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a b s t r a c t

Many stage-structured density dependent populations with a continuum of stages can be naturally
modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global
stability result for a class of density dependent systems which include a Platte thistle model. Specifically,
we identify those systems parameters for which zero is globally asymptotically stable, parameters
for which there is a positive asymptotically stable equilibrium, and parameters for which there is no
asymptotically stable equilibrium.
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1. Introduction

Stage structured populations are often described by discrete-
time population projection models. We will describe a class
of models which captures two essential biological processes –
survival/growth and fecundity – that lead to a mathematical
structure which can be exploited to prove global stability of the
population modeled. To describe this model, we start with a
general linear model

xt+1 = Pxt ,

where xt is the stage-structured population at time t ∈ N,
and P is a linear projection operator. The population vector xt is
in a vector space X . For instance, in a matrix projection model
(see Caswell, 2001), X = Rn. In order to analyze integral projection
models (see Briggs et al., 2010; Childs et al., 2003; Easterling,
1998; Easterling et al., 2000; Ellner and Rees, 2006; Rees and Rose,
2002; Rose et al., 2005), we need to consider more general vector
spaces; mathematical details are given later in this section. In this
context, it is natural to then assume that P can be decomposed
into a sum of a ‘‘survival operator’’ A and a ‘‘fecundity operator’’
F . In this paper, we will consider fecundity operