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a b s t r a c t

We consider discrete time linear populationmodels of the form n(t+1) = An(t)where A is a population
projection matrix or integral projection operator, and n(t) represents a structured population at time t . It
is well known that the asymptotic growth or decay rate of n(t) is determined by the leading eigenvalue
of A.
In practice, population models have substantial parameter uncertainty, and it might be difficult to

quantify the effect of this uncertainty on the leading eigenvalue. For a large class of matrices and integral
operators A, we give sufficient conditions for an eigenvalue to be the leading eigenvalue.
By preselecting the leading eigenvalue to be equal to 1, this allows us to easily identify, which

combination of parameters,within the confines of their uncertainty, lead to asymptotic growth, andwhich
lead to asymptotic decay. We then apply these results to the analysis of uncertainty in both a matrix
model and an integral model for a population of thistles. We show these results can be generalized to any
preselected leading eigenvalue.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Projection models are commonly used for predicting the
dynamics of structured populations (e.g., Caswell (2001), Ehrlén
(2000), Mandujano et al. (2001) and Seno and Nakajima (1999)).
If there are finitely many stages, or if the stages are determined by
discretizing a continuous variable (such as size), matrix projection
models are used. To avoid such a discretization, integral projection
models (Easterling et al., 2000; Ellner and Rees, 2006) can be used.
Both of these modeling approaches require multiple life-history
parameters, and the data to accurately estimate those parameters
is often lacking; as a result of insufficient data these models suffer
from high parameter uncertainty. Furthermore, parameters often
vary on a spatial and temporal scale, and stochastic models are
even more data hungry (Doak et al., 2005).
There are well-established methods for local perturbation

analysis, such as elasticity and sensitivity of matrix transition
rates or parameter values (Caswell, 2001), which examine the
consequences of very small perturbations of single, independent
parameters (Caswell, 2001). When calculating elasticities only one
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matrix element or life history parameter is varied, while others
remain the same, so using elasticity only gives us information
about varying one parameter. In the case ofmultiple perturbations,
elasticities can only be used directly if the transition probabilities
are changed by the same proportion (Mills et al., 1999). Biological
limitsmay constrain howmuch the transition ratewith the highest
elasticity can be changed, so changes in a transition rate with a
lower elasticity may be required to achieve the management goal
(Lubben et al., 2008). Furthermore, elasticity analyses does not
take into account uncertainty in the data. Parameter uncertainty
has been incorporated into elasticity analysis by incorporating
standard deviation into the definition of elasticity (Ehrlén and van
Groenendael, 1998), including covariation between parameters
(van Tienderen, 1995), and by adding random components to
the parameters (Wisdom and Mills, 1997). Caswell (2000) and de
Kroon et al. (2000) both give in-depth discussions of the caveats
for some of these methods.
Global perturbation analysis is used when relatively large

changes in parameters values are being considered. Large uncer-
tainties in the parameter values often occur when the sample size
is small. Management actions may also change parameter values
by large amounts. Demographic and environmental stochasticity
lead to mean parameter values which vary over space and time.
Using sensitivity and elasticity analysis to infer the effect of large
perturbations on the asymptotic population growth rate λ can re-
sult in misleading conclusions (Deines et al., 2007; Hodgson and
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Townley, 2004; Hodgson et al., 2006; Mills et al., 1999; Tenhum-
berg et al., 2008). One possible approach to global perturbation
analysis of matrix models is Monte Carlo analysis (Tenhumberg
et al., 2008).
In this paper,we present an analytical alternative formatrix and

integral projection models. We parameterize the growth-decline
boundary in terms of the most significant parameters. We can
use this to determine how robust λ is within the confines of the
uncertainty in the parameters. This can be applied to models for
endangered (or invasive) species. Sensitivity and elasticity tells us
whatmanagement strategywe should focus on in order to increase
(or decrease) the asymptotic growth rate. Our method tells us
whether a specific management strategy can achieve the desired
population growth rate (e.g. λ > 1) in the face of both parameter
and stochastic uncertainty.
The starting point for the analysis is the identification of a

‘‘nominal point’’ in the multidimensional parameter space. The
nominal point uses our best estimates for the parameters, or
our best guess in the case of poorly known parameters. We
are interested in the effects of perturbations away from the
nominal point on relevant system properties. In this paper the
system property we are interested in is the asymptotic growth
rate λ, but the approach could be modified for other easily
quantifiable system properties. In our approach we first calculate
the hypersurface representing population stasis (λ = 1); then one
side of the surface indicates the parameter space for a growing
population (λ > 1), and the other side for a declining population
(λ < 1). In case of an endangered species the nominal point will
be on the declining side, while the nominal point for an invasive
species will be on the growing side. In both cases it is important to
know how sensitive the qualitative predictions are to parameter
perturbations, especially when a predicted growing population
will decline or a predicted declining population will grow. This is
relevant for population management, i.e. choosing a strategy that
works under a range of likely environmental conditions (including
temporal and or spatial variation of population parameters), or for
understanding how reliably ecological factors such as predation or
competition can limit population growth. The distance from the
nominal point to the hypersurface representing stasis is a measure
of the robustness of the stability (or lack of stability) of the system.
The larger the distance, the more robust the model predictions are
to parameter perturbations, i.e. the less likely that perturbations
cause a qualitative change in model predictions (e.g. achieving or
not achieving a desired management goal). The distance can be
evaluated numerically, or it can be evaluated graphically when
there are two or three relevant parameters.
The boundary between growth and decline is characterized by

the largest (in modulus) eigenvalue of the projection matrix or
operator, amongst its totality of eigenvalues. It is not always easy
to determine whether an eigenvalue identified in computations
is actually the leading eigenvalue λ. To illustrate this difficulty in
the simplest situation, consider the case of a general, non-negative
2× 2 matrix

A =
(
a b
c d

)
.

A has characteristic polynomial

det(sI− A) = s2 − (a+ d)s+ ad− bc

with eigenvalues

λ± =
a+ d±

√
(a− d)2 + 4bc
2

.

From this it follows that λ = ρ is an eigenvalue of A if

ρ2 − (a+ d)ρ + ad− bc = 0,
whilst ρ is the dominant eigenvalue of A if

λ+ =
a+ d+

√
(a− d)2 + 4bc
2

= ρ.

Even in this 2×2 case, it is clear that requiringρ to be an eigenvalue
of A is analytically and computationally simpler than requiring ρ
to be the dominant eigenvalue of A. In higher dimensional cases,
and moreover in the case of integral projection operators, this
claim will be much stronger. On the other hand, if we can already
establish that A has only one eigenvalue λ ≥ ρ, then λ = ρ is the
dominant eigenvalue if, and only if, det(ρI−A) = 0. Therefore, we
would ideally like to find simple conditions which guarantee that
an eigenvalue is the dominant eigenvalue.
This issue of identifying the growth-decline boundary arose

in a robustness study of a 3 × 3 matrix model of peregrine
falcons (Deines et al., 2007). In this paper, the proof showing
that we had indeed identified the ‘‘correct’’ eigenvalue was
specific to the model, although we could demonstrate numerically
that the method worked for other matrices. In this paper we
provide an analytical proof that the method can be applied
to virtually all ecologically relevant density-independent single
species population matrix models (irrespective of the number of
age/stage classes). It can be used as global perturbation analysis
of matrix elements as well as lower level parameters (parameters
that are used to calculatematrix elements). Additionallywe extend
the proof to include the analysis of a large class of integral
projection models. We illustrate this approach with two different
weedy thistle species: Cirsium vulgare (matrix model, Tenhumberg
et al., 2008) and Onopordum illyricum (integral projection model,
Ellner and Rees, 2006).
C. vulgare is a late-season flowering, tap-rooted, short-lived

perennial plant. The juvenile rosette phase typically lasts for one
to several years prior to the single flowering episode after which
they die (monocarpic plant, Guretzky and Louda, 1997). One of the
key factors controlling this species in western tallgrass prairie in
eastern Nebraska, USA, is native floral-feeding insects; most of the
seed reduction can be attributed to destruction of floral meristems
by moth larvae (Pyralidae, Pterophoridae) and receptacles, florets,
and developing seeds by the moths and by picture-winged
flies (Tephritidae) (Louda and Rand, 2003). Additionally, weed
management practices likely affect its demography in rural areas.
Roadside vegetation is generally mowed early and late in the
growing season, and intensive row-crop agriculture involves
cultivation and herbicide application.
O. illyricum is also a monocarpic perennial across its entire

current range (Pettit et al., 1996). It flourishes in fertile soils and
is adapted to warmer climate with dry summers (Briese et al.,
2002). Reproduction only occurs by seed, and seeds remain viable
in the seed bank for many years (Goss, 1924). In its native range
O. illyricum is attacked by a large variety of insect species (129
insect species feed on Onopordum spp. in Europe, (Briese et al.,
1994)), but in its introduced range like Australia, insect herbivores
play a minor role in O. illyricum population dynamics. This thistle
became a noxious weed in Australia after widespread pasture
improvements (fertilization) and is mainly limited by microsite
availability (Groves et al., 1990).

2. Methods

In this paper, we consider two important classes of population
models—Population Projection Matrix Models (PPM) and Integral
Projection Models (IPM). The latter are not as familiar as the
former, and require some more mathematical analysis (mostly
presented in the Appendix B), so we will emphasize the
similarities.
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Population projection matrix models: In these systems the
population vector consists of finitely many discrete stages. If there
are S stages, the population vector n is in RS , with all entries
nonnegative. If the population vector during year t is denoted n(t),
and if A is the S by S projection matrix for this population, then
(n(t))∞t=0 satisfies the discrete time dynamical system

n(t + 1) = An(t). (2.1)

The total population is

‖n‖ := n1 + n2 + · · · + nS, (2.2)

the 1-norm of n.
The long term growth rate for solutions of (2.1) is determined

by the eigenvalue or eigenvalues of A of maximum modulus.
For a matrix M, when there is only one eigenvalue of maximum
modulus, we call it the leading eigenvalue, and refer to it as λ(M).
The spectral radius, r(M), is the largest modulus of an eigenvalue
ofM. If r(A) > 1 (or r(A) < 1), then the total population increases
(or decreases) geometrically, i.e. there existsm > 0 and ρ > 1 (or
0 < ρ < 1) such that

‖n(k)‖ ≥ mρk, (or ‖n(k)‖ ≤ mρk) k = 0, 1, . . . .

The following is a well-known consequence of the Per-
ron–Frobenius theorem. We state it as a Proposition for future ref-
erence. A primitive matrix is a nonnegative square matrix A such
that Ak > 0 for some positive integer k.

Proposition 2.1. Suppose that A is primitive. Then A has a leading
eigenvalue λ(A) = r(A) > 0 with associated right dominant
eigenvector v > 0, the so-called Perron vector of A. The Perron vector
is the only positive eigenvector of A and can be normalized so that
‖v‖1 = 1. Moreover, the system (2.1) has v as an asymptotic stable
population distribution, i.e.

lim
k→∞

n(k)/‖n(k)‖ = v.

Integral projection models:. A class of integral population
projection operators is introduced in Easterling (1998), Easterling
et al. (2000), and Ellner and Rees (2006). Let n(x, t) be the
population distribution as a function of the stage x at time t . For
example, x could be the size of the individual, with maximal size
Ms.Wediscuss this case inmore detail before turning to the general
case. The role of thematrix is replaced by an integral operator with
projection kernel k(y, x), yielding the integro-difference equation

n(y, t + 1) =
∫ Ms

0
k(y, x)n(x, t)dx. (2.3)

In particular, the kernel determines how the distribution of stage x
individuals at time tmoves to the distribution of stage y individuals
at time t + 1, much the same way that the (i, j)th entry of a
projection matrix determines how an individual in stage j at time
t moves to state i at time t + 1.
Let Ω be the set of possible stages y. For instance, if y is size,

Ω is the interval [0,Ms], where Ms is the maximum size. We can
write (2.3) as

n(y, t + 1) =
∫
Ω

k(y, x)n(x, t)dx. (2.4)

The stage variable y does not have to be a scalar. In an example
in the next section, originally given in Ellner and Rees (2006), Ω
is the set of all size–age pairs, where age is measured discretely
with maximum age Ma, so Ω = {(x, a) | x ∈ [0,Ms], a ∈
{0, 1, 2, . . .Ma}}. Then the projection model is still given by (2.4),
but if Ω is not a subset of R, dy will indicate integration with
respect to a measure; see Section 3, and Ellner and Rees (2006),
for a discussion of this.
Integral equations such as (2.4) can be analyzed in much the

same way as matrix-based models of the form (2.1). The Banach
space L1(Ω) is defined to be the set of functions mapping Ω to
R which are ‘‘measurable’’ (which is implied by continuity) and
whose 1-norm, given by

‖v‖ :=
∫
Ω

|v(x)|dx,

is less than infinity. Since this norm can be interpreted as the
total population, L1(Ω) is analogous to RS with norm given in
(2.2). For a population function n(x, t), it is sometimes useful to
distinguish between the function n(x, t) of two variables and the
vector n(t) = n(·, t) which is in L1(Ω) for a given t . Define the
operator A : L1(Ω)→ L1(Ω) by

(Av)(·) :=
∫
Ω

k(·, x)v(x)dx.

Then the Eq. (2.4) is equivalent to (2.1).
Easterling (1998), Easterling et al. (2000), and Ellner and Rees

(2006) show that for a class of kernels k, the solution of (2.4)
satisfies the conclusions of Proposition 2.1; see also Appendix B
below.
We will denote matrices and integral operators by bold capital

letters, such as A. We will denote vectors, S by 1 matrices
(i.e. column vectors) and L1(Ω) functions by bold lower case
letters, such as d. We will denote 1 by S matrices (i.e. row vectors)
and functionals on L1(Ω) by bold lower case letter with a T
superscript, to denote transpose, such as eT .
A keymodelling and analysis issue is that thematrix or operator

A will involve parameters, for instance fecundity or survival
parameters. Usually these parameters will be uncertain. These
uncertainties in A are typically structured, that is, the uncertainties
occur only in specific locations in the model. For example, in a
Leslie matrix, it only makes biological sense to perturb the top row
and/or the sub-diagonals. These uncertainties and can be described
by m parameters (p1, p2, . . . , pm). When A is a matrix, we can
typically choosem ≤ S2, the number of entries.
In this paper, we are interested in the effect of the uncertainties

on the asymptotic growth rate λ. We can denote the explicit
dependence of A and λ on (p1, p2, . . . , pm) by writing

A = A(p1, p2, . . . , pm), λ = λ(p1, p2, . . . , pm).

We identify a set P of admissible parameters as those (p1, p2, . . . ,
pm)whichmake biological sense in themodel, and if necessary, are
such thatA(p1, p2, . . . , pm) has desirablemathematical properties,
defined below. We can now describe one way of analyzing the
effect of changes in the parameters on λ.
Consider the subset of P given by

C := {(p1, p2, . . . , pm) ∈ P | λ(p1, p2, . . . , pm) = 1}. (2.5)

This is the set of (p1, p2, . . . , pm) for which the leading eigenvalue
λ(A) = 1. Mathematically, this set is a hypersurface. If we are
considering two uncertain parameters, then m = 2 and C is a
curve. If we are considering three uncertain parameters, thenm =
3 and C is an ordinary surface (that is, a two dimensional object in
three dimensions).
If we are concerned with maintaining a particular growth rate,

say 3%, thenwewould replaceC byC1.03, where for arbitraryµ ∈ R,

Cµ := {(p1, p2, . . . , pm) ∈ P | λ(p1, p2, . . . , pm) = µ}.

In some applications wewill be interested in identifying the set
of all parameters which lead to asymptotic growth:

C+ := {(p1, p2, . . . , pm) ∈ P | λ(p1, p2, . . . , pm) > 1}. (2.6)
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For other applications, we will be interested in identifying the set
of all parameters which lead to asymptotic decay:
C− := {(p1, p2, . . . , pm) ∈ P | λ(p1, p2, . . . , pm) < 1}. (2.7)
When the notion of ‘‘side’’ is made precise mathematically, we can
prove that C+ is one side of the hypersurface C and C− is on the
other side of C . This is done in Appendix C.
Our primary interest in this paper is in finding a usable formula

for the hypersurface C . We assume that in applications we have
nominal values for the parameters (p1, p2, . . . , pm), that is, those
values that are determined by experiment or some other method.
We denote these nominal values by the point q0 in Rm. We also
assume that it is either considered ‘‘desirable’’ for the population
to be in asymptotic decline (for instance, for an invasive species),
or ‘‘desirable’’ for the population to be asymptotically increasing
(for instance, for an endangered species).
The following robustness questions can be addressed once we

have a formula for C:
• If λ(q0) > 1, and it is good for the population to asymptotically
increase, then we are interested in how much the nominal
parameters can be perturbed before population growth is lost.
• If λ(q0) < 1, and it is good for the population to asymptotically
decrease, then we are interested in how much the nominal
parameters can be perturbed before population decay is lost.

The following control, i.e. population management, questions can
be addressed once we have a formula for C:
• If λ(q0) > 1, and it is good for the population to asymptotically
decrease, then we are interested in how much the parameters
have to be perturbed before population decay is achieved.
• If λ(q0) < 1, and it is good for the population to asymptotically
increase, then we are interested in how much the parameters
have to be perturbed before population growth is achieved.

However, we still need to find a usable equation for C . The
obvious starting point is to consider the hypersurface 0 on which
at least one eigenvalue of A is 1:
0 = {(p1, p2, . . . , pm) ∈ P | 1 is an eigenvalue of

A(p1, p2, . . . , pm)}.
In the matrix case, the hypersurface 0 is obtained from inspecting
the characteristic polynomial: letting I denote the n × n identity
matrix,
0 := {(p1, p2, . . . , pm) ∈ P | det(I− A(p1, p2, . . . , pm))
= 0}. (2.8)

More generally,we can let0µ be the hypersurface onwhich at least
one eigenvalue of A is µ:
0µ = {(p1, p2, . . . , pm) ∈ P | µ is an eigenvalue of

A(p1, p2, . . . , pm)};
for matrices this is
0µ := {(p1, p2, . . . , pm) ∈ P | det(µI− A(p1, p2, . . . , pm))

= 0}. (2.9)
If A is a matrix, it is easy to find a formula for 0, and if A is

an integral operator, it is often relatively easy to approximate 0.
However, as alluded to above, there is no guarantee that 0 is the
same as C because we cannot guarantee a priori that we have not
just found a sub-dominant eigenvalue of A(p1, p2, . . . , pm). We
saw this even in the simple 2×2 case discussed in the Introduction.
Therefore it would be useful to have conditions under which
Cµ = 0µ.
InDeines et al. (2007) this is shown for a particularmatrix example,
using linear algebra techniques that are specific to the system in
that paper. Here, we develop a systematic approach which shows
that 0 is, in very natural situations, the same as C . We first discuss
these results, first for PPMs, and then for IPMs.
2.1. The leading eigenvalue of a PPM

It is well-known that a Leslie matrix has only one positive real
eigenvalue. Anticipating the result below, this result follows from
our results because a Leslie matrix is simply a rank one, non-
negative perturbation of a nilpotent non-negative matrix.
We now state our main mathematical result, which generalizes

this familiar result for Leslie matrices to a wide class of matrices
which arise naturally in population projection models. We then
explain how it is used in population problems.

Theorem 2.2. Suppose that A is a primitivematrix and can bewritten
as A = A0 + deT where
1. A0 is a nonnegative matrix;
2. d is a column vector, eT is a row vector, and at least one of them is
nonnegative;

If λ > r(A0) is an eigenvalue of A, then λ = λ(A).

In Appendix A we give a proof of this theorem, show why it is a
generalization of the result for Leslie matrices, and illustrate how
it is typical that a PPMwill be of the form in the hypotheses of this
Theorem.
We now return to the problem addressed in the Introduction.

Suppose we are interested in identifying the hypersurface (2.5).
We can be now more precise about the set P of admissible
perturbations: Let P be the set of all (p1, p2, . . . , pm) ∈ Rm
such that A(p1, p2, . . . , pm) is of the form A0 + deT satisfying the
hypotheses of Theorem 2.2 with r(A0) < 1.
This might seem like an awkward mathematical definition, but

is it very natural. Most PPM are primitive and can be written as
a survival matrix A0 plus a fecundity matrix, where the survival
matrix A0 is nonnegative and column sub-stochastic (i.e. the
columns sum to< 1) and the fecundity matrix is zero everywhere
except for the first row. This shows that r(A0) < 1 and the
fecundity matrix can be decomposed into the form deT . Hence P
includes all parameters for which A(p1, p2, . . . , pm) is this very
common type of PPM. This is illustrated in the Results section.

Corollary 2.3. For µ ≥ 1, Cµ = 0µ.
Proof. 0µ is the set of all (p1, p2, . . . , pm) ∈ P such
that some eigenvalue of A is µ. From Theorem 2.2, if some
eigenvalue of A(p1, p2, . . . , pm) is µ, then the leading eigenvalue
of A(p1, p2, . . . , pm) is µ, so 0µ must be the same as the set of all
(p1, p2, . . . , pm) ∈ P such that the leading eigenvalue is µ. Hence
0µ = Cµ. �

Remark 2.4. We can modify the above results in the case
where P is the set of all parameters (p1, p2, . . . , pm) such that
A(p1, p2, . . . pm) has the form A0 + deT satisfying the hypotheses
of Theorem 2.2 with r(A0) < η for some η > 0. Then Corollary 2.3
would be true for µ ≥ η.

From Corollary 2.3 we see that for a large class of PPMs, we can
find Cµ by finding 0µ. This is illustrated in the Results section.
Also of interest to ecologists would be the shortest distance

from the nominal values to Cµ. We show in Appendix D how to
plot the curve, C1, and how to calculate the closest point on the C1
curve to the nominal values for our example in the Results section.

2.2. The leading eigenvalue of an IPM

In Appendix B we discuss a class of integral operators,
introduced in Ellner and Rees (2006), of the form (2.4), for which
there is an analog of the Perron–Frobenius Theorem. In particular,
conditions on A are given in Theorem B.6 which guarantee that
(2.1) satisfies the conclusion of Proposition 2.1. These conditions
are thatA is positive, compact, and u-bounded. These three concepts
are defined in Appendix B.
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As in the PPM case, an IPM operator A can usually be
decomposed into the sum of a survival operator A0 and a fecundity
operator F. Furthermore, F can often be decomposed into a product
deT : if v is a population vector, eTv is the total number of offspring
from all states, and d distributes these offspring into the states.
Therefore, A = A0 + deT . Roughly speaking, any single-species
where the state of the offspring is independent of the parents’
state can be written in this manner. For instance, in a plant model,
the seeds are the same independent of the size of the plant that
produced them.
If A is a positive, compact and u-bounded operator, then

there are results for A which are analogous to Theorem 2.2 and
Corollary 2.3. We assume a cone in the Banach space B, has
been defined, thus determining a definition of ‘‘positive’’: see
Definitions B.1–B.4 in Appendix B.

Theorem 2.5. Suppose that A is positive, compact and u-bounded
and can be written as A = A0 + deT where
1. A0 : B → B is a non-negative linear operator;
2. d : R→ B , eT : B → R, and at least one of them is positive;
If λ > r(A0) is an eigenvalue of A, then λ = λ(A).

The proof of this theorem is in Appendix B.
Now suppose A = A(p1, p2, . . . , pm). We now can identify the

set of admissible parametersP as those (p1, p2, . . . , pm) such that
A(p1, p2, . . . , pm) satisfy the hypotheses of Theorem 2.5. It follows
immediately that Corollary 2.3 is also true for A which satisfy the
hypotheses of Theorem 2.5. Remark 2.4 also holds for these IPM.

3. Results

3.1. A PPM thistle model

We consider a model for an invasive thistle with 19 parameters
a through s, see Tenhumberg et al. (2008). Thismodel is of the form
(2.1), with

A =


0 0 [lnq(1− h)mo](1− g) [lnq(1− h)](1− g)
scf 0 [lnq(1− h)mo](gsf ) [lnq(1− h)](gsf )
0 adri bdrj(1− lm) 0
0 (1− a)epi (1− b)epj(1− lm) epk(1− l)

 .
(3.1)

Letting sij represent non-fecundity entries, and

c1 = (1− g), c2 = gsf , f3 = lnq(1− h)mo,
f4 = lnq(1− h),

we obtain

A =

 0 0 c1f3 c1f4
s21 0 c2f3 c2f4
0 s32 s33 0
0 s42 s43 s44

 . (3.2)

A Monte Carlo analysis shows us that the population growth
rate λ is most sensitive to the germination rate g , summer survival
of small plants s, and mortality due to floral herbivory h, see
Tenhumberg et al. (2008). Using the values in Tenhumberg et al.
(2008) for all variables except g , h and s, we parameterize the
matrix above and obtain

A =


0 0 2043.80(1− h)(1− g) 9289.98(1− h)(1− g)

.015s 0 1052.37g(1− h)s 4783.51g(1− h)s
0 .12 .11 0
0 .02 .27 .17

 .
With the nominal values g = 0.2142, s = 0.516, h = 0.942
we obtain the nominal dominant eigenvalue λ = 1.538. We are
interested in values of parameters which yield asymptotic decline,
i.e. by how much we need to perturb these nominal values to get
the thistle population under control.
We want to use Theorem 2.2. First note that the individual

rows in a matrix can be isolated into the form deT where, if
considering the first row, d = [1 0 0 0]T and eT is the first row. In
most single species models, removing the fecundity terms results
in a substochastic matrix for all admissible parameters, yielding
r(A0) < 1. For example, replacing the first row of fecundities with
zeros in a Leslie matrix results in a matrix with r(A0) = 0 (see
Appendix A) for all admissible parameters. Also in Appendix A, we
show how to extract the fecundities from our matrix A to obtain a
substochastic matrix. For now, we use

A0 =


0 0 2043.80(1− h)(1− g) 9289.98(1− h)(1− g)
0 0 0 0
0 .12 .11 0
0 .02 .27 .17

 , (3.3)
then

d =

010
0

 (3.4)

because we removed the second row, and

eT =
[
.015s 0 1052.37g(1− h)s 4783.51g(1− h)s

]
,

is the second row. Hence we have A = A0 + deT as required. To
find the maximum r(A0) for all admissible parameters, we use the
results of Horn and Johnson (1985) who showed that if A > B
for non-negative matrices A and B, then r(A) > r(B). Thus the
maximum r(A0) is found by substituting in the smaller limits for
h and g (0.4 and 0.06; see Tenhumberg et al. (2008)). This yields
a maximum r(A0) of 0.17. Clearly d is non-negative, therefore,
Theorem 2.2 applies to this system. It follows that the surface
C = {(g, s, h) ∈ P | λ(g, s, h) = 1} is the set 0 of (g, s, h)
for which at least one eigenvalue of A is 1. Intuitively, increases
in survival and germination rate and a decrease inmortality due to
floral herbivory increase the growth rate of the species. The surface
0 (i.e. C), shown in Fig. 1, gives us a partition of the parameter
space; above the surface the population declines, and below the
surface the population grows. The Matlab code to compute this
λ = 1 curve is available in Appendix D. For more information on
this graphical method, see Hodgson and Townley (2004), Hodgson
et al. (2006) and Deines et al. (2007).
Fig. 1 also gives us an indication about how much we must

change (g, s, h), in order to bring the invasive population under
control. The nominal values (black diamond in Fig. 1), which give
λ = 1.538, appear to be a relatively large distance away from the
surface 0. There are many different possible norms in R3 which
we can use to measure this and often there is no a priori reason to
chose one over the other. For illustrative purposes, we’ll compare
the 1-norm, 2-norm and∞-norm where

‖ · ‖1 = |v1| + · · · + |vS |, ‖ · ‖2 =
(
|v1|

2
+ · · · + |vS |

2)1/2 ,
and ‖ · ‖∞ = max

1≤i≤S
|vi|.

Since ‖ · ‖∞ ≤ ‖ · ‖2 ≤ ‖ · ‖1, the∞-normwill yield a point which
is ‘‘closer’’ to the growth-decline boundary than the point obtained
via the 1-norm. In this example, the shortest distance to the surface
from the nominal value in the 1-norm is .0406, in the 2-norm is
.0404 and in the ∞-norm is .0363. The location of this closest
point on the surface is given by the vectors 〈.2142, .5159, .9825〉,
〈.2111, .5143, .9822〉 and 〈.1809, .4813, .9783〉 for the 1-norm, 2-
norm, and∞-norm respectively. (The Matlab code for the 2-norm
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Fig. 1. The surface λ(g, s, h) = 1 in parameter space.

calculations is given in Appendix D; the code can be modified for
more parameters and/or different norms.) Thus, in the Euclidian
norm, the shortest distance in the parameter space is obtained
by simultaneously changing g to .2113, changing s to .5139, and
changing h to .9822. The goal is to move the nominal point to
the other ‘‘side’’ of the (λ = 1)-hypersurface as far as resources
allow. In this particular example, to move the nominal point to
the closest point on the (λ = 1)-hypersurface for all these
norms necessitates an increase in the mortality due to herbivory,
h. This may involve the costly introduction of floral herbivore
as biological control agents, which may not be a viable option
for many population managers. To incorporate the different costs
associated with changing the different parameters, a weighted
norm could be used (Trefethen and Bau, 1997).
For this example, a better approach from a management

standpoint would be to consider managing the summer survival
of all plants (small, medium, and large) by the use of herbicides.
Letting x be the percentage increase in plant mortality due to
herbicide application, the survivorships c, d, and e in Eq. (3.1)
become c(1 − x), d(1 − x), and e(1 − x). We can again apply
Theorem 2.2 to help identify the growth-decline boundary. Fig. 2
shows h as a function of x on the λ(x, h) = 1 curve. Given the
uncertainty in the mortality due to herbivory, h, a value for the
percentage increase in plant mortality can be chosen to make
the management decision robust in light of this uncertainty. For
example, an 80% increase in the mortality of all plants over the
course of a summer moves the nominal values (black diamond) in
both Figs. 2 and 3 to the far right (black square) and on the other
side of the λ(x, h) = 1 curve. As shown in Fig. 2, this gives decay
for all h > 0.16. The further away the black square is from the
λ(x, h) = 1 curve, the more robust this management decision
is, regardless of the norm used. Fig. 3 includes germination rate,
g , as an uncertain variable. Again, increasing the mortality due to
herbicides to 80%moves the nominal values (black diamond) to the
black square on other side of the λ(x, g, s) = 1 surface.

3.2. An IPM thistle model

Wewill illustrate ourmethodswith amodel, given in Ellner and
Rees (2006), for the thistle O. illyricum, which we can write in the
form (2.4). Wewill consider the effect that three of the parameters
in the fecundity kernel have on λ(A).
The population distribution of O. illyricum at time t , n(x, a, t), is

a function of the plant size x, and the age of the plant a. The plant
size is a continuous variable taking on values between 0 and Ms,
the maximum size, whilst the age is a discrete variable which can
Fig. 2. The λ(x, h) = 1 curve, where x is themortality of all summer plants, and h is
themortality due to floral herbivory. The black diamond represents nominal values,
the black square represents an 80% increase in mortality of the summer survival of
all plants (small, medium, and large) due to management actions (e.g. application
of herbicide).

Fig. 3. The λ(x, g, s) = 1 surface where x is the mortality of all summer plants,
h is the mortality due to floral herbivory, and g is the germination rate. The black
diamond represents nominal values, the black square represents an 80% increase
in mortality of the summer survival of all plants (small, medium, and large) due to
management actions (e.g. application of herbicide).

take on values in {0, 1, . . . ,Ma}, where Ma is the maximum age.
Let Ω = {(x, a) | x ∈ [0,Ms], a ∈ {0, 1, . . . ,Ma}}, and let d(x, a)
denote the product measure onΩ with Lebesguemeasure in x and
discrete measure in a (i.e. integrate over x and sum over values
of a). The kernel k in (2.4) can be written k = p + f , where p
is the ‘‘growth and survivorship kernel’’ and f is the ‘‘fecundity
kernel’’. The kernel describes how to get from state (x, a) to state
(y, b), hence is a function of (y, x, b, a). The population model can
be written as n(t + 1) = An(t): here A is the operator defined on
the Banach space

B = L1(Ω) =
{
v(·, ·)

∣∣∣∣∫ Ms

0
|v(x, b)| dx <∞

for all b = 0, 1, 2, . . .Ma

}
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given by

(Av)(y, b) =
∫
Ω

(p(y, x, b, a)+ f (y, x, b, a))v(x, a)d(x, a). (3.5)

Expanding the product measure, (3.5) becomes

(Av)(y, b) =
Ma∑
a=0

∫ Ms

0
(p(y, x, b, a)+ f (y, x, b, a))v(x, a)dx.

