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a b s t r a c t

When vital rates depend on population structure (e.g., relative frequencies of males or females), an
important question is how the long-term population growth rate λ responds to changes in rates. For
instance, availability of mates may depend on the sex ratio of the population and hence reproductive
rates could be frequency-dependent. In such cases change in any vital rate alters the structure, which in
turn, affect frequency-dependent rates.We show that the elasticity of λ to a rate is the sum of (i) the effect
of the linear change in the rate and (ii) the effect of nonlinear changes in frequency-dependent rates. The
first component is always positive and is the classical elasticity in density-independent models obtained
directly from the population projection matrix. The second component can be positive or negative and
is absent in density-independent models. We explicitly express each component of the elasticity as a
function of vital rates, eigenvalues and eigenvectors of the population projection matrix. We apply this
result to a two-sex model, where male and female fertilities depend on adult sex ratio α (ratio of females
to males) and the mating system (e.g., polygyny) through a harmonic mating function. We show that
the nonlinear component of elasticity to a survival rate is negligible only when the average number of
mates (per male) is close to α. In a strictly monogamous species, elasticity to female survival is larger
than elasticity to male survival when α < 1 (less females). In a polygynous species, elasticity to female
survival can be larger than that of male survival even when sex ratio is female biased. Our results show
how demography and mating system together determine the response to selection on sex-specific vital
rates.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Demographic rates are frequency-dependent when they depend
only on the relative frequencies of different types of individu-
als (‘‘males’’ and ‘‘females’’) and not on their absolute densities.
For instance, demographic differences betweenmales and females
are common in several species (Caswell and Weeks, 1988) and
availability of mates may depend on the sex ratio (ratio of fe-
males to males) of the population (Bessa-Gomes et al., 2004).
Single-sexmodelsmaynot be appropriate in such contexts (Rankin
and Kokko, 2007) and population dynamics is better described by
two-sex models where births depend on the sex ratio through a
non-linear mating function (McFarland, 1972). Recently, there is a
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growing interest in the use of frequency-dependent models, espe-
cially two-sex models, to understand population and evolution-
ary dynamics of a range of different species including, the bean
beetles (Callosobruchus maculatus, Miller and Inouye, 2011), em-
peror penguins (Aptenodytes forsteri, Jenouvier et al., 2010), green-
rumped parrotlets (Forpus passerinus, Veran and Beissinger, 2009)
marine angiosperms (Phyllospadix scouleri, Shelton, 2010), com-
mon lizards (Lacerta vivipara, Le Galliard et al., 2005) and ungulates
(Mysterud et al., 2002). A salient feature of a frequency-dependent
model is that, though non-linear in the vital rates, it can have a
long-term growth rate λ, analogous to stage-structured density-
independent models (Nussbaum, 1988). However, in contrast to
density-independent models (Caswell, 2001), less is known about
the properties of the response ofλ to change in a vital rate (e.g., sur-
vival), known as sensitivity or elasticity, in the case of a propor-
tional change. Elasticity analysis is an important tool in ranking
management decisions (e.g. improving survival vs fertility, Mor-
ris and Doak, 2002) and in quantifying the response to selection on
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vital rates (selection gradient) and hence is used in evolutionary
predictions (Charlesworth, 1994).

Predicting the effect of changing a vital rate on λ is challeng-
ing in frequency dependent models because change in a vital rate
changes the stage-structure which produces secondary changes
in parameters that depend on stage frequencies. For instance, in
a two-sex model where fertility depends on adult sex ratio, in-
creasing female adult survival would increase sex ratio (ratio of
females tomales) and change fertility. Hence, the elasticity of pop-
ulation growth rate depends on two effects: one due to direct lin-
ear changes in a parameter and the other due to nonlinear changes
in stage structure acting through frequency-dependent parame-
ters. For frequency-dependent models Caswell (2008) expressed
the elasticity in terms of derivatives of vital rates and the stage-
structure. However, for a qualitative understanding and making
predictions about how frequency-dependence in a parameter af-
fects the sign and magnitude of elasticity and how elasticity in
a frequency-dependent model differs from its linear counterpart,
one needs to express elasticity in terms of the vital rates and eigen-
values and eigenvectors of equilibrium projection matrix, as is
readily done in density-independent models.

In this work we first present an explicit analytical formula
for the elasticity of the population growth rate in a frequency-
dependent model. We show that the frequency-dependent elas-
ticity is the sum of the classical linear elasticity (obtained from the
equilibrium projection matrix) and a non-linear component that
depends on the relationship between vital rates and stage frequen-
cies. Our formula, expressed in terms of the vital rates and eigen-
values and eigenvectors, is easy to calculate and provides clear
insights into how the nature of frequency-dependence affects the
elasticity of λ. We then apply this formula to explicitly derive elas-
ticities in a two-sex model where male and female fertilities de-
pend on the adult sex ratio and the average number of female
mates per male (or harem size as in a polygynous species). We
show how sex ratio and mating behavior (e.g., monogamy, polyg-
yny) together determine the response of population growth rate to
changes in sex-specific vital rates.

2. Frequency-dependent models

A general form of a frequency-dependent population model is
given by

Pt = A(ut−1)Pt−1 (1)

where Pt is the population vector in year t denoting the number
of individuals in different stages. These stages could be a combi-
nation of different attributes, like age and sex or sex and size of
an individual. The projection matrix A(ut−1) consists of vital rates
Aij(θ,ut−1) where θ is a vector of parameters and ut−1 is the vec-
tor of stage frequencies. In general all vital rates could depend on
the stage-structure ut−1. We assume that the rates are homoge-
neous functions of the stage structure of degree 0 (a non-negative
function f is homogeneous of degree 0 if f (λ x) = f (x), for every
x and λ > 0), which assures that the rates depend only on the
relative frequencies of the stages and not on absolute abundances.
It is known for such models that the stage structure eventually
approach an equilibrium (stable stage distribution, SSD) u and
correspondingly the long-term dynamics can be described by the
projection matrix A(u) whose elements depend on u (Nussbaum,
1988; Caswell andWeeks, 1988). At this demographic equilibrium,
the population growth is given by the dominant eigenvalue λ of
A(u).

A well-known example where frequency-dependence arises is
a two-sex model (e.g., Lindström and Kokko, 1998). A form of
this model (at equilibrium) is given by the equation (Caswell and
Weeks, 1988)

Nnew
N1f
N2f
N1m
N2m


t

=


0 0 Ff 0 Fm

ρ S1 0 0 0 0
0 S1f S2f 0 0

(1 − ρ) S1 0 0 0 0
0 0 0 S1m S2m



×


Nnew
N1f
N2f
N1m
N2m


t−1

, (2)

where Nnew denotes number of newborns (including males and
females), N1f and N1m denote, respectively, numbers of immature
females and males and N2f and N2m denote numbers of reproduc-
ing adult females andmales, respectively. Ff and Fm are female and
male fertility rates,ρ is the fraction of females at birth, S1 is survival
rate of newborns, S1f and S1m are survival rates of immature fe-
males andmales, and S2f and S2m are survival rates of adult females
andmales, respectively. Further, assume that both fertilities are de-
termined by the fraction of females andmales and is captured by a
harmonic fertility function (Caswell and Weeks, 1988), given by

Ff = N2m/(N2m + (N2f /h)) (3)

and

Fm = N2f /(N2m + (N2f /h)). (4)

The parameter h represents the average number of females that
a male mates with and can also be interpreted as the harem size
as in a polygynous species (h > 1) though it applies to all mat-
ing systems including monogamy (h = 1) and polyandry (h < 1;
Rosen, 1983). Fertility functions are usually derived from the male
and female contributions to the total number of births,which could
dependupon the relative fractions ofmales and females in the pop-
ulation. The harmonic fertility function makes the model in Eq.
(2) frequency dependent (Nussbaum, 1988; Caswell and Weeks,
1988). In terms of adult sex ratio α = N2f /N2m, we have Ff =

1/(1 + (α/h)) and Fm = α/(1 + (α/h)), so that fertilities depend
only on the fraction of females to males and not on their densities.
Other forms of fertility functions have been discussed in the liter-
ature (e.g. McFarland, 1972), but the harmonic function has more
empirical support, and has been shown to better capture the effect
of both sexes on reproduction (e.g. Miller and Inouye, 2011).

3. Elasticity of λ in frequency-dependent models

For the frequency-dependent model given by Eq. (1), the
elasticity of λ with respect to a parameter θ is the proportional
change in λ when θ is increased by a small percentage. When a
vital rate does not depend on the stage-structure we denote it
simply byAij(θ). For the sake of brevity,we assume that parameters
appearing in a given vital rate (i.e., amatrix element) do not appear
in other vital rates. Elasticity to a parameter that appears in more
than one vital rate (like the ρ or h in the two-sex model above)
can be calculated from contributions from all vital rates using a
chain rule (e.g., Eq. (9.101) of Caswell, 2001). Belowwe outline the
general dynamics of the effect of perturbation of a parameter on λ,
a detailed derivation is given in the online Appendix A.

The one-step growth rate, between years t − 1 and t , is given
by λt = Nt/Nt−1 where Nt is the total size in year t . This can be
written as,

λt = |A(ut−1)ut−1|, (5)

where |A(ut−1)ut−1| denotes the sum of elements of the vector
A(ut−1)ut−1. In the long-run, λt converges to the long-term
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growth rate λ, which is equal to the dominant eigenvalue of the
matrixA(u), whereu is the SSD. Hence elasticities et ofλt converge
to the elasticity e of λ (Haridas and Tuljapurkar, 2007).

The growth of the unperturbed population, starting from an

initial stage-structureu0, can be represented as:u0
A(u0)
−−−→

λ1
u1

A(u1)
−−−→

λ2

u2 · · · → ut−1
A(ut−1)
−−−−→

λt
ut → · · · . First consider the perturbation

of a parameter θ in a vital rate Aij(θ) that does not depend on the
stage-structure (e.g., S1, the survival of newborns in Eq. (2)): let θ
be increased by the same proportion ϵ every year, θ → θ + ϵ θ ,
where ϵ is small. This changes the vital rate Aij(θ) → Aij(θ + ϵ θ),
which, up to first order, is equal to Aij(θ) + ϵ θ∂Aij(θ). Hence stage
structure u1 will change to û1 and in general ut will change to ût .
The new stage distribution in year t can bewritten, up to first order,
as ût = ut + ϵ wt , wherewt is the change in stage structure which
satisfies a recurrence relationship (see Appendix A). Vital rates that
depend upon ut will also change correspondingly: let Akl(ut) →

Akl(ut + ϵ wt) which, up to first order, is equal to Akl(ut) +

ϵ w′
t ∂Akl(ut), wherew′

t is the rowvector and ∂Akl(ut) is the column
vector of derivatives of the vital rate with respect to components
of the stage-structure. For instance, in the two-sex model (Eq. (2))
increasing adult female survival (S2f ) increases female density and
the resulting increase in sex ratio α, affects fertilities of both sexes
(Ff and Fm). The term w′

t ∂Akl(ut) captures the effect of frequency-
dependence and shows the fundamental difference in the response
of λ from a stage-structured density-independent model.

From Eq. (5) we infer that the change in λt when the parameter
θ is perturbed, is determined by the change in the matrix A(ut−1)
and the change in stage structure wt , which approaches w as the
population approaches the SSD, u. Then, the elasticity eij(θ) of λ
with respect to the parameter θ is given by (see Appendix A for the
complete derivation)

eij(θ) = Elin + Enonlin, (6)

where the first component Elin = θ∂Aij(θ) v(i)u(j)/λ, where v(.)
are the components of v, the left eigenvector of A(u). Note that
Elin is precisely the classical linear elasticity of λ with respect to the
parameter θ (Caswell, 2001: Eqs. (9)–(101); see also Appendix A),
evaluated directly from the projection matrix A(u). The second
component Enonlin =


kl Cklv(k)u(l)/λ is the non-linear part of

elasticity that arises entirely due to frequency-dependence, where
the coefficient Ckl = w′ ∂Akl(u), (k, l) ≠ (i, j). Caswell (2008: Eq.
(97)) used matrix calculus to derive sensitivity of λ in terms of
derivatives of vital rates and the stage-structure.

Finally, consider the perturbation of a parameter θ in a vi-
tal rate Aij(θ,ut−1) that does depend on the stage structure (e.g.,
the harem size h in the two-sex model, appearing in the vital
rates Ff and Fm which depend on the stage-structure through
sex ratio). Perturbation of θ will change Aij(θ,ut−1) to Aij(θ +

ϵ θ,ut−1 + ϵ wt−1), which, up to first order, can be written as
Aij(θ,ut−1) + ϵ(θ ∂Aij(θ) + w′

t−1∂Aij(ut−1)). Any other vital rate
Akl(ut−1), (k, l) ≠ (i, j), that depends on the stage structure, will
also change. Hence the elasticity of λ to θ in this case is the same as
given in Eq. (6) except that Enonlin = (1/λ)


Cij v(i) u(j) +


kl≠ij Ckl

v(k) u(l)

.

