x(τ)‖ +N2‖d1‖�∞(τ,t−1) ≤ N3γ

t‖x(0)‖+N2‖d1‖�∞(0,t−1)

for positive constants N1, N2, N3 depending only on A and Aτ . For t ∈ {1, 2, . . . , τ}
we may estimate

(2.26) x(t) ≤ γt(γ−tAt)x0 +

t−1∑
j=0

At−1−jd1(j) .

Bounding the right-hand side of (2.26) yields that for t ∈ {1, 2, . . . , τ}

(2.27) ‖x(t)‖ ≤
⎛
⎝ max

k∈N0
0≤k≤τ

‖γ−kAk‖
⎞
⎠ γt‖x0‖+

⎛
⎝ τ∑

j=0

‖Aj‖
⎞
⎠ ‖d1‖�∞(0,t−1) .

Combining (2.25) and (2.27) establishes the estimate (2.22).
Remark 2.10.

(i) The estimate (2.22) is not a “true” ISS estimate, as the M1 and γ terms
appearing there depend on both x0 and d1 in general. Similarly, M2 in (2.22)
depends on x0. These dependencies are a consequence of the nonlinear feed-
back −BΦ(u)Fx. We have included the result to demonstrate that the in-
clusion of nonzero, bounded additive perturbations d1 to (2.6) still results in
boundedness of the state, and the bound depends linearly on ‖d1‖∞.

(ii) The assumption that the output disturbance d2 satisfies (2.21) is certainly
satisfied if d2 is a proportional output measurement error, meaning that

d2(t) = ε(t)Cx(t), t ∈ N0 ,
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250 GUIVER ET AL.

where ε is an unknown sequence of measurement errors with the property
that ε(t) > ε0 > −1 for some constant ε0. In this case, the condition (2.21)
holds with δ = 1 + ε0 > 0.

(iii) The term robustness is used in control to quantify how much uncertainty (in
some sense) a control scheme may tolerate and still function qualitatively as
intended. The ISS estimate (2.22) is a robustness property with respect to
the additive disturbances as in (2.20). There are other notions of robustness
in adaptive control, and we refer the reader to [19], in which a framework
is constructed for describing and analyzing robustness of adaptive control
schemes (in the continuous-time case).

Infinite-dimensional state space. Here we demonstrate that in certain cir-
cumstances the assumption of a finite-dimensional state space may be relaxed. A key
ingredient in the proofs so far is strict monotonicity of the spectral radius with respect
to monotonicity of operators; that is,

(2.28) 0 ≤ A2 < A1 ⇒ r(A2) < r(A1)

holds. When A1, A2 : Rn
+ → R

n
+ and R

n is equipped with the usual partial ordering
of 0 ≤ x ⇐⇒ x ∈ R

n
+, then irreducibility of A2 is sufficient for (2.28) (indeed,

see (2.11)). The monograph [38] contains nonequivalent sufficient conditions for (2.28)
depending on what one is prepared to assume about the (possibly infinite-dimensional)
Banach space X , its partial ordering, and the operators A1, A2 : X → X . We appeal
to the results and terminology of [38], noting that the authors there use the term
positive when we would instead use nonnegative.

Let X denote an ordered real Banach space, so that X is equipped with a partial
order≤ (also ≥) that respects vector space addition and multiplication by nonnegative
scalars. The positive cone C induced by (X ,≥) is the set of x ∈ X such that x ≥ 0
and is a closed, convex set (so that if x, y ∈ C and δ ≥ 0, then x + y, δx ∈ C) with
the property that −x ∈ C implies that x = 0. The cone C is called reproducing if
X = C �C, meaning that every z ∈ X may be written as z = x1 − x2 with x1, x2 ∈ C.
For real Banach spaces X1,X2 with respective positive cones C1, C2, a bounded linear
operator T : X1 → X2 is called positive if TC1 ⊆ C2. A bounded, positive operator
A is called ν-bounded [38, pp. 90, 91] for ν ∈ C, ν �= 0, if for all x ∈ C there exist
functions 0 < η1(x) ≤ η2(x) for x �= 0 such that

η1(x)ν ≤ Ax ≤ η2(x)ν .

Consider now the adaptive control system (2.6), where

(2.29) A : X → X , B : Rm → X , F : X → R
m , C : X → R

p

are bounded, positive operators. For Φ satisfying (A1), we record the following as-
sumption:
(A2)′ For all ω ∈ [0,∞), A − BΦ(ω)F is positive, compact, and νω-bounded with

r(A −BΦ∞F ) < 1, where Φ∞ = limω→∞ Φ(ω).
Proposition 2.11. Let (X ,≥) denote a real ordered Banach space with reproduc-

ing positive cone C, and let A,B, F,C as in (2.29) denote bounded, positive operators,
with C nonzero. Assume that Φ satisfies (A1), ψ ∈ K, and that (A,B, F ) and Φ
satisfy (A2)′. Then, the conclusions of Theorem 2.3 apply to the adaptive control
system (2.6) specified by (A,B, F,C) in (2.29), Φ, and ψ.
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 251

Proof. The proof is identical to that of Theorem 2.3 once (2.17) is established.
Under our assumptions, this follows from [38, Theorems 16.2 and 16.3] with A in those
results taken as Aτ := A − BΦ(u(τ))F , δ = 1, and y0 = w, the positive eigenvector
of A∗ = A− BΦ(u∗)F corresponding to r(A∗) = 1, the existence of which is ensured
by [38, Theorem 11.5]. A careful argument using Aτ �= A∗ shows that Aτw �= w.

Remark 2.12. The assumptions that we have made in formulating Proposi-
tion 2.11 are motivated by the class of Integral Projection Models (IPMs) where
we wish the results to apply. An IPM is a discrete-time linear difference equation on
the natural state space L1(Ω) specified by integral operator
(2.30)

A : L1(Ω) → L1(Ω) , (Av)(ξ) =

∫
Ω

k(ζ, ξ)v(ζ) dζ , v ∈ L1(Ω) , almost all ξ ∈ Ω,

for some nonnegative-valued kernel

(2.31) Ω× Ω � (ζ, ξ) �→ k(ζ, ξ) ≥ 0 ,

where, for simplicity say, Ω is the closure of some bounded set in R
n, n ∈ N. IPMs

were introduced by [47] (see also [48, 49, 50]) as a tool for population modelling where
the discrete age- or stage-class variable of a matrix model is replaced by a continuous
variable, such as stem width of a plant species.

When L1(Ω) is equipped with the usual partial order f ≤ g if f(ξ) ≤ g(ξ) for
almost all ξ ∈ Ω, then the nonnegativity assumption in (2.31) implies that A in (2.30)
is a positive operator. Moreover, by [38, Theorem 2.1], (2.31) is sufficient to infer
that A in (2.30) is bounded. Integral operators are known to be compact under quite
general assumptions on k (for example, k ∈ L2(Ω × Ω)). It follows from the Hölder
inequality that if there exist η1, η2 ∈ L∞(Ω) with 0 ≤ η1, η2 �= 0 and if there also
exists ν ∈ L1, 0 ≤ ν �= 0, with

η1(ζ)ν(ξ) ≤ k(ζ, ξ) ≤ η2(ζ)ν(ξ) , almost all ζ, ξ ∈ Ω ,

then A in (2.30) is ν-bounded (see [38, p. 96]).

Continuous-time. Here we demonstrate that the continuous-time counterpart
of Theorem 2.3 holds. In continuous-time the adaptive control system (2.6) becomes

(2.32)

ẋ(t) = (A−BΦ(u(t))F )x(t) , x(0) = x0,

y(t) = Cx(t) ,

u̇(t) = ψ(‖y(t)‖) , u(0) = u0,

⎫⎪⎬
⎪⎭ t ∈ R+ ,

where ẋ = d
dtx, A ∈ R

n×n is Metzler (with the definition recalled from the notation

section in the introduction), B ∈ R
n×m
+ , F ∈ R

m×n
+ , and C ∈ R

p×n
+ for m,n, p ∈ N.

To motivate our insistence that A in (2.32) is Metzler, we recall that for M ∈ R
n×n

the continuous-time linear system of differential equations

(2.33) ż(t) =Mz(t) , t ∈ R+ , z(0) = z0

has unique solution z(t) = eMtz0 for t ∈ R+, where eMt denotes the matrix exponen-
tial of Mt. It is well known that the solution z of the differential equation (2.33) is
(componentwise) nonnegative for all z0 ≥ 0 if and only if M is a Metzler matrix. In
the applied context of pest management, for a meaningful model we naturally require
that the x component of a solution of (2.32) is nonnegative.
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252 GUIVER ET AL.

Returning to (2.32), as before the function ψ ∈ K and initial control effort u0 ≥ 0
are design parameters. For continuous-time models, Φ : R+ → R

m×m
+ is still assumed

to satisfy (A1), and the analogous assumption to (A2) on (A,B, F ) and Φ is the
following:

(A3) For all ω ∈ [0,∞), the matrix A − BΦ(ω)F is Metzler and irreducible and
α(A−BΦ∞F ) < 0, where Φ∞ := limω→∞ Φ(ω).

The interpretation of the continuous-time pest model and control action in (2.32) is
the same as that in (2.6). Unlike difference equations, when considering differential
equations, existence of (global) solutions must be addressed. So as to not detract from
the purpose and flow of the present section, the proof of the next lemma is postponed
to the appendix. The main result of this section is Proposition 2.14, which mirrors
Theorem 2.3.

Lemma 2.13. Under assumption (A3), for every (x0, u0) ∈ R
n
+×R+, there exists

a solution (x, u) : [0,∞) → R
n
+ × R+ of (2.32).

Proposition 2.14. Given the adaptive control system (2.32), assume that Φ :
R → R

m×m
+ satisfies (A1), (A,B, F ) ∈ R

n×n × R
n×m
+ × R

m×n
+ and Φ satisfy (A3),

ψ ∈ K, and C ∈ R
p×n
+ , C �= 0. For positive x0 and nonnegative u0, let (x, u) denote

a solution of (2.32) defined on [0,∞). Then, there exist M,γ > 0 such that (2.32)
satisfies

(2.34) ‖x(t)‖ ≤Me−γt‖x0‖ , t ∈ R+ .

If additionally ψ has the property that

(2.35) ∀ δ, λ > 0 :

∫
t∈R+

ψ(δe−λt) dt <∞ ,

then u converges and its limit u∞ ≥ 0 (which depends on x0, u0, and ψ) is stabilizing,
that is,

(2.36) α(A−BΦ(u∞)F ) < 0 .

The proof of Proposition 2.14 is very similar to that of Theorem 2.3, mutatis
mutandis, and hence is relegated to the appendix. Here we instead provide two
remarks. The first contains further comments on adaptive control scheme (2.32) and
compares and contrasts it with other simple adaptive controllers in the literature.
The second contains motivation for our presentation of the continuous-time result.

Remark 2.15.

(i) We do not claim that solutions of (2.32) are unique. However, if ψ is locally
Lipschitz continuous, then by, for example, [43, Theorem 4.18], (2.32) has
a unique solution on [0,∞), and furthermore, (2.35) is satisfied. The condi-
tion (2.35) on ψ ∈ K is the continuous analogue of the discrete condition (2.8)
and is also satisfied by Hölder continuous functions.

(ii) The conclusions of Proposition 2.14 are similar to those of [31, Lemma 3.4]
or [26, Theorems 3.5 and 3.11]. That said, there are two key differences,
which means that in the context of positive state systems, Proposition 2.14
is (to the best of our knowledge) novel. First, in the aforementioned results
it is required that BF (in our notation) has simple null structure (meaning
that Rn = im (BF ) ⊕ ker (BF )), which by [26, Proposition 3.9] is equivalent
to FB being invertible and is an assumption that cannot be dropped in
general [26, Example 3.10]. When B = b, F = f ∈ R

n, bfT having simple
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 253

null structure is equivalent to the triple (A, b, fT ) having relative degree one.
This assumption is not required for Proposition 2.14 and is replaced by the
irreducibility assumption in (A3). For example, the triple

A =

[−a1 a2
a3 −a4

]
, B =

[
1
0

]
, F =

[
0 a2

]
,

where ai > 0 for each i ∈ {1, 2, 3, 4}, and R+ � x �→ Φ(x) = 1− e−x together
satisfy (A3), but BF does not have simple null structure because

im(BF ) = ker(BF ) =

{[
γ
0

]
: γ ∈ R

}
�= R

2 .

Second, in Proposition 2.14, the measured variable y = Cx and the output
feedback Fx used in (2.32) are not equal in general. This comment applies
to the discrete-time system (2.6) as well.

(iii) If x0 = 0, then x(t) = 0 for all t ∈ R+, and hence (2.34) trivially holds, but
u(t) = u0 for all t ∈ R+ and thus u∞ = u0 need not satisfy (2.36). However,
if x0 �= 0, then the limiting control effort u∞ satisfies (2.36) for every u0 ≥ 0.
See also Remark 2.4(iv). It is known that a (continuous-time) high-gain
adaptive controller applied to a linear model converges to a limit v∞, and
v∞ is itself generically stabilizing [51, 52]. Still, even this assertion admits
the case that there are infinitely many x0 for which v∞ is not stabilizing.
For nonlinear systems the limit v∞ need not be stabilizing for an open set of
initial conditions [53].

(iv) High-gain adaptive controllers for componentwise nonnegative, continuous-
time linear systems have been considered in [36, Chap. 15], particularly in a
context of models for general anesthesia. Proposition 2.14 above is compa-
rable to [36, Theorem 15.2]—the key difference being that in the latter the
whole state is assumed available to inform the control strategy, so that (2.2)
is replaced by the state-feedback v(t) = −K(t)x(t), where K is to be deter-
mined adaptively, and C = I in (2.32). There the rate of change of adaptation
ψ is not included, although the authors do consider adaptive stabilization to
a nonzero state equilibrium [36, Theorem 15.1].

Remark 2.16. The motivation for presenting the continuous-time analogue (2.32)
of (2.6) is twofold. The first is for mathematical completeness, to demonstrate that
the corresponding continuous-time version of Theorem 2.3 holds. The second is that
continuous-time models are used for population modelling as well as discrete-time
models, and we refer the reader to [54, Chap. 1] or [55, Chap. 2] for examples. We
comment that many continuous-time population models are in fact specified by partial
or delay differential equations, such as the McKendrick–von Foerster partial differ-
ential equation [56, 57] or models for blowfly [58], respectively. These models fall
beyond the scope of (2.32) and require more sophisticated mathematical treatment,
but their semidiscretizations (leading to systems of ordinary differential equations)
may result in models of the form (2.32). Thus (2.32) may be seen as a starting point
for considering simple adaptive control for continuous-time models that arise in pest
management.

3. A switching adaptive control mechanism for pest management. The
approach taken to pest management so far in this paper is predicated on the as-
sumption that the single management strategy v = −BΦ(u)F in (2.1) is capable of
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254 GUIVER ET AL.

eradicating a pest once the control effort u is sufficiently large, formulated as as-
sumption (A2). A high-gain–like adaptive controller for increasing u based on the
measured output y is shown to achieve this task in Theorem 2.3. Here we consider
the realistic situation wherein the control law v = −BΦ(u)F may not eradicate the
pest, irrespective of how large the control effort u is: a biological possibility illustrated
in the example below.

Example 3.1. A general 3× 3 Lefkovitch [59] matrix has the structure

(3.1) A =

⎡
⎣s1 + f1 f2 f3

g1 s2 0
0 g2 s3

⎤
⎦ ≥ 0 ,

where fi are recruitment rates into the population and si and gi are rates of stasis
within a stage-class and growth to the next stage-class, respectively. Suppose that
a pest management strategy targets the third stage-class exclusively, so that B =[
0 0 1

]T
in (2.2). If

r

([
s1 + f1 f2
g1 s2

])
= r

⎛
⎝
⎡
⎣s1 + f1 f2 f3

g1 s2 0
0 0 0

⎤
⎦
⎞
⎠ ≥ 1 ,

then assumption (A2) fails for any F ≥ 0 and Φ satisfying (A1). In other words,
controlling the third stage-class alone here cannot eradicate the pest.

Motivated by the above example, in response we assume that access is available to
several different pest management strategies, for example, targeting distinct life-cycle
stages of a pest. Owing to the problematic uncertainty in both the pest dynamics and
the efficacy of any given control strategy, we propose a so-called switching adaptive
control scheme (also known as a universal adaptive control scheme). The design is
in the spirit of Mårtensson [26, 27] or Helmke, Prätzel-Wolters, and Schmid [60] and,
as we proceed to demonstrate, cycles through potentially (a priori infinitely) many
controllers (that is, courses of management action) before converging in finite-time to
a stabilizing controller.

We consider the switching system

(3.2a)

(3.2b)

(3.2c)

t ∈ N0

⎧⎪⎨
⎪⎩
x(t+ 1) = (A−BK (s(t))F )x(t) , x(0) = x0 ,

y(t) = Cx(t) ,

s(t+ 1) = s(t) + ‖y(t)‖ , s(0) = s0 .

The function K in (3.2a) depends on two chosen sequences: the matrix sequence
K = (K(j))j∈N ⊆ R

m×m and the strictly increasing, unbounded sequence of positive
numbers τ = (τ(j))j∈N0 ⊆ [0,∞) with τ(0) = 0. The terms K, τ , and s0 are all
design parameters, and, once chosen, K is defined as

(3.2d) R+ � z �→ K (z) :=

{
K(1), z = 0 ,

K(j), z ∈ (τ(j − 1), τ(j)], j ∈ N .

We note that the assumptions τ(0) := 0, τ is strictly increasing, and τ is unbounded
together imply that K (z) is well defined for all z ≥ 0. Given a solution (x, s)
of (3.2a)–(3.2d), it is convenient to introduce the “counting” function i : N0 → N,
defined as

(3.2e) N0 � t �→ i(t) = j ∈ N such that s(t) ∈ (τ(j − 1), τ(j)] ,
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 255

that records the controller used in (3.2a) at time t, that is,

K (s(t)) = K(i(t)) ∀ t ∈ N0 .

It is readily seen that i is a nondecreasing function.
Example 3.2.

(i) In an applied pest management context, the interpretations of x(t) in (3.2a)
and y(t) in (3.2b) are as defined in (2.1) or (2.4)—they denote the pest popu-
lation and some measured portion of the population, respectively. The scalar
variable s(t) in (3.2a) and (3.2c) is an increasing switching variable, as it de-
termines which control law (that is, management strategy) is applied at time-
step t ∈ N, through the matrix function K and the sequence of switches τ .

(ii) To connect (3.2) with the single control strategy (2.6) proposed in section 2,
here we might assume that

K(j) = diag {φ1(g1(j)), . . . , φm(gm(j))} , j ∈ N ,

where φj ∈ K maps R+ → [0, 1] and g ⊆ R
m
+ is a sequence of control efforts

with the property that

(3.3) lim sup
j→∞

gk(j) = ∞ ∀ k ∈ {1, 2, . . . ,m} .

For example, if three strategies are available that target stages one, two, and
n > 2 of an n-stage model, then denoting the jth row of A by aTj , we have

B =
[
e1 e2 en

]
, K(j) =

⎡
⎣φ1(g1(j)) 0 0

0 φ2(g2(j)) 0
0 0 φ3(g3(j))

⎤
⎦ , F =

⎡
⎣aT1aT2
aTn

⎤
⎦ .

Informally, the control scheme (3.2) tries control effort g(1) via the matrix
K(1) for some length of time, determined by τ and the switching signal s. The
control effort g(1) may be sufficient to stabilize the pest population. If not,
then switching signal s must increase, and the control scheme (3.2) switches
to g(2) and g(3) (although possibly bypassing some g(k) for k ∈ N altogether)
and so on. The aim is to provide conditions on (3.2) and, in this example,
the progressively “more effective” sequence g such that a stabilizing controller
k∗ ∈ N is reached but not switched from, meaning that r(A−BK(k∗)F ) < 1
and s(t) is never greater than τ(k∗).

Of course, as highlighted by Mårtensson [26, Remark 5, p. 41], cycling through
infinitely many controllers is physically impossible. The interpretation of (3.2a),
highlighted by Example 3.2, is that there are in fact only finitely many courses of
management action, parameterized by an (infinite) sequence of control efforts that
are “eventually increasing,” in a sense such as in (3.3). As we demonstrate in our
main result of this section, Theorem 3.5, under reasonable assumptions on (3.2), only
finitely many control actions are required to stabilize the state to zero (in other words,
eradicate the pest). As one might expect when the model parameters are unknown,
the theorem does not say which control effort shall stabilize (3.2), only that one shall,
and in finite-time.

To that end, the first assumption is an underlying structural assumption:
(B1) For each j ∈ N, Aj := A − BK(j)F is nonnegative and primitive with an

index of primitivity � ∈ N that is independent of j.
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256 GUIVER ET AL.

Intuitively, the interpretation of a common index of primitivity in (B1) is that the
location of the zero/nonzero entries of Aj is independent of j (of course, the nonzero
entries of Aj are expected to have values that do depend on j). The next result is a
technical lemma that is a consequence of assumption (B1), and its proof is relegated
to the appendix.

Lemma 3.3. Given the switching system (3.2), assume that (A,B, F ) and se-
quence K satisfy (B1)and that C,F �= 0, and let (x, s) denote the solution of (3.2).
Then, there exists a positive, nondecreasing sequence β such that

(3.4) ‖Fx(t)‖ ≤ β(i(t))‖Cx(t)‖ ∀ t ≥ � .

Remark 3.4. The sequence β in (3.4) is not unique and may be bounded. For
example, if m = p = 1 and

F =
[
f1 . . . fn

]
and C =

[
c1 . . . cn

]
are both strictly positive, then evidently the constant sequence

β(j) :=
maxk fk
mink ck

, j ∈ N0 ,

satisfies (3.4) for all t ∈ N0.
The second assumption pertains to the existence of stabilizing controllers:

(B2) There exists R ∈ R
n×n
+ with r(R) < 1 and a subsequence ρ ⊆ N such that

Aρ(j) ≤ R for all j ∈ N.
The terms of the subsequence ρ enumerate the stabilizing controllers, and assump-
tion (B2) implies that there are infinitely many such control schemes. The third
assumption relates the C operator in (3.2c) to the triple (A,B, F ) and sequence K
and enables the conclusions of Theorem 3.5 below to hold under a weaker assumption
on τ :

(B3) There exist q ∈ N, S ∈ R
n×n
+ with r(S) < 1 and a bounded sequence D ⊆

R
n×p
+ such that for every j ∈ N, j ≥ q, 0 ≤ Aj −DjC ≤ S.

In other words, (B3) means that for every control strategy j after the qth there is a
matrix Dj such that the output-feedback −Djy = −DjCx stabilizes Aj .

Theorem 3.5. Given the switching adaptive control system (3.2), assume that
(A,B, F ) ∈ R

n×n
+ ×R

n×m
+ ×R

m×n
+ and K satisfy (B1) and (B2), and that C ∈ R

p×n
+

is nonzero. For a given strictly increasing, unbounded sequence τ , let (x, s) denote the
solution of (3.2). For all positive x0 and nonnegative s0, if τ has the property that

(3.5) ∀ λ > 0, ∃ j∗ ∈ N :
τ(j)

τ(j − 1)
≥ λβ(j − 1) ∀ j ≥ j∗ ,

where β is defined as in Lemma 3.3, then x(t) → 0 as t → ∞ and s converges in an
interval (τ(r − 1), τ(r)] for some r ∈ N with r(Ar) < 1. If (B3) holds and τ has the
property that

(3.6)
τ(j)

τ(j − 1)
→ ∞ as j → ∞,

then the same conclusions hold.
Proof. An argument similar to that used in the proof of Theorem 2.3 proves that

s cannot converge in an interval (τ(j − 1), τ(j)] where j ∈ N is such that r(Aj) ≥ 1.
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 257

If s converges in an interval (τ(ρ(j)− 1), τ(ρ(j))] for some j ∈ N where, we recall, the
subsequence ρ is from assumption (B2), then there is nothing to prove. Therefore, it
suffices to consider the case that r ∈ N and T ∈ N are such that