The population vector n(t) = n(·, ·, t) is a vector inB for each t .
The growth and survivorship kernel p(y, x, b) is given by

p(y, x, b, a) = s(x, a)
[
1− pf (x, a)

]
g(y, x)δa,b−1(1− δb,0), (3.6)

with component terms as follows: s(x, a) > 0 is the yearly
survivorship of a plant of size x and age a into a plant of size x and
age a + 1; the Kronecker delta function δij equals 1 if i = j, else
it equals 0; the growth of a plant from size x to size y is given by
g(y, x) > 0; and pf (x, a) is the probability of the plant of size x
and age a to flower. Since O. illyricum is a monocarpic perennial,
flowering results in death. Consequently 1 − pf (x, a) > 0 reflects
the probability of the plant not flowering. The term δa,b−1 = 1
when a = b − 1, i.e. when plants are moving from one age class
into the next. This prevents plants from aging more than one year
at a time and also prevents them from getting younger with time.
Since plants do not grow and survive into age 0, 1 − δb,0 prevents
this possibility. (For simplicity, these functions were not included
in the original model in Ellner and Rees (2006).) Hence the growth
and survival operator A0 is given by

(A0v)(y, b) =
∫
Ω

s(x, a)
[
1− pf (x, a)

]
g(y, x)δa,b−1

× (1− δb,0)v(x, a)d(x, a). (3.7)

The fecundity kernel f (y, x, b, a) contains three underlying
parameters, pe, p1 and p2, whose uncertainty can have a broad
impact on the asymptotic population growth rate. Here, pe is the
probability of seedling establishment and fn(x) = ep1+p2x is the
number of seeds per adult of size x. Since the model assumes that
the state of the offspring is independent of the parents, new plants
are distributed into size classes by the probability distribution
ϕ(y) > 0. The kernel f is therefore given by

f (y, x, b, a) = s(x, a)pf (x, a)peep1+p2xϕ(y)δb,0. (3.8)

The total number of offspring produced by the population
distribution n at time t is

(eTn)(t) =
∫
Ω

s(x, a)pf (x, a)peep1+p2xn(x, a, t)d(x, a). (3.9)

These offspring are then distributed into size classes described by
the vector d ∈ B given by

d = ϕ(·)δb,0, (3.10)

that is, d is represented by the function d(y, b)which is ϕ(y)when
b = 0 and is 0 otherwise. Thus the population distribution at time
t + 1 is

n(t + 1) = A(n(t)) = (A0 + deT )(n(t)). (3.11)

We need to verify that this system satisfies the condition in
Theorem 2.5. The cone K used in Theorem B.6 in Appendix B is the
set of all positive functions v(x, a) onΩ . The operatorA0 : B → B
is nilpotent, i.e. there is a positive integer m such that Am0 = 0.
This is because A0 advances the age of the population distribution,
and in the absence of any population input the population will
die off in finite time. Nilpotent operators are well-known to have
spectral radius 0, i.e. r(A0) = 0. The vector d ∈ B, and the
operators eT : B → R, A0 and A are clearly positive. The kernel
k(y, x, b, a) = p(y, x, b, a)+ f (y, x, b, a) is bounded on a bounded
set [0,Ms]⊗{0, 1, . . . ,Ma}, so by theHilbert–Schmidt theoremA is
compact (see Bachman andNarici (1966)). It is proved in Ellner and
Rees (2006) that A is u-bounded. Therefore, this system satisfies
the hypotheses of Theorem 2.2with r(A0) = 0, sowe can conclude
that any positive eigenvalue of A is in fact the leading eigenvalue.
A satisfies the conditions of Theorem 2.2 for any positive pe, p1 and
p2. In addition, since pe is a probability, the set, P , of admissible
parameters is {(pe, p1, p2) | pe ∈ [0, 1], p1 > 0, p2 > 0}.

Remark 3.1. The kernel k in the model given in Ellner and
Rees (2006) also depends on the quality q, which represents
the variability between plants and is assumed to be constant
throughout each plant’s lifespan. To add this dependence to the
model here would only require including a distribution function
β(q) to the operator dwhich distributes the newborns into quality
classes much like ϕ(y) distributes the newborns into size classes.

The probability of seedling establishment, pe, cannot be
calculated accurately due to the presence of a seed bank, so we
expect substantial uncertainty in the value of this parameter.
Suppose pe has a nominal value of 0.025. (Note that while in
Ellner and Rees (2006), pe = 0.025, they use the value 0.03 in
their computer code.) We take the nominal value of the fecundity
intercept, p1, to be−11.84, and the nominal value of the fecundity
slope, p2, to be 2.27. Both of these calculated numbers have the
following standard errors as given in Ellner and Rees (2006): 4.43
for the fecundity intercept and 0.60 for the fecundity slope. Thus
the seed production per plant has a wide range of possibilities.
We first consider the effect of pe and p1 onλ(A), which is an easy

case, since both variables can be pulled out of the integral defining
eT . In particular, we can write

eT = peep1eTp , where eTpv =
∫
Ω

ep2xpf (x, a)s(x, a)v(x, a)d(x, a).

For now we assume that p2 is fixed at its nominal value.

Theorem 3.2. Suppose that λ > 0 is an eigenvalue of A. Then

pe =
(
λ

γ

)
e−p1 , (3.12)

where

γ = eTp

(
I+

A0
λ
+

A20
λ
+ · · · +

Am−10

λ

)
ϕ. (3.13)

The proof of this is given in Appendix B. Note that γ is a
real number which can be approximated numerically. If there is
a particular asymptotic growth rate λ > 0 which is desired,
Theorem 3.2 gives a formula for the curve of (p1, pe) values which
lead to λ.
Fig. 4 shows the curves {(p1, pe)|λ(p1, pe) = α} for α increasing

from 0.70 to 1.3 in 0.1 increments. The nominal point computed
in Ellner and Rees (2006) is (−11.84, 0.025), which leads to λ =
0.9878.We can see from the figure that λ varies considerablymore
with larger uncertainties in the fecundity intercept p1 than with
large uncertainties in the probability for seedling establishment
pe. The graphs shows the range of p1 within its standard error of
the nominal value. In this range the variation in λ includes both
values signifying dramatic asymptotic decay and values signifying
dramatic asymptotic growth. Thus we do not consider λ to be
robust with respect to large changes in p1. Since the probability
of seedling establishment was not measured directly (see Ellner
and Rees (2006)), it is unclear whether λ is robust to changes in pe
within the unknown standard error. If pe remains within 25% of its
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Fig. 4. The curves showvalues of (p1, pe) forwhichλ = .70, .80, .90, 1.0, 1.1, 1.2,
decreasing in value to the left of the λ = 1 curve and increasing in value to the right.
The black diamond marks the nominal point (−11.84, 0.025).

current values, i.e. between 0.019 and 0.031 and if the fecundity
intercept remains fixed at its nominal value, −11.84, λ varies by
less than 0.10. Yet if pe increases by as much as 50% to 0.375, then
λ increases by approximately 0.10. Likewise, if pe decreases by 50%
to 0.0125, then λ decreases by almost 0.20. Hence λ is more robust
to increases in pe than to decreases to pe.
We now consider simultaneous variation in the fecundity

intercept p1, fecundity slope p2 and probability of seedling
establishment pe. This is more difficult computationally, since p2
cannot be pulled out of the integral defining eT . We use the same
derivation as above, but now γ in (3.13) is a function γ (p2), which
needs to be calculated for every p2. We can solve for pe in terms of
p1 and γ (p2). Fig. 5 shows the surface {(pe, p1, p2)|λ(pe, p1, p2) =
1} for a range of admissible (pe, p1, p2). This surface divides the
(pe, p1, p2) parameter space into those parameters above the
surface, which lead to asymptotically increasing population, and
those parameters below the surface, which lead to asymptotic
decreasing population. Notice that as p1 and p2 decrease within
the standard error, then pe must increase exponentially to
maintain λ(pe, p1, p2) = 1, and eventually increases above 1, an
impossibility for a probability. Fig. 6 shows the λ = 1 contours for
pe = .01, .03, .10, .30, .60, and 1.0. The black diamond marks the
nominal values of (p1, p2) = (−11.84, 2.27). On the graph, one
can see that if p1 and/or p2 are increased slightly, pe needs only to
decrease slightly in order to maintain λ = 1. On the other hand,
if p1 and/or p2 are decreased slightly, pe must increase to a much
greater value in order to maintain λ = 1. Thus our graph shows λ
is not robust at all to decreases in p1 and p2 and to increases in pe.