4. Implications

(1) Eq. (6) shows that, in the presence of frequency dependence,
the response of λ to a change in a parameter is different from
the linear response (given by Elin) by an amount equal to Enonlin.
The sign and magnitude of Enonlin depend upon the nature of the
relationship between the (frequency-dependent) vital rate and the
frequencies of different stages. For instance, in the two-sex model
the female fertility decreases with adult sex ratio, while the male
fertility increases (see Caswell and Weeks, 1988, Fig. 3a, c) so that
contributions frommale and female fertility toλwill have opposite
signs. In the two-sexmodel we can explicitly determine the sign of
Enonlin in terms of the adult sex ratio and the harem size, aswe show
below (see Eq. (7)).
(2) Since our analysis can be used to describe the change in λt ,
above formulas can be applied to analyzing transient elasticities
in frequency-dependent models (see Appendix A).

5. Explicit forms of elasticities in a two-sex model

Wenowuse our general analytical results to first calculate elas-
ticities ofλ tomale and female survival rates and then to the harem
size h in the two-sex model in Eq. (2). We illustrate how sex ratio
and the mating system (ie., monogamy, polygyny and polyandry),
as described by different harem sizes h, affect elasticities.

5.1. Elasticity of λ to survival rates

Here we focus on the elasticity to immature female survival
S1f ; elasticities to other survival rates are derived similarly (see
Appendix B). Suppose S1f is increased by a small proportion,
S1f → S1f + ϵ S1f , so that the stable-stage distribution u = (u1,
u2, u3, u4, u5)

′ changes to u + ϵ w, where


i ui = 1. The linear
component of the elasticity (Elin, Eq. (6)) is given by (S1f /λ) v3 u2, as
derived from linear matrix models (Caswell, 2001), where u2 is the
proportion of immature females and v3 is the reproductive value
of adult females. Note that the linear component of the elasticity
of S1f is the same as that of the linear component of the survival
rate S1m of immature males because of the matrix model structure
(Figs. 1b, 2b, 3b, 4b; see Appendix B). The nonlinear component
(Enonlin) is given by

Enonlin = (1/λ) C1,3 u3 v1


1 −

h
α


, (7)

where C1,3 is the change in female fecundity Ff due to the changes
in S1f , u3 is the proportion of adult females in the (unperturbed)
population and v1 is the reproductive value of the newborns (see
Appendix B). Here C1,3 is negative (female fertility decreases with
α, see Appendix B) and note that h/α is the average number ofmat-
ings per male weighted by the reciprocal of adult sex ratio. When
h = α, every male has a harem where all females gather leaving
no female or male unmated, and hence the nonlinear component
Enonlin = 0. When h > α, all females gather in harems and get
access to males and hence Enonlin is positive. Hence the effect of im-
proving female survival is larger than expected from a model that
ignores the effect of changing sex ratios. When h < α, not every
female has access to males and increasing female survival only in-
creases the competition for males and hence Enonlin is negative (see
below). Belowwe show the elasticities of female andmale survival
for species with different mating systems. In all cases, we assume
that the proportion of females at birth, ρ = 0.5.