(3.7) s(T − 1) ≤ τ(ρ(r) − 1) < s(T ) ,

with T ∈ N, T = T (r) ≥ � + 2. In other words, (3.7) means that T ∈ N is the first
time-step when (3.2) has entered the stabilizing control scheme ρ(r). We rewrite the
dynamics in (3.2a) as

x(t+ 1) = (A−BK (s(t))F )x(t)

= (A−BK(ρ(r))F )x(t) +B[K(ρ(r)) − K (s(t))]Fx(t)

= Aρ(r)x(t) +B[K(ρ(r)) −K(i(t))]Fx(t) , x(0) = x0 , t ∈ N0 .(3.8)

While t ∈ N is such that s(T + t) ≤ τ(ρ(r)), then i(t) = ρ(r), and thus from (3.8)

(3.9) 0 ≤ x(T + t) = At
ρ(r)Aρ(r)−1x(T − 1) ≤ RtAx(T − 1) ,

by assumption (B2) and as Aρ(r)−1 ≤ A. A telescoping series argument shows that

s(T + t) = s(T + t)− s(T − 1) + s(T − 1) =

T+t−1∑
j=T−1

[
s(j + 1)− s(j)

]
+ s(T − 1)

=

T+t−1∑
j=T−1

‖Cx(j)‖+ s(T − 1)

≤
t∑

j=0

‖Cx(T − 1 + j)‖+ τ(ρ(r) − 1), by (3.7),

≤M0‖x(T − 1)‖+ τ(ρ(r) − 1), by (3.9) ,(3.10)

for some constantM0 > 0 that is independent of r and T . The variation of parameters
formula applied to (3.8) yields that

(3.11) x(T − 1) = AT−1−�
ρ(r) x(�) +

T−2∑
j=�

AT−2−j
ρ(r) B[K(ρ(r)) −K(i(j))]Fx(j) ,

and hence

(3.12) ‖x(T − 1)‖ ≤ ‖AT−1−�
ρ(r) x(�)‖ +

∥∥∥∥∥∥
T−2∑
j=�

AT−2−j
ρ(r) B[K(ρ(r)) −K(i(j))]Fx(j)

∥∥∥∥∥∥ .
Assumption (B1) implies that for every k1, k2 ∈ N, the operatorB(K(k1)−K(k2))|imF

is bounded since

−Ax ≤ B[K(k1)−K(k2)]Fx ≤ Ax ∀ x ∈ R
n
+

and as each z ∈ R
n may be expressed as z = x1−x2 with x1, x2 ∈ R

n
+. Consequently,

the sequence with terms

At
ρ(r)B[K(ρ(r)) −K(i(t))]|imF , t ∈ N0 ,
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258 GUIVER ET AL.

belongs to �∞, and thus the second term on the right-hand side of (3.12) may be
estimated by the Hölder inequality, with complementary exponents p = 1 for the
Fx(j) term and q = ∞ for the other. We infer that

‖x(T − 1)‖ ≤ c1 + c2‖Fx‖�1(�,T−2) ≤ c1 + c2β(i(T − 2))‖Cx‖�1(�,T−2)

≤ c1 + c2β(ρ(r) − 1)‖Cx‖�1(�,T−2)(3.13)

for some constants c1, c2 > 0, where to obtain the estimate (3.13) we have used (3.7)
to note that

s(T − 2) ≤ s(T − 1) ≤ τ(ρ(r) − 1) ⇒ i(T − 2) ≤ ρ(r) − 1 ,

and the property that β is nondecreasing. Another telescoping sequence argument for
s applied to (3.13) demonstrates that

‖x(T − 1)‖ ≤ c1 + c2β(ρ(r) − 1)
[
s(T − 1)− s(�)

] ≤ c1 + c2β(ρ(r) − 1)s(T − 1)

≤ c1 + c2β(ρ(r) − 1)τ(ρ(r) − 1), by (3.7) .(3.14)

Substituting the estimate (3.14) into (3.10) yields constants d1, d2 > 0 that are inde-
pendent of r and T such that

(3.15) s(T + t) ≤ d1 + d2β(ρ(r) − 1)τ(ρ(r) − 1) ,

valid, we recall, for all t ∈ N such that s(T + t) < τ(ρ(r)). Dividing both sides
of (3.15) by τ(ρ(r)) yields that

(3.16)
s(T + t)

τ(ρ(r))
≤ d1
τ(ρ(r))

+
d2β(ρ(r) − 1)τ(ρ(r) − 1)

τ(ρ(r))
,

and thus, by assumption (3.5), there exists r ∈ N such that the right-hand side
of (3.16) is no greater than one. Therefore, s(T + t) ≤ τ(ρ(r)) for all t ∈ N0, and
hence s is bounded and thus convergent (in a stabilizing interval), as required. It
follows now from (3.9) that x(t) → 0 as t→ ∞.

Now suppose that (B3) holds. Recapping, we know that s cannot converge in
an interval (τ(j − 1), τ(j)] where j ∈ N is such that r(Aj) ≥ 1. If s converges in
(τ(j − 1), τ(j)] with j ≤ q, then there is nothing to prove. Therefore, it suffices to
consider r, T ∈ N such that (3.7) and, additionally, that

(3.17) s(T − 2) > τ(q) .

The inequality (3.17) means that at each time-step t ≥ T − 2, a control law greater
than the qth is being applied, and thus assumption (B3) holds. We fix t∗ ∈ N,
t∗ < T − 2, as the first time-step at which the qth control law was applied, so that

s(t∗ − 1) ≤ τ(q − 1) < s(t∗) < τ(q) ,

and note that t∗ is independent of r and T . The argument deriving (3.10) is as before
and uses (3.7). Letting Aj := Aj −DjC ≥ 0 for j ≥ q, we note that for t ≥ t∗

x(t+ 1) = Ai(t)x(t) +DjCx(t) ≤ Sx(t) +DjCx(t) ,

and hence

(3.18) x(T − 1) ≤ ST−1−t∗x(t∗) +
T−2∑
j=t∗

ST−2−jDi(j)Cx(j) .
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 259

Since the sequence D is assumed bounded, r(S) < 1, and t∗ ∈ N is fixed, we esti-
mate (3.18) in a similar manner to (3.11)–(3.14) to obtain

(3.19) ‖x(T − 1)‖ ≤ d3 + d4‖Cx‖�1(�,T−2) ≤ d3 + d4s(T − 1) ≤ d3 + d4τ(ρ(r) − 1)

for constants d3, d4 > 0. Combining (3.10) and (3.19), it follows that

(3.20) s(T + t) ≤ d5 + d6τ(ρ(r) − 1) ,

valid for all t ∈ N0 such that s(T + t) < τ(ρ(r)). Dividing both sides of (3.20) by
τ(ρ(r)) yields that

(3.21)
s(T + t)

τ(ρ(r))
≤ d5
τ(ρ(r))

+ d6
τ(ρ(r) − 1)

τ(ρ(r))
.

The growth property (3.6) of τ implies that the right-hand side of (3.21) is no greater
than one for r ∈ N0 sufficiently large. Therefore, s(T + t) ≤ τ(ρ(r)) for all t ∈ N0,
and hence s is bounded and thus convergent (in a stabilizing interval), as required.
The proof concludes in the same manner as when (B2) holds.

Remark 3.6.

(i) In section 2, the adaptation law for u in (2.6) included a K function ψ. The
role of ψ is to control the rate of increase of adaptation, which corresponds to
the rate of increase of pest control effort. The switching variable s in (3.2c)
does not contain such a function. Instead, the rate of switching between
strategies is determined by the sequence τ—the faster τ grows, in principle,
the longer each control strategy is persisted with before switching.

(ii) The key difference between the switching adaptive controllers considered here
and those elsewhere in the literature (such as [26, 27] or [60]) is that in general
C �= F here, and so the output Fx(t) driving the state in (3.2a), via the
feedback −KiFx(t), is not equal to the measured output Cx(t), the variable
which is driving the switching signal s(t). However, as we have demonstrated,
a consequence of the assumed (and realistically nonrestrictive) primitivity
is that there is a coupling between Fx(t) and Cx(t) which is sufficient to
stabilize (3.2), provided that τ grows sufficiently fast, that is, (3.5) holds.