4. Discussion

The asymptotic growth rates of populations are parameterized
by vital rates. These vital rates are summarized in a projection
model (PM) (in this paper either an IPM or PPM), whilst the
asymptotic growth rate is given by the PM’s dominant eigenvalue.
This leads us to study the dependence of dominant eigenvalues
in PMs on these vital rates. Perhaps the simplest parameterized
PM is the Leslie matrix L of a population with S age classes. Here,
the parameters consist of fecundity values f1, . . . , fS in the top
row and survival probabilities σ1, . . . , σS−1 in a sub-diagonal. The
Leslie matrix L has only one positive real eigenvalue. Cushing and
Yicang (1994) showed that the asymptotic growth rate of an age-
structured population, i.e. the leading eigenvalue of L, is greater
Fig. 5. The parameter space of fecundity intercept p1 , fecundity slope p2 and
probability of seedling establishment pe for λ = 1.

Fig. 6. The contours are the λ = 1 curves for various values of the probability
of seedling establishment pe . The nominal values for the fecundity intercept and
fecundity slope are indicated by the black diamond.

than one if, and only if, the reproductive value, f1+f2σ1+f3(σ1σ2)+
· · · + fs(σ1 · · · σs−1) is greater than one. Hence the relationship

f1 + f2σ1 + f3(σ1σ2)+ · · · + fs(σ1 · · · σs−1) = 1

characterizes the boundary between growing and declining age-
structured populations. Cushing and Yicang (1994) also calculated
the net reproductive value for other types of population projection
matrices in terms of the matrix entries. These results yield
a growth-decline boundary based on the calculation for net
reproductive value. In addition, given the reproductive value R,
they showed that if R < 1, then R ≤ λ ≤ 1 and if R > 1, then
1 ≤ λ ≤ R. However, their results do not lead to a robustness
analysis of λwith respect to the nominal vital rates.
Suppose we are identifying the growth-decline boundary, but

we do not have an easy way of determiningwhether an eigenvalue
of A is the leading eigenvalue. This is not particularly difficult
if the nominal population is declining. This is because all of the
eigenvalues of the nominal model are less than 1 and so to seek
parameters values yielding leading eigenvalues greater than one
reduces to finding parameter values so that one eigenvalue hits
1. The same applies at more general growth-decline boundaries
λ = ρ. Thus, the robustness of population decline is an ‘easy’
problem.
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If, however, we start with a base point given by a nominal
growing population, which already has at least one eigenvalue
greater than 1, then the boundary is no longer determined simply
by parameter values achieving an eigenvalue of 1. This is because
we cannot guarantee a priori that this eigenvalue at 1 is the leading
eigenvalue. We see that robustness of population growth is more
subtle than robustness of population decline, and is simplified ifwe
can easily identify when an eigenvalue is the leading eigenvalue.
We identify a class of PM’s for which the growth-decline

boundaryλ = ρ is given precisely by those parameters forwhichρ
is an eigenvalue. This means we can determine the growth-decline
boundary simply by evaluating the parameterized characteristic
polynomial evaluated at ρ. We must assume a decomposition of
the parameterized matrix in terms of a matrix A0 (typically a
survival matrix), whose dominant eigenvalue we know (usually
by inspection) to be less than ρ, and a rank one perturbation
matrix. The existence of such a decomposition very often follows
immediately from the construction of the PM, and is ecologically
natural. For instance, for Leslie matrices A0 is obtained by zeroing
out the fecundities so that A0 has dominant eigenvalue λ = 0.
In fact, any PPM or IPM which satisfies our assumptions, whose
population advances to a new age class at every time step until it
reaches some maximum age and dies, will have nilpotent A0, so
r(A0) = 0. This is true for a Leslie matrix and in our IPM example.
Thus, we get the familiar result that any PM which can be written
in the general form of A = A0 + deT , with nilpotent A0, will have
only one positive eigenvalue.
Having identified the growth-decline boundary in such analyt-

ically simple terms, we can then explore how ‘‘close’’ the nomi-
nal values are to the boundary as we vary one, two or even all
parameters. While the closest point on the boundary depends on
the norm chosen, in our PPM example there was not much differ-
ence between using the Euclidean norm and the 1-norm.
Additionally, the growth-decline boundary shows the intercon-

nectedness between all of the parameters. A management action
increasing one life-history parameter value may have the bene-
fit of moving the nominal point far enough on the other ‘‘side’’ of
the (λ = 1)-hypersurface that the uncertainties in the other pa-
rameters are no longer a major concern. In such a case population
growth (or decline) is robust, even with the uncertainties in the
other parameters.
While our method does not explicitly address stochastically

varying environments, it does allow for analysis of spatially
and temporally varying environments when this variation is
within some tolerance level. For example, in environments which
vary slightly, the stochastic contribution to the variance of the
parameters can be treated like a parameter uncertainty. Our
methods then can be applied in the same way as we did in the
PPM thistle example,where the data uncertainty represents spatial
variation. If the environments vary considerably, such as in the case
of hurricanes, fires or other catastrophes, then our method would
not give useful information since the parameter variation is too
large. Our methods also do not take into consideration possible
density-dependence.
Despite these shortcomings mentioned in the previous para-

graph, this method generates a clear growth-decline boundary for
PPMs and IPMs and points conservationmanagers towards a strat-
egy which can be robust in the face of the uncertainty in the pa-
rameters.
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Appendix A. PPM theoretical results

Proof of Theorem 2.2. We first assume that d is nonnegative.
Suppose λ > r(A0) is an eigenvalue of A. Then for some nonzero
v ∈ Rn,

(A0 + deT )v = λv. (A.1)

Since λ is not an eigenvalue of A0, we can re-arrange (A.1) to give:

v = (λI− A0)−1deTv. (A.2)

Note that if eTv = 0, then (A.2) implies that v = 0, which is a
contradiction. Hence eTv or−eTv is a positive scalar. Without loss
of generality assume that eTv is positive, since if eTv is not positive,
we can replace vby−v. Sinceλ > r(A0), we can expand (λI−A0)−1
in a power series:

(λI− A0)−1 =
1
λ

(
I+

A0
λ
+

A20
λ2
+ · · ·

)
.

SinceAj0 is nonnegative for j = 0, 1, . . ., it follows that (λI−A0)−1d
is nonnegative. Then (A.2) shows that v is also nonnegative. SinceA
is primitive, there is an integer k such that Ak > 0, i.e. every entry
of Ak is positive. Since

v =
1
λk

Akv,

we see that v > 0. Hence λ is a positive eigenvalue of the
primitive matrix A with a strictly positive eigenvector v. The
Perron–Frobenius now implies that λ = r(A) = λ(A).
If d is not nonnegative but eT is nonnegative, we can apply the

result to the transposeAT ofA. Then the result follows immediately
from the facts that AT = AT0 + edT , r(AT0) = r(A0), and λ(A

T ) =
λ(A). �

Corollary A.1. A primitive Leslie matrix can have only one positive
eigenvalue.

Proof. A Leslie matrix is of the form

A =


f1 f2 . . . fS−1 fS
σ1 0 . . . 0 0

0
. . . 0 . . . 0

...
. . .

. . .
. . .

...
0 . . . . . . σS−1 0

 .