5.2. Harem size h = 1 (Monogamy)

Under monogamy, (h = 1), elasticities of λ to female and male
survival rates coincide with the linear elasticities only when adult
sex ratio α = 1, since in this case the non-linear component is zero
(Fig. 1b, c). The non-linear components of elasticities (Enonlin) to fe-
male survival rates (S1f and S2f ) are negative when α > 1, positive
when α < 1 and equal to 0 when α = 1 (Fig. 1a). Corresponding
components formale survival rates (S1m and S2m) are positivewhen
α > 1, negative when α < 1 and equal to 0 when α = 1 (Fig. 1a).
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Fig. 1. Elasticities in a monogamous (h = 1) species: (a) Non-linear components (Enonlin) of elasticities to female (S1f , S2f ) and male (S1m, S2m) survival rates as a function
of the adult sex ratio α. (b) Linear components (Elin) of elasticities to female and male survival rates. (c) Elasticities (e = Enonlin + Elin) to female and male survival rates.
(d) Female (Ff ) and male (Fm) fertilities. Primary sex ratio ρ = 0.5, juvenile survival S1 = 0.6 and harem size h = 1 in all cases. Sex ratio α on the x-axis is varied by fixing
S1f = 0.65 and varying all other survival rates from 0.5 to 0.8 in steps of 0.05.
Note that female fertility (Ff ) decreases,whilemale fertility (Fm) in-
creases with α (Fig. 1d) producing the opposite effects in the non-
linear component of elasticity. Further, elasticity to adult female
survival (S2f ) can be negative (i.e., λ decreases when adult female
survival increases) as the sex ratio becomes more female skewed
because the negative non-linear effect due to reduced fertility ex-
ceeds the positive linear effect that is entirely due to increased sur-
vival (Fig. 1a, b, c). Similarly, elasticity to adult male survival (S2m)
is negative (Fig. 1c) when sex ratio becomesmoremale skewed re-
ducingmale fertility (Fig. 1d). The rankings of vital rates in terms of
their elasticities (e, Fig. 1d) differ from those predicted by the linear
effects (Elin) only (Fig. 1b): for instance, for female biased popula-
tions (α > 1), male adult survival (S2m) has the highest elasticity,
while Elin is highest for female adult survival. Furthermore, there
are age-specific effects within each sex: female adult survival has
larger elasticity than survival of immature (S1f ) when α < 1.5,
but as the population becomes more female skewed, survival of
immature individuals becomes more elastic (Fig. 1c). Note that in
many long-lived species, single-sex (female) models predict adult
survival to be themost elastic vital rate (Gaillard et al., 2005). There
is a similar switch in the age-specific ranking of elasticities of male
survival rates (Fig. 1c).

5.3. Harem size h > 1 (Polygyny)

A polygynous species, where a single male mates with more
than one female, can be described by h > 1. First note that even
when males and females are equally abundant (i.e., α = 1), elas-
ticities of immature and adult survival rates are different for males
and females and they are different from their respective linear
components (Fig. 2b, c), unlike in the monogamous case. How-
ever, elasticities do coincide with their linear components (Fig. 2b)
when h/α = 1, when the nonlinear components vanish (Fig. 2a;
see Eq. (7)). Secondly, elasticities of female survival rates can be
larger than that of male survival rates even when sex ratio is fe-
male biased (α > 1) but this reverses as α becomes more female
skewed (α ≫ 2.2, Fig. 2c). As the harem size increases, female sur-
vival rates always have higher elasticities than male survival rates
(h = 15, Fig. 3c). Note that as harem size increases, female fertility
becomes less dependent on the sex ratio (Fig. 3d) (since most fe-
males mate) and hence selection for increased female survival will
result in larger population growth rate.

5.4. Harem size h < 1 (Polyandry)

In a polyandrous species a single female mates with several
males, which in our model is equivalent to h < 1 (Rosen, 1983).
As in the polygynous case, elasticities of survival rates of immature
and adult individuals differ between the sexes and they are differ-
ent from their respective linear components, even when sex ratio
α = 1 (Fig. 4c). In exact opposite to the polygynous case, elastici-
ties of male survival rates can be larger than that of female survival
rates even when sex ratio is male biased (α < 1) but decreases
when α < 0.5 (Fig. 4c). When male abundance is large so that not
all of them can be mated by females, increasing male survival re-
duces λ and hence one would expect selection against higher male
survival rates.