4. Example. We illustrate the present results using a stage-structured model
from [61] of the economically important citrus pest Diaprepes root weevil (DRW;
Diaprepes abbreviatus). The species is native to Caribbean islands and arrived in
Florida, U.S., in the 1960s [62]. Females deposit egg clusters on the leaves of host-
plants. Upon hatching, the larvae drop to the soil surface and burrow underground,
where they feed on roots for several months until they pupate. The root damage
caused by the larvae can lead to plant death or decline to an unproductive state.
In the field it is challenging to study developmental rate and survival of DRW since
larvae and pupae live underground, and eggs are hard to find because of their small
size (1.2 mm long and 0.4 mm wide), making the estimates of model parameters
highly uncertain. Populations are generally monitored via traps that capture adults
emerging from the soil. Recommended insecticide treatments are targeted for specific
insect stages.2 For instance, adults are killed with foliar insecticide applications (e.g.,
fenpropathrin), egg hatching can be prevented with diflubenzuron applied with oil,
and larvae attempting to burrow into the soil are killed with a chemical soil barrier

2See http://www.ipm.ucdavis.edu/PMG/r107305001.html#MANAGEMENT.
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(imidacloprid or thiamethoxam). An alternative control strategy are the biocontrol
nematodes (Heterorhabditis indica, Steinernema riobrave) that attack and kill larvae
underground. However, nematodes are not persistent because as soon as they kill
most of the larvae in an area, they die from a lack of food. Hence, they are similar
to insecticide application in the sense that they need to be reapplied and nematode
dynamics need not be considered here.

A matrix model for DRW is given in [61], with six stage-classes denoting, in
increasing order, eggs, two larval stages, pupae, and two adult stages. The time-
steps in this model denote weeks. We refer the reader to [61] for more details. The
projection matrix A [61, Table 2] has uncertain entries, but each belongs to the
intervals in [61, Table 1]. We let A denote the set of all DRW matrices. Every A ∈ A
satisfies r(A) > 1. In the following simulations, we numerically generate A ∈ A and
initial condition x0 with ‖x0‖ = 4000. We assume that total adult DRW abundance
is measured, so that

C :=
[
0 0 0 0 1 1

]
.

Pest management strategies for DRW include the chemical pesticides described above,
with a candidate substance for the egg, larval, and adult stages, as well as ento-
mopathogenic nematodes, which attack the larval stage-classes. Let ej and a

T
j denote

the jth standard basis vector in R
6 and the jth row of A, respectively. The effect of

the pest control targeting egg, larval, and adult stages may be respectively modelled
by (2.4) with

(4.1)

B1 = e1, B2 =
[
e2 e3

]
, B3 =

[
e5 e6

]
and F1 = aT1 , F2 =

[
aT2
aT3

]
, F3 =

[
aT5
aT6

]
.

The efficacy functions Φ in (2.4) are in reality unknown but, as always, are assumed
to satisfy (A1). In modelling Φ there is a trade-off between biologically motivated
explanations and phenomenological solutions. For instance, in the present setting, if
we assume that locally DRW larvae are distributed according to a Poisson distribution,
and death via nematodes or insecticide application is random and independent, then
e−k1u is the probability of a DRW larva surviving nematode attack or insecticide
application. In the case of nematodes, k1 > 0 is the search efficiency (or “area of
discovery”), and u is the number of nematodes applied. In the case of insecticides,
the probability of surviving a chemical application is also e−k1u, in which case u is
the chemical concentration, and k1 > 0 is some lethality term. In light of the above
discussion, we shall assume that the efficacy function Φ is given by

(4.2) R+ � u �→ Φ(u) = 1− e−0.6u .

More generally, when Φ : R+ → R
m×m
+ is such that limω→∞ Φ(ω) = I, the m ×m

identity matrix, then it is straightforward to verify that the triple (A,Bj , Fj) satisfies
assumption (A2) for each A ∈ A and j ∈ {1, 2, 3}.

We first consider control targeting the egg stage-class, so that B = B1 and F = F1.
We consider three different choices ψ1, ψ2, ψ3 ∈ K given by

(4.3) y �→ ψ1(y) = 0.05y
2
3 , y �→ ψ2(y) =

y

1 + y
, y �→ ψ3(y) = ln(1 + y) .

Recall that the ψj functions control the rate of increase of the control effort u(t)
in (2.6). Here ψ1 is a power law with the small scaling parameter 0.05 chosen for ease
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Fig. 1. Simulations of the adaptive control scheme (2.1) applied to the DRW projection model
for different choices of ψ in (4.3).

of comparison with ψ2 and ψ3. The function ψ2 (sometimes called a Beverton–Holt
or Holling type II nonlinearity) is a bounded function, and ψ3 is a logarithm, which
is unbounded but grows rather slowly. Figure 1 contains simulations of the adaptive
control scheme (2.6) with u0 = 0. Recall that in this simulation, and throughout, each
time-step denotes one week. So 100 time-steps is roughly two years. As expected from
Theorem 2.3, for each ψj the state x converges to zero, as seen in Figure 1(a). The
control efforts u(t) are plotted in Figure 1(b), and we see that they also converge to a
finite limit. Of more relevance is Figure 1(c), which shows the efficacy Φ(u(t)) (solid
lines) and the growth rates r(A − BΦ(u(t))F ) (dashed-dotted lines). It is observed
that for each ψj , u(t) rapidly reaches a level whereby Φ(u(t)) ≈ 1, but that the
limiting growth rate r(A−BΦ(u(t))F ) ≈ 0.95 < 1, which provides a lower bound for
the rate of decline. By way of comparison, the black line in Figure 1(a) denotes the
solution of

x(t+ 1) = (A−B1F1)x(t) , x(0) = x0 , t ∈ N0 ,

which provides a lower bound in this example for every solution of (2.6) and would be
achieved if from the outbreak of infestation the first stage-class was targeted with a
strategy that was “100% efficacious.” Therefore, in this example ψ1 and ψ3 evidently
use too great a control effort. We comment, however, that these conclusions may
be made only retrospectively (and with knowledge of the to-be-controlled model).
Furthermore, the limiting rate of decline ≈ 0.95 of the pest may be deemed too large
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Fig. 2. Simulations of the adaptive control scheme (2.1) applied to the DRW model for 30
DRW projection matrices.

and motivate pest management strategies that target other stage-classes.
The power of Theorem 2.3 is not fully exhibited in Figure 1, as there the matrix

A is fixed (but random). To demonstrate the important robustness of the adaptive
control scheme (2.6) to model uncertainty, Figure 2 contains simulations of the DRW
projection model for 30 pseudorandomly generated projection matrices A ∈ A and the
efficacy parameter 0.6 from (4.2) replaced by a pseudorandomly drawn number from
the interval [0.6, 0.8]. Biologically, these variations may be a consequence of variable
environmental factors, such as temperature, sunlight, or rainfall, varying soil quality,
or citrus tree health. In each simulation u0 = 10 and ψ = ψ2, and it is observed
that the same control strategy achieves stabilization of the state (Figure 2(a)). We
reiterate that assumption (A2) holding is crucial for the success of (2.6), yet (A2)
does not require explicit knowledge of A,B, F , or Φ. Note that across the simulations
the control effort increases approximately linearly and is approximately equal for
the first 150–180 time-steps. This is a consequence of the choice of ψ = ψ2 which
has two properties: (a) ψ2 is bounded by one, and (b) ψ2(100) = 0.9901 ≈ 1. As
such, the choice of ψ2 does not particularly distinguish large arguments, and so while
y(t) ≥ 100—the first 150 time-steps or so—each control effort u grows similarly.