This can be written in the form A0 + deT , with d = [1 0 . . . 0]T ≥
0, eT = [f1 . . . , fN ] ≥ 0. The survival matrix A0 is a lower
triangular matrix with a zero diagonal. Such a matrix has 0 as it’s
only eigenvalue, so r(A0) = 0. Hence Theorem 2.2 shows that A
has only one eigenvalue larger than r(A0) = 0. �

As another example of Theorem 2.2, the matrix (3.1) is of the
general 4 by 4 form given in (3.2). We can write

A = A0 + deT =

 0 0 0 0
s21 0 0 0
0 s32 s33 0
0 s42 s43 s44

+
c1c20
0

[0 0 f3 f4
]
.

When the si,j are survival parameters, each column in A0 sums to
less than 1, so A0 is substochastic and r(A0) < 1 for all admissible
parameters when f3 and f4 are fecundities, eT > 0. Therefore PPMs
of this form satisfy the hypotheses in Theorem 2.2.



94 J. Lubben et al. / Theoretical Population Biology 75 (2009) 85–97
Appendix B. IPM theoretical results

Let B be a Banach space, and A : B → B be a linear operator.
The integral operators of the form (2.4) we consider in this paper
are all bounded operators. If the function k(·, ·) is continuous and
the setΩ is bounded – which is typical whenΩ is the set of stages
a population can take – then A is also a compact operator, see
for instance Bachman and Narici (1966). One characterization of
a compact operator is that it can be uniformly approximated by
finite rank operators, so reliable numerical results can be obtained
for these systems. A consequence of compactness is that the
only non-zero spectrum A has are eigenvalues. In order for an
integral equation of the form (2.4) to satisfy the conclusions of
Proposition 2.1, we need to make further assumptions about A.
Fortunately, these assumptions are natural for most single-species
models. To this end,we need a fewdefinitions and previous results.
The following definitions can be found in many sources, including
Krasnosel’skij et al. (1989), Zabreyko et al. (1975), and Ellner and
Rees (2006).
In order to work with ‘‘positive operators’’ and ‘‘nonnegative

operators’’ the same way we work with positive and nonnegative
matrices, we first need a partial order ‘‘≥’’ onB.

Definition B.1. Let B be a Banach space. A cone is a non-empty,
closed, convex subset, K ⊆ B provided two conditions hold:

1. If x ∈ K and α ≥ 0 then αx ∈ K .
2. If x,−x ∈ K then x = 0.

Definition B.2. A cone K induces a partial order on the Banach
spaceB, denoted by ‘‘≥’’ (or resp. ‘‘≤’’) where x ≥ y (or resp. x ≤ y)
for x, y ∈ B means x− y ∈ K (or resp. y− x ∈ K ). If x > y (or resp.
x < y), we mean that x ≥ y and x 6= y (or resp. x ≤ y and x 6= y).

Definition B.3. A cone is called reproducing if K 	 K = B, that
is, every element in the Banach space can be written as the sum of
one element in K plus the negative of another element in K .

When B = L1(Ω), we typically use the cone K of functions
which are nonnegative onΩ , which is reproducing. Hence if f , g ∈
L1(Ω), then f ≤ g means g − f is a nonnegative function on Ω ,
i.e. g− f is in the cone K . WhenB = Rn, we use the cone of vectors
which have nonnegative components.

Definition B.4. Let K1 and K2 be cones in Banach spaces B1 and
B2 respectively. A bounded linear operator, A, is called positive if
it maps K1 into the cone K2, i.e. AK1 ⊆ K2.

Definition B.5. Let u ∈ K , u 6= 0. A positive linear operator,
A, is called u-bounded if for each x ∈ K there exists constants
α = α(x) > 0 and β = β(x) > 0 such that

αu ≤ Ax ≤ βu.

Roughly speaking, an integral projection model is u-bounded if
the distribution of offspring states is independent of the state of
the parent. Let

k(j+1)(y, x) =
∫
Ω

k(y, z)k(j)(z, x)dz. (B.1)

We say that the kernel k is power positive if there exists some
integer j > 0 such that k(j)(y, x) > 0 for all x, y ∈ Ω . It is shown
in Ellner and Rees (2006) that if k is power positive and continuous
and the domain is compact, then A is u-bounded.
The following theorem is a generalization of the Perron–Frobenius

theorem formatrices to compact, u-bounded operators. It is proved
in Krasnosel’skij et al. (1989).
Theorem B.6. Let B be a Banach space with a reproducing cone K
which determines a partial order. Let A be a positive, compact, u-
bounded linear operator onB . Then

1. r(A) is an eigenvalue whose corresponding eigenvector is an
element of K . This eigenvalue is the spectral radius of A.

2. This eigenvalue is simple and its corresponding eigenvector is the
unique (up to normalization) eigenvector in K .

3. Every other eigenvalue of A is less in magnitude than λ.

The following follows as in the matrix case.

Corollary B.7. Let B be a Banach space with a reproducing cone K
which determines a partial order. Let A be a positive, compact, u-
bounded linear operator onB . Then the conclusions of Proposition 2.1
hold.

Proof of Theorem 2.5. We first assume that d is positive. Suppose
λ > r(A0) is an eigenvalue of A. Then for some nonzero v ∈ B,

(A0 + deT )v = λv. (B.2)

Since λ is not an eigenvalue of A0, we can re-arrange (B.2) to give:

v = (λI− A0)−1deTv. (B.3)

Note that if eTv = 0, then (B.3) implies that v = 0, which is a
contradiction. Hence eTv or−eTv is a positive scalar. Without loss
of generality assume that eTv is positive, since if eTv is not positive,
we can replace vby−v. Sinceλ > r(A0), we can expand (λI−A0)−1
in a power series:

(λI− A0)−1 =
1
λ

(
I+

A0
λ
+

A20
λ2
+ · · ·

)
. (B.4)

Since A0 is positive and d is positive, it follows that Ak0d is positive
for all k ≥ 0. Hence it follows from (B.4) that (λI − A0)−1d
is positive. Then (B.3) shows that v is also positive, i.e. it is in
the cone. Hence λ is a positive eigenvalue of A with associated
positive eigenvector v. Hence by Theorem B.6, λ must be the
leading eigenvalue of A, so λ = λ(A). Since A is compact, its
nonzero spectrum consists only of eigenvalues, so λ(A) = r(A).
If d is not nonnegative but eT is nonnegative, we can apply the

result to the adjoint A∗ of A. We denote the adjoint of d by dT and
the adjoint of eT by e. Then the result follows immediately from
the facts that A∗ = A∗0 + edT , r(A∗0) = r(A0), and λ(A

∗) = λ(A).
�

Proof of Theorem 3.2. Suppose that λ > 0 is an eigenvalue of A
with eigenvector η ∈ B. Then

(A0 + deT )η = λη. (B.5)

Let I : B → B be the identity operator, and note that (λI−A0)−1 is
a bounded operator since A0 is a compact operator with r(A0) = 0.
After some algebraic manipulation,

(λI− A0)−1deTη = η,

which implies that

eT (λI− A0)−1deTη = eTη. (B.6)

If the scalar eTη = 0, then (B.5) implies that λ is an eigenvalue
of A0, which is not possible. Hence eTη is a nonzero scalar and we
can divide (B.6) by eTη to obtain

eT
(
I−

A0
λ

)−1
d(1) = λ. (B.7)
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Since Am0 = 0,

λ = peep1eTp

(
I −

A0
λ

)−1
d(1)

= peep1eTp

(
I+

A0
λ
+

A20
λ
+ · · · +

Am−10

λ

)
d(1).

Note that d(1) = ϕ to get (3.13). Therefore we can solve for pe in
terms of p1 to get (3.12). �

Appendix C. The side of a hypersurface

The set of admissible parameters P can be decomposed into
C ∪ C+ ∪ C−, where these sets are defined in (2.5)–(2.7). The next
Lemma shows that P − C = C+ ∪ C−, a disconnected subset of P
with C+ separated from C−, which is a precise way of saying that
C+ is on one ‘‘side’’ of C and C− is on the other ‘‘side’’ of C .