5.5. Elasticity of λ to harem size h

Average harem size h affects both fertility rates (Ff and Fm) so
that elasticity of λ to h will have contributions from changes in
male and female fertilities (see Appendix B). When harem size
h < 1 (polyandry, where a female has many male partners) and
sex ratio is female skewed (α > 1), increase in harem size in-
creases elasticity of λ with respect to h (Fig. 5a). Note that increase
in h would provide more females with males. At higher harem
sizes (h ≥ 1, representing monogamy and polygyny), elasticity
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Fig. 2. Elasticities in a polygynous (h = 2) species: (a) Non-linear components (Enonlin) of elasticities to female (S1f , S2f ) and male (S1m, S2m) survival rates as a function
of the adult sex ratio α. (b) Linear components (Elin) of elasticities to female and male survival rates. (c) Elasticities (e = Enonlin + Elin) to female and male survival rates.
(d) Female (Ff ) and male (Fm) fertilities. Primary sex ratio ρ = 0.5, juvenile survival S1 = 0.6 and harem size h = 2 in all cases. Sex ratio α on the x-axis is varied by fixing
S1f = 0.7 and varying all other survival rates from 0.5 to 0.8 in steps of 0.05.
Fig. 3. Elasticities in a polygynous (h = 15) species: (a) Non-linear components (Enonlin) of elasticities to female (S1f , S2f ) and male (S1m, S2m) survival rates as a function
of the adult sex ratio α. (b) Linear components (Elin) of elasticities to female and male survival rates. (c) Elasticities (e = Enonlin + Elin) to female and male survival rates.
(d) Female (Ff ) and male (Fm) fertilities. Primary sex ratio ρ = 0.5, juvenile survival S1 = 0.6 and harem size h = 15 in all cases. Sex ratio α on the x-axis is varied by fixing
S1f = 0.7 and varying all other survival rates from 0.5 to 0.8 in steps of 0.05.
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Fig. 4. Elasticities in a polyandrous (h = 0.5) species: (a) Non-linear components (Enonlin) of elasticities to female (S1f , S2f ) and male (S1m, S2m) survival rates as a function
of the adult sex ratio α. (b) Linear components (Elin) of elasticities to female and male survival rates. (c) Elasticities (e = Enonlin + Elin) to female and male survival rates.
(d) Female (Ff ) and male (Fm) fertilities. Primary sex ratio ρ = 0.5, juvenile survival S1 = 0.6 and harem size h = 0.5 in all cases. Sex ratio α on the x-axis is varied by fixing
S1f = 0.6 and varying all other survival rates from 0.5 to 0.8 in steps of 0.05.
Fig. 5. (a) Elasticity to harem size as a function of the harem size. Shown are three scenarios: S1f = S2f = 0.8 and S1m = S2m = 0.65; S1f = S2f = 0.8 and S1m = S2m = 0.7;
S1f = S2f = 0.8 and S1m = S2m = 0.75. (b) Elasticity to harem size as a function of the sex ratio α for four values of the harem size h. Primary sex ratio ρ = 0.5 and juvenile
survival S1 = 0.6 in all cases. Sex ratio α on the x-axis is varied by fixing S1f = S2f = 0.7 and varying all other survival rates from 0.5 to 0.8 in steps of 0.05.
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decreases with harem sizes for all sex ratios (Fig. 5a) because fe-
male fertility is independent of sex ratio (Fig. 3d) and hence is not
affected by increase in harem size. When h > 1, as in a polygynous
species, elasticity to h always increases with sex ratio (Fig. 5b). At
smaller harem sizes, elasticity to h first increases with α when fe-
males are relatively rare, but then decreases as the proportion of
females in the population increases (Fig. 5b). This is because in-
creasing h would initially increase opportunities for more females
to findmates but as the sex ratio becomesmore female-skewed re-
sulting in competition for males, fertility decreases and eventually
asymptotes (Eq. (3)).

6. Discussion

We derived an explicit analytical formula for the calculation of
the elasticity of the population growth rate in a stage-structured
frequency-dependent model. Elasticity in density-independent
models (Caswell, 2001) can be explicitly expressed in terms
of the population age-structure and reproductive value vector.
Our formula extends this result to frequency-dependent models
providing insights into the dynamics of elasticities in such models.
We showed that frequency-dependent elasticity to a vital rate
is the sum of the linear elasticity and a non-linear component
that reflects the (frequency-dependent) relationship between vital
rates and stage frequencies. Ourwork complements that of Caswell
(2008) who used matrix calculus to express elasticities in terms
of matrix derivatives. Elasticities represent selection pressure on
vital rates (Stearns, 1992) and they are used in management of
populations (Morris andDoak, 2002). Hence our results provide the
basis for understanding population and evolutionary dynamics in
the presence of frequency-dependence.