Figure 3 contains simulations of the adaptive control scheme with rate limita-
tion (2.18). For variation here we simulated the effects of targeting the larval stage-
class, so that B = B2 and F = F2 in (4.1). We have chosen the same efficacy function
Φ as in (4.2) but with the parameter 0.6 replaced by 0.05 (so that the control effort is
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Fig. 3. Simulations of the rate-limited adaptive control scheme (2.18) applied to the DRW
projection model for different choices of θ.

hardly efficacious). Our somewhat carefree approach to parameter selection is in part
to illustrate the argument that they are not essential for our main results to hold.
Here we have chosen u0 = 10, fixed ψ = ψ3 from (4.3), and compared the results of
the adaptive control scheme (2.6) (blue curve) with those of the rate-limited adaptive
control system (2.18) for two different choices of θ of the form θ(x) = ax+ b; see fig-
ure legend (red and green curves). Both of the rate-limited adaptive control schemes
achieve stabilization of the state (Figure 3(a)) at lower asymptotic control effort than
that of (2.6) (Figure 3(b)). We cautiously comment that this need not hold in gen-
eral, however. Figure 3(c) plots the efficacy Φ(u(t)) (solid lines) and growth rates
r(A−BΦ(u(t))F ) (dashed-dotted lines). We see in Figure 3(a) that the choice θ = θ1
leads to the largest transient growth, in part, we suspect, as the resulting growth rate
r(A−BΦ(u(t))F ) in Figure 3(c) is greater than one for longer periods than with θ2 or
with no θ. However, the difference in performance between θ2 and the unconstrained
model (2.6) is negligible, which would motivate using the saturation rate θ2 in this
application.

The examples considered thus far have all invoked control schemes that result in
asymptotic eradication of the pest. A consequence of the model (2.1), with state x
denoting the structured pest population, is that the pest abundance is predicted to
grow again once the control action is stopped. This is a limitation with assuming an
unstable linear model for the pest where the basin of attraction of the zero equilibrium
is zero alone. In applications one might expect (or hope) that once pest abundance is
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Fig. 4. Simulations of the neutral-zone adaptive control scheme (2.19) applied to the DRW
projection model.

reduced to a sufficiently low level, then it would not recover, which would be captured
by, say, a nonlinear model with zero as an asymptotically stable equilibrium. Allee
effects (see, for example, [63]) provide a biological explanation for why sufficiently
small populations may not survive. Simple adaptive controllers for nonlinear pest
models is beyond the scope of the present contribution, and instead Figure 4 contains
simulations of the neutral-zone adaptive control scheme (2.19), which, we recall, seeks
to reduce the (cumulative) control effort by reducing u(t) when the observed pest
abundance y(t) is low. Specifically, for the simulation in Figure 4 we choose in (2.19)

B = B2, F = F2, L1 = 300, L2 = 50, γ = 0.975, u0 = 0 ,

and efficacy function Φ given by (4.2) (with parameter 0.6). Recall that the choices of
the thresholds L1, L2 and decay-rate in control effort γ are the choices of the modeller,
and in practice would be influenced by ecological and economic criteria. In this exam-
ple, we observe in Figure 4(a) that each state trajectory x is bounded, as expected from
Proposition 2.7. To illustrate the dynamics of the control scheme (2.19), Figure 4(b)
plots u(t) against t, while Figure 4(c) plots Φ(u(t)) (solid lines) and r(A−BΦ(u(t))F )
(dashed-dotted lines) both against t. As u(t) increases, so does Φ(u(t)), and thus
r(A−BΦ(u(t))F )—the asymptotic growth rate of the pest—decreases. However, once
y(t) is sufficiently small, u(t) decreases and the process reverses. Broadly speaking,
when r(A − BΦ(u(t))F ) > 1, the pest abundance increases, and the cycle repeats.
From Figure 4(b) we see that the bounded function ψ2 requires considerably less
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Fig. 5. Simulations of the adaptive control scheme with additive disturbances (2.20) applied to
the DRW projection model.

cumulative effort than the other two strategies yet maintains total pest abundance
comparable to that of the other choices of ψ.

The simulations in Figure 5 illustrate the performance of the adaptive control
scheme with additive disturbances (2.20). The motivation for such a model, we recall,
is to explore the effect of previously unmodelled dynamics on (2.6), which could
denote immigration, emigration when the state is disturbed, or sampling error when
the output is disturbed. We choose ψ = ψ1 in (4.3), and Φ is still given by (4.2). We
assume that d1 denotes periodic immigration into the adult stage-classes, with three
different amplitudes, so that
(4.4)

d1,j(t) = kj
[
0 0 0 0 1 1

]T
(1 + sin(0.1t)) , t ∈ N0 , kj ∈ {100, 50, 10} .

The blue curves in Figure 5 are generated by (2.20) with d2 = 0 (no measurement
error) and d1 = d1,k as above. The red curves are generated by (2.20) with d1 as
in (4.4) and

d2 = ε(t)Cx(t) , t ∈ N0 ,

with ε(t) (pseudo)randomly drawn from a truncated uniform distribution between
−0.2 and 0.2; that is, a proportional measurement error of up to 20% is made at
each time-step. In Figure 5(a) the ISS estimate (2.22) is exhibited: the norm of the
state is bounded and decreases, asymptotically linearly, with decreasing ‖d1‖∞. The
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266 GUIVER ET AL.

trajectories in Figures 5(a) and 5(c) may be compared to those in Figure 1 (blue
curves), where the same model is projected with no disturbances. We note that,
apart from on the outputs themselves, the effects of the output errors d2 (red curves)
are seemingly much smaller than those of d1 (different line styles).

As an illustration of the theory, our final example considers cycling between con-
trol strategies that target different stage-classes, with an increasing effort over time,
and thus uses the switching adaptive control scheme (3.2). We set
(4.5a)

B :=
[
B1 B2 B3

]
, F :=

[
FT
1 FT

2 FT
3

]T
,

K(j) := diag{φ1(g1(j)), φ2(g2(j)), φ2(g2(j)), φ3(g3(j)), φ3(g3(j))}, j ∈ N ,

where φi is the efficacy function of control action j ∈ {1, 2, 3} and g ⊆ R
3
+ is the

predetermined sequence of control efforts
(4.5b)

g(3j) =

⎡
⎣g1(3j)g2(3j)
g3(3j)

⎤
⎦ = 1.2

⎡
⎣j0
0

⎤
⎦ , g(3j+1) = 1.2

⎡
⎣jj
0

⎤
⎦ , g(3j+2) = 1.2

⎡
⎣jj
j

⎤
⎦ , j ∈ N0 .

In other words, if at a given starting point the egg stage-class is targeted (g(3j)
in (4.5b)), then this course of action is persevered with until the switching variable
s(t) reaches the next switch τ(3j). In this case, the management action switches
to target both the egg and larval stage-classes (g(3j + 1) in (4.5b)). This course
of management action is persisted with until the switching variable reaches the next
switch τ(3j+1). As before, if this occurs, then the management action switches to the
third strategy in which egg, larval, and adult stage-classes are all targeted (g(3j +2)
in (4.5b)). Should the switching variable s(t) reach the next switch τ(3j + 2), then
the above cycle repeats, but with a subsequently larger control effort.

The assumptions (B1) and (B2) hold, by construction, for (A,B, F ) and K for
every A ∈ A and B,F , and K given by (4.5). Moreover, assumption (B3) holds with
D = (Dj)j∈N given by

0 ≤ Dj ≤
[
a1,5 0 0 0 0 a6,5

]T
, j ∈ N ,

such that 0 ≤ A − BKjF −DjC has (6, 5)th entry equal to zero. For the following
numerical simulation we take ψ = ψ3 from (4.3) and φ1, φ2, and φ3 in (4.5a) given by
(4.5c)

x �→ φ1(x) = 1− e−0.5x , x �→ φ2(x) = tanh(0.6x) , x �→ φ3(x) =
0.8x√

1 + (0.8x)2
,

which, we comment, have been chosen somewhat arbitrarily to illustrate the theory.
Theorem 3.5 holds for the model (4.5), and hence we expect eradication of the pest
for any sequence τ that satisfies (3.6). Figure 6 contains simulations of the switching
adaptive control system (3.2), with model data (4.5), for five random initial states x0,
s0 = 1/2, and τ given by

τ(t+ 1) := ln(1 + t)τ(t) , t ∈ N , t(0) = 0, τ(1) = 4 ,

which evidently satisfies (3.6) as

τ(t+ 1)

τ(t)
= ln(1 + t) → ∞ as t→ ∞.
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Fig. 6. Simulations of the switching adaptive control scheme (3.2) applied to the DRW projec-
tion model.

Recall that the sequence τ determines the rate at which the control strategies are
changed or, in other words, how long a control strategy is persevered with before
changing.