Lemma C.1. Suppose that A(p1, p2, . . . , pm) is continuous in the
operator norm for (p1, p2, . . . , pm) ∈ R. Let (p1, p2, . . . , pm)
and (q1, q2, . . . , qm) be in P with λ((p1, p2, . . . pm)) > λ0 and
λ((q1, q2, . . . , qm)) < λ0. Let γ : [0, 1] → P be any
continuous function with γ (0) = (p1, p2, . . . , pm) and γ (1) =
(q1, q2, . . . , qm). Then there exists t0 ∈ [0, 1] with λ(γ (t0)) = λ0.

Proof. Since the codomain of γ is P , we have that λ(γ (t)) ⊂
R. Since A(p1, p2, . . . , pm) is continuous in the operator norm,
λ(p1, p2, . . . , pm) is continuous, (Kato, 1980). Using the continuity
of γ , the intermediate value theorem states that we must have
some t0 with λ(γ (t0)) = λ0. �

In all of our examples the sets are connected, but we note that
this Lemma does not however guarantee that C , C+ and C− are
connected in general.

Appendix D. Numerical calculations

D.1. Plotting the (λ = 1)-hypersurface

In our first program, we used Matlab’s symbolic toolbox
(Matlab, 2007) for plotting the (λ = 1)-hypersurface. A second
method, as shown by the second computer program below, does
not require the use of Matlab’s symbolic toolbox and is specific
to our example. For more information on this method, please see
Hodgson and Townley (2004), Hodgson et al. (2006) and Deines
et al. (2007).

% ThistleModelfigure1
% Produces figure 1 in paper - requires Matlab

symbolic toolbox
% method #1
clear
syms hh AA detAA
% set limits (range of data)
gmin= .06; gmax= .8; smin=.2; smax=.94;
%nominal values
nomg=.2142; nomh=.942; noms=.516;
g=linspace(gmin,gmax,50);
s=linspace(smin,smax,50);
pp2=zeros(length(g),length(s));

for ii=1:length(g)
for jj=1:length(s)
AA= [ 0 0 2043.8*(1-hh)*(1-g(ii))

9289.98*(1-hh)*(1-g(ii));
.015*s(jj) 0 1052.37*g(ii)*(1-hh)*s(jj)
4783.51*g(ii)*(1-hh)*s(jj);
0 .12 .11 0;

0 .02 .27 .17] ;
detA=det(eye(4)-(AA));
pp1=eval(solve(detA));
if length(pp1) ~= 1

disp(’Error in pp1’) % checking to make
sure only eigenvalue

end
pp2(ii,jj)=pp1;
end

end

figure
hold on
mesh(s,g,pp2) % so xaxis = s, yaxis=g, zaxis=pp2
colormap([.5 .5 .5])
grid on
plot3(noms,nomg,nomh,’kd’)

xlabel(’Summer Survival of Small Plants, s’)
ylabel(’Germination rate, g’)
zlabel(’Mortality due to floral herbivory, h’)

In the second method, we plot λ(s, g, h) = 1, where s is the
summer survival of small plants, g is the the germination rate, and
h is the mortality due to floral herbivory, writing s as a function of
g and h. First, we rewrite A as A = A0 + sd̃eT where A0 and d are
given by Eqs. (3.3) and (3.4) respectively and

ẽT =
[
.015 0 1052.37g(1− h) 4783.51g(1− h)

]
. (D.1)

Since λ = 1 is not an eigenvalue of A0, we see that λ is an
eigenvalue ofAwith eigenvector v if and only if s̃eT (I−A0)−1d = 1
(Hodgson and Townley, 2004). Since ẽT (I−A0)−1d is a scalar, then

s =
1

ẽT (I− A0)−1d
. (D.2)

This gives s as a function of g and hwhenλ = 1. Hence the (λ = 1)-
hypersurface can be plotted as follows:

% second method, specific to this matrix
% plots h and g as the (x,y) axis and s as the

z axis
clear
% set limits
gmin= .06; gmax= .8; hmin=.86; hmax=.98;
g=linspace(gmin,gmax,50);
h=linspace(hmin,hmax,50);
s=zeros(length(g),length(h));
% set nominal values
nomg=.2142; nomh=.942; noms=.516;
d=[0;1;0;0];

for ii=1:length(g)
for jj=1:length(h)
A0=[ 0 0 2043.8*(1-h(jj))*(1-g(ii))

9289.98*(1-h(jj))*(1-g(ii));
0 0 0 0;
0 .12 .11 0;

0 .02 .27 .17] ;

etwiddle=[.015 0 1052.37*g(ii)*(1-h(jj))
4783.51*g(ii)*(1-h(jj))];

invIminusA0=inv(eye(4)-A0);
pp2=etwiddle*invIminusA0*d;
s(ii,jj)=1/pp2;
% doublecheck - is this an e-value?
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A=A0+s(ii,jj)*d*etwiddle;
ev=eigs(A);
index=find(ev==abs(ev));
maxev=max(ev(index));
index=find(ev==maxev);
if abs(ev(index)-1)>.001

disp(’eigenvalue error’)
end

end
end

figure
hold on
mesh(h,g,s) % so xaxis = s, yaxis=g, zaxis=pp2
colormap([.5 .5 .5])
grid on
plot3(nomh,nomg,noms,’kd’)

zlabel(’Summer Survival of Small Plants, s’)
ylabel(’Germination rate, g’)
xlabel(’Mortality due to floral herbivory, h’)

D.2. Determining the closest point on the (λ = 1)-hypersurface

To determine the closest point on the (λ = 1)-hypersurface
requires solving a constrained, nonlinear multivariable problem.
Let x = (g, h, s) be a point on the (λ = 1)-hypersurface and
let xnom = (gnom, hnom, snom) be the nominal values for g, h, and
s respectively. Let L and U be the lower bound vector and upper
bound vector for x, respectively. Using the same derivation in the
above subsection, for x = (g, h, s) to be a point on the (λ = 1)-
hypersurface, Eq. (D.2) needs to be satisfied. Therefore, we are
finding the minimum of a problem defined by

min
x
‖x− xnom‖2 such that

{
L ≤ x ≤ U,∣∣s̃eT (I− A0)−1d− 1

∣∣− stol ≤ 0,
where A0, d and ẽT , are given in Eqs. (3.3), (3.4) and (D.1) respec-
tively. Because strict equalities are impossible when computing s,
we’ve set a tolerance level, stol, for the accuracy of this calculation.
A brute force method of calculating the shortest distance from

the nominal point to the hypersurface can also be used. This
requires dividing the hypersurface up into a grid and individually
calculating the distance from the nominal point to each point in
the grid; then one checks for the minimum over all grid points.

% ThistleModeldistance
% computes shortest distance from nominal point to
% lambda = 1 hypersurface using the 2-norm
% Note: this program uses Matlab’s fmincon.m

function and requires
% Matlab’s optimization package.

global nomg nomh noms nomx
gmin= .06; gmax= .8; hmin=.4; hmax=.997; smin=.2;

smax=.94;
nomg=.2142; nomh=.942; noms=.516;

nomx=[nomg;nomh;noms];
lowerbnd=[gmin;hmin;smin];

upperbnd=[gmax;hmax;smax];
x0=[.8;.997;.94]; % initial guess
options = optimset(’TolFun’,.001,’MaxIter’,100,

...
’LargeScale’,’off’,’MaxFunEvals’,100);

[x,fval,exitflag]=fmincon(@norm2,x0,[],[],[],[],
...
lowerbnd,upperbnd,@lambda1,options)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [C,Ceq]=lambda1(x)
% To minimize distance to lambda = 1 hypersurface
% This is the constraint that you have to be in the

lambda=1 hypersurface
stolerance = .0001;
Ceq=[];
g=x(1); h=x(2); s=x(3);
A0=[ 0 0 2043.8*(1-h)*(1-g)

9289.98*(1-h)*(1-g) ;
0 0 0 0 ;

0 .12 .11 0 ;
0 .02 .27 .17 ] ;

etwiddle=[ .015 0 1052.37*g*(1-h)
4783.51*g*(1-h)];

invIminusA0=inv(eye(4)-A0);
d=[0;1;0;0];
C=abs(s*etwiddle*invIminusA0*d -1) - stolerance;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dist=norm2(x)
% computes distance from nominal point to x using

2-norm
global nomg nomh noms
dist=(x(1)-nomg)^{2}+(x(2)-nomh)^{2}

+(x(3)-noms)^{2};
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