We applied our general results to a two-sex population model
(Caswell and Weeks, 1988; Lindström and Kokko, 1998), where
adult sex ratio α and the average number of mates per male h
(harem size) affected male and female fertilities. We showed that
the response of the population growth rate λ to changes in vital
rates is determined by both the demography and the mating sys-
temof the species.McDonald (1993) suggested that the elasticity of
λ to sex-specific vital rates could be used to quantify consequences
of sexual selection and separately analyzed male and female life-
histories in the long-lived, neotropical bird, the long-tailed man-
akin (Chiroxiphia linearis, Pipridae). However, this approach (using
separate linear matrix models for each sex) ignores the potential
non-linear effects of mating behavior and skewed-sex ratios on
elasticities. We showed that the non-linear component of the elas-
ticity to (female ormale) survival, which quantifies the change in λ
due to change in female and male fertilities in response to change
in the sex ratio, can be ignored only when adult sex ratio is equal
to the harem size of the species. In particular, this implied that in a
strictly monogamous (h = 1) species, the population growth rate
would respond similarly to changes in male and female survival
rates only when sex ratio is even (Fig. 1c). In many monogamous
bird species, adult sex ratio is not even; in many cases it is male
biased (α < 1), probably resulting from differential mortality be-
tween the sexes (Donald, 2007). Jenouvrier et al. (2010) showed
that in emperor penguins (Aptenodytes forsteri), a strictly monog-
amous species, sex ratio was female skewed (due to excess male
mortality) and the elasticity to female adult survival was negative.
This is consistent with our analytic predictions: we showed that
(Fig. 1c) in monogamous (h = 1) populations elasticity to survival
of the more frequent sex is smaller and becomes negative as the
sex ratio increases towards the more frequent sex. In polygynous
and polyandrous species, however, we showed that selection for
increased adult survival of the more frequent sex is possible un-
less sex ratio is extremely skewed towards this sex (Figs. 2c, 3c,
4c). This is because excess females (males) will findmates if harem
size is large, unlike in strict monogamy where skewed sex ratio
(α ≠ 1) will result in unmated individuals of the more frequent
sex. In polygynous mammals (e.g., red deer, Cervus elaphus; Indian
fruit bat, Cynopterus sphinx; northern elephant seal, Mirounga an-
gustirostris), adult sex ratio is often female skewed (α > 1: Bessa-
Gomes et al., 2004; Donald, 2007) and our results suggest that this
could be due to selection for increased female survival. In general,
we showed (Eq. (7)) that the response to selection that arises due
to the sexual dimorphism in mortality rates, would be weak when
adult sex ratio is close to the average harem size.

Our results have important implications for conservation and
management of species. Though elasticities have been used to
quantify response of λ to management and conservation strate-
gies (Morris and Doak, 2002; Kareiva et al., 2000), no previous
studies have addressed how skewness in sex ratio and mating be-
havior affect this response. Some studies (e.g., Bengal tigers (Pan-
thera tigris) in India, Horev et al., 2012; red deer (Cervus elaphus) in
Norway, Langvatn and Loison, 1999) used two-sex models in pop-
ulation viability analysis (PVA) but did not calculate the frequency-
dependent elasticities to vital rates. This paper shows that this
can be problematic. For instance, in a monogamous species with
a female biased sex ratio, we would recommend management
strategies that increase the survival of adult females based on the
linear elasticity, but considering the nonlinear elasticity reveals
that it would be more effective to enhance the survival of subadult
females (Fig. 1b and c). Our approach allows management deci-
sions to vary depending on the sex ratio, which can be an impor-
tant determinant for population viability. For instance, extinction
risk in monogamous and polygynous species is generally believed
to increase with male-skewed sex ratios (α < 1), as has been
demonstrated in the PVA of Little Bustard Tetrax tetrax populations
in Spain (Morales et al., 2005). Analyzing the effect of sex ratiomay
become increasingly important for species where sex determina-
tion is temperature dependent, like reptiles (e.g., Tuatara Sphen-
odon guntheri in NewZealand, Nelson et al., 2002) because sex ratio
may change due to global warming.

To summarize, our study provides analytical tools for studying
population response to changing vital rates in general frequency-
dependent models. One particularly important application are
two-sex models which are increasingly being used by population
ecologists. Future work will focus on two important extensions:
firstly we will extend our results to study the response of the
stochastic growth rate λS as has been done in density-independent
models (Tuljapurkar et al., 2003). Secondly, we will apply our
approach to two-sex models with more general mating functions
(Bessa-Gomes et al., 2010).

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.tpb.2014.08.003.
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