Figure 6(a) demonstrates that each state trajectory converges to zero over time—
much less time than in Figure 1(a), for example, where only the egg stage-class is
targeted. Figure 6(b) plots the switching signal s(t) against t. We see that each
signal s converges and, moreover, converges in either (τ(7), τ(8)] or (τ(10), τ(11)].
As expected, these intervals are stabilizing inasmuch as A8 := A − BK(8)F has
r(A8) = 0.7720 < 1 and r(A11) = 0.7719 < 1.

5. Discussion. Simple adaptive control has been considered for discrete-time
positive state linear systems, motivated by potential applications in pest manage-
ment. Pest management is a timely and hugely important societal challenge that
shall significantly contribute to the future success of economically and environmen-
tally viable agriculture and horticulture. Several different adaptive control schemes
have been proposed as strategies for reducing pest abundance. We believe that adap-
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268 GUIVER ET AL.

tive controllers are ideally suited for such a task for two reasons. Foremost is the
(theoretical) ability, and guarantee, of adaptive control schemes to achieve their ob-
jectives in spite of considerable anticipated uncertainty in the pest dynamics. Recall
that (A1) and (A2) are the crucial assumptions in section 2, which cover a wide range
of matrix models and do not require specific knowledge of A, B, F , or Φ. To recap, if
A, B, F , and Φ are known with certainty, then it is possible to choose (the possibly
smallest) û such that (2.5) holds, which would also ensure that the constant control
effort u(t) = û for every t ∈ N eradicates the pest population over time. The caveat
in the previous sentence being how certain is “known with certainty.” The second
reason, and still of importance, is the ease of computation of management strategies
determined by simple adaptive control schemes. We reiterate that finding optimal
controls is not necessarily straightforward, either analytically or computationally.

A downside of adaptive control schemes is that they are usually conservative—
they are not optimal control strategies—which is the price paid for the additional
robustness to model uncertainty. In other words, simple adaptive control as pre-
sented here trades off a loss of optimality against a gain in robustness. What this
means in practice is that the adaptive control law may use more control effort than
is required, which is costlier both economically and environmentally. In practical ap-
plications, however, the conservatism of adaptive control schemes must be traded off
against the economic and social costs of not sufficiently reducing pest abundance—a
possible consequence of a supposed optimal management strategy not functioning as
intended owing to a lack of robustness, say to model uncertainty. As we have ar-
gued elsewhere [64], when seeking to control uncertain population models, open-loop
control strategies, that is, those based on (estimated) model parameters and not on
measured variables, may not achieve the control objective, whereas robust feedback
controls do. The same is true of certain optimal control strategies; see [64] and the
references therein.

Although borrowing from the tradition of simple, nonidentifier-based adaptive
control [30, 31], as a consequence of the naturally assumed componentwise nonneg-
ativity there are mathematical differences between the material presented here and
the situations usually considered (such as in [26] or [31]). The most striking differ-
ence is which structural assumptions are sufficient for global asymptotic stability of
the closed-loop feedback system. For example, prescribed relative degree, minimum
phase, and/or minimality may be replaced by irreducibility of the closed-loop system,
specifically assumption (A2) (or (A3) in continuous-time). We have sought to explain
these structural differences in more detail in Remarks 2.4, 2.15, and 3.6. Another
crucial difference is that in typical adaptive control scenarios, the measured output
y = Cx is the variable used in the feedback law (here v in (2.2)) to subsequently
control the state. In pest management applications, there is no biological reason to
assume that the effect of the pest control action (which must depend on the cur-
rent state) is proportional to the measured population, meaning that presently the
feedback takes the form v = −BΦ(u)Fx, with F �= C in general.

Our first result, Theorem 2.3, was extended in different directions, including a
rate-limited adaptive control scheme, Proposition 2.5, and a neutral-zone adaptive
control scheme, Proposition 2.7. Both of these schemes have been designed to seek to
reduce the control effort which, as we mentioned above, may be unnecessarily conser-
vative. The extension of Theorem 2.3 to a class of infinite-dimensional, discrete-time
systems was straightforward for Banach spaces with partial orders and positive opera-
tors where monotonicity of the spectral radius (2.28) holds. A class of such operators
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 269

was described in Remark 2.12. We suspect that the analogous continuous-time re-
sult, Proposition 2.14, would extend to classes of infinite-dimensional systems where
A in (2.32) denotes the generator of a positive operator semigroup (on an ordered Ba-
nach space) and the analogous monotonicity of the growth bound holds. The upshot
of this seems to be that the additional technical difficulties (see [65]) encountered in
establishing high-gain adaptive control in infinite dimensions may again be replaced
by an irreducibility or primitivity assumption (understood appropriately).

In the context of pest management, there are several extensions that we seek
to address in future work. First, as an alternative to chemical pesticide use, we
desire strategies for the adaptive deployment of biocontrol agents [66]. Because they
are living organisms, with life-cycles that occupy a variety of different time-scales
relative to the pest, the dynamics of biocontrol agents should be modelled, as well
as those of the pest. There are also likely to be interactions between competing
biocontrol agents [67], as well as between the biocontrol and pest populations. Second,
the model (2.1) does not directly incorporate a spatial component, the inclusion of
which would model the spread of a pest population spatially as well as its change
in abundance temporally. Indeed, it is argued that the stages of ecological invasion
are (broadly) arrival (or establishment or colonization), spread, and then community
level changes [68, 69]. Much attention has been devoted in the mathematical ecology
literature to the spread of an invasive population; see, for example, [70] and the
references therein. In effect, here we have considered adaptive control for local pest
management, where the in situ pest population is well specified by (2.1). There are
many cases where management is focused on local control, typically when organized
by individual farmers or stakeholders, and the present description is useful. There is
also interest in how local adaptive control and observation affect the global properties
of the pest in a spatial model, such as abundance and dispersal.

In closing, it is our hope that techniques from adaptive control theory shall be
added to the toolbox of available pest management strategies and motivate further
research from both mathematicians and ecologists. The joint efforts of both groups
shall undoubtedly be required in the future modelling of effective pest control strate-
gies to help tackle the crucial issue of food security. As we have sought to explain,
there are many possible extensions to the work presented here: the present paper is
a starting point.

Appendix.
Proof of Proposition 2.7. We assume that r(A) ≥ 1; else the result is trivially

true. The proof of Theorem 2.3 yields the following property for (2.19):

(A.1) ∀ T ∈ N , ∃ t1, t2 ∈ N , t1, t2 ≥ T such that u(t1) < u∗ and u(t2) > u∗ ,

where

(A.2) u∗ > 0 is such that r(A −BΦ(u∗)F ) = 1 .

In other words, u cannot eventually be greater than or less than u∗ as in these regions
the state (and thus the output) is exponentially decreasing or increasing, respectively.
Arguing in a similar vein,
(A.3)
∀ T ∈ N , ∃ t3, t4 ∈ N , t3, t4 ≥ T such that ‖y(t3)‖ < L1 and ‖y(t4)‖ ≥ L1 .

Seeking a contradiction, suppose that u is unbounded. Then, there exists a subse-
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270 GUIVER ET AL.

quence (τt)t∈N0 such that τt ↗ ∞ as t→ ∞ and

(A.4) u(τt) ≥ t , t ∈ N0 .

In light of (A.1) and (A.4), for t ∈ N, let Ut := {pt , . . . , qt}, sets of successive integers,
be such that

(i) τt ∈ Ut;
(ii) u > u∗ on Ut;
(iii)

⋃
k∈N

Uk �= N.
We record the fact that for t ∈ {0, 1, . . . , τt − pt}

(A.5) x(t+ pt) ≤ At
∗x(pt) ≤ At

∗A
rx(pt − r) , r ∈ N .

For t ∈ N we estimate

t− u∗ ≤ u(τt)− u(pt − 1) =

τt−1∑
j=pt−1

u(j + 1)− u(j) ≤
τt−1∑

j=pt−1

ψ(‖y(j)‖)

≤
τt−pt∑
j=0

ψ(‖C‖‖x(j + pt − 1)‖) ≤
τt−pt∑
j=0

ψ(M∗(r)γj‖x(pt − r)‖)

≤
∑
j∈N0

ψ(M∗(r)γj‖x(pt − r)‖)(A.6)

for each r ∈ N and some constant M∗(r), where we have used (A.5). However, from
the growth condition (2.8) of ψ, it follows from (A.6) that for each r ∈ N

(A.7) ‖x(pt − r)‖ → ∞ as t→ ∞.

Letting A(t) := A−BΦ(u(t))F , we note that

C

k∏
j=1

A(j)x(pt − k − r) = y(pt − r)

⇒
∥∥∥∥∥∥C

k∏
j=1

A(j)x(pt − k − r)

∥∥∥∥∥∥ = ‖y(pt − r)‖ , k, r ∈ N .(A.8)

By the assumption of a common period of A(t), (A.7) implies that k may always
be chosen bounded so that the left-hand side of (A.8) is arbitrarily large. However,
by (A.3), there exists r ∈ N such that the right-hand side of (A.8) is bounded, which
is a contradiction.

We conclude that u is bounded (say by v <∞), and thus x satisfies the bounds

(A.9) Avx(t) := (A−BΦ(v)F )x(t) ≤ x(t+ 1) ≤ Ax(t) , t ∈ N0 .

Clearly, if x is bounded, then so is y. Conversely, from the irreducibility of Av and
A, and as C �= 0, it follows from (A.9) that if x is unbounded, then so is y, and
furthermore, for each L > 0 and t ∈ N

(A.10) ‖y(t)‖ ≤ L ⇒ ‖x(t)‖ ≤M(L) <∞ .
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 271

Seeking another contradiction, we now suppose that x is unbounded, so equivalently
that y is unbounded. Similarly to our arguments for u, such a supposition implies the
existence of (ρt)t∈N0 such that ρt ↗ ∞ as t→ ∞ and

(A.11) ‖y(ρt)‖ ≥ t , t ∈ N0 .

In light of (A.3) and (A.11), let Yt := {vt , . . . , wt}, sets of successive integers, be such
that

(i) ρt ∈ Yt;
(ii) ‖y‖ > L1 on Yt;
(iii)

⋃
k∈N

Yk �= N.
In particular, the construction of Yt is such that

(A.12) ‖y(vt − 1)‖ ≤ L1 ∀ t ∈ N

(else Yt may be enlarged and relabelled). For t ∈ N, t ≥ L1 we first estimate

t− L1 ≤ ‖y(ρt)‖ − ‖y(vt − 1)‖ ≤ ‖y(ρt)− y(vt − 1)‖
≤ ‖C‖ · ‖Aρt−(vt−1) + I‖ · ‖x(vt − 1)‖ ≤ N(L1)(r(A))

ρt−vt(A.13)

for some constant N , where we have used (A.12), (A.10), and the fact that r(A) > 1.
The inequality (A.13) necessitates that

(A.14) ρt − vt → ∞ as t→ ∞.

By property (ii) above, u increases on Yt, and furthermore, for t ≥ vt

(A.15) u(t+ 1) = u(vt) +

t∑
j=vt

ψ(‖Cx(j)‖) ≥ (t− vt)ψ(L1) .

As ψ ∈ K and L1 > 0, so that ψ(L1) > 0, there exists k ∈ N such that

(A.16) kψ(L1) > u∗ ,

where u∗ is as defined in (A.2). Combining (A.14)–(A.16), we see that for sufficiently
large t ∈ N

u(t) > u† > u∗ , t ∈ {vt + k + 1 , . . . , ρt} ⊆ Yt .

However, now we may estimate

‖x(ρt)‖ ≤ ∥∥A(ρt−(vt+k+1))
† x(vt + k + 1)

∥∥ ≤ ∥∥A(ρt−(vt+k+1))
† Ak+2‖ · ‖x(vt − 1)

∥∥
≤ P (L1)r(A†)ρt−vt → 0 as t→ ∞

by (A.14), as A† := A−BΦ(u†)F ≤ A∗ has r(A†) < 1. Therefore, ‖x(ρt)‖ → 0 as t→
∞, which contradicts (A.11). We conclude that y (and thus also x) is bounded.

Proof of Lemma 2.13. Existence of solutions of (2.32) on [0, τ) for some τ > 0
follow from standard Peano existence theory. Suppose that a maximal solution (x, u)
is defined on [0, ω) for some ω > 0. We proceed to show that (x([0, ω)), u([0, ω))) is
bounded and thus relatively compact. For t ∈ [0, ω), x(t) is given by

x(t) = e
∫ t
0
(A−BΦ(u(s))F ) dsx0 =: eH(t)x0 ,
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272 GUIVER ET AL.

and as Φ is bounded, a straightforward estimate shows that ‖H(t)‖ ≤ Mt for some
M > 0. Hence,

‖x(t)‖ ≤ eMt‖x0‖ ≤ eMω‖x0‖ , t ∈ [0, ω) ,

from which we estimate for t ∈ [0, ω)

0 ≤ u(t) = u0 +

∫ t

0

ψ(‖Cx(s)‖) ds ≤ u0 + ωψ(eMω‖C‖ · ‖x0‖) .

By [43, Corollary 4.10], we conclude that ω = ∞, as required.
Proof of Proposition 2.14. Assuming that α(A) ≥ 0 (else the result is trivial),

let u∗ > 0 be such that A∗ := A − BΦ(u∗)F has α(A∗) = 0. Such a u∗ exists by
assumption (A3), (2.10), and as Φ is continuous.

Seeking a contradiction, if u is such that u(t) ≤ u∗ for all t ∈ R+, then as t �→ d
dtu

is nonnegative, u is nondecreasing and bounded from above, and thus u converges to
z ≤ u∗. Consequently, by the fundamental theorem of calculus, for T ≥ 0

0 ≤
∫ T

0

ψ(‖y(s)‖) ds =
∫ T

0

u̇(s) ds = u(T )− u(0) → z − u0 <∞ as T → ∞,

and so t �→ ψ(‖y(t)‖) ∈ L1. On the other hand, u ≤ u∗ implies that

ẋ(t) = (A−BΦ(u(t))F )x(t) ≥ (A−BΦ(u∗)F )x(t) , t ∈ R+ ,

and hence

x(t) ≥ eA∗tx0 , t ∈ R+ ⇒ y(t) ≥ CeA∗tx0 , t ∈ R+

⇒ lim inf
t→∞ y(t) ≥ lim inf

t→∞ CeA∗tx0 .(A.17)

The combined properties that C and x0 are nonnegative and nonzero and A∗ is
irreducible with α(A∗) = 0 yield that

lim inf
t→∞ CeA∗tx0 > 0 ,

which, in light of (A.17) and the fact that y is continuous and ψ ∈ K, contradicts
t �→ ψ(‖y(t)‖) ∈ L1. We conclude that there exists τ ∈ N such that

u(t) ≥ u(τ) > u∗ , t ∈ R+ , t ≥ τ ,

as u is nondecreasing. The proof of the estimate (2.34) now mirrors that of Theo-
rem 2.3, instead noting that for Metzler A1, A2 ∈ R

n×n, A2 ≤ A1, A1 �= A2, and A2

irreducible imply that α(A2) < α(A1). To prove that u converges, we prove that it is
bounded. To that end, for t ∈ R+

0 ≤ u(t) = u(0) +

∫ t

0

u̇(s) ds = u0 +

∫ t

0

ψ(‖y(s)‖) ds ≤ u0 +

∫ t

0

ψ(‖C‖Me−γs‖x0‖) ds

≤ u0 +

∫
R+

ψ(‖C‖Me−γs‖x0‖) ds <∞

by (2.34) and (2.35), completing the proof.
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ADAPTIVE CONTROL FOR POSITIVE LINEAR SYSTEMS 273

Proof of Lemma 3.3. The integer � in assumption (B1) is such that

�∏
k=1

Ajk � 0 ∀ {j1, . . . , j�} ⊆ N .

Therefore, as F �= 0, C �= 0, it follows that for t ≥ �
(A.18)

x(t) =

t∏
j=0

Ai(j)x
0 ⇒ ‖Fx(t)‖, ‖Cx(t)‖ > 0 ⇒ ‖Fx(t)‖ ≤ γ(i(t))‖Cx(t)‖ ,

with

γ(i(t)) :=
‖Fx(t)‖
‖Cx(t)‖ > 0 , t ≥ � .

Defining

β : N → R, β(j) := sup
k≤j

γ(k) ,

it follows from (A.18) that (3.4) holds and β is evidently nondecreasing.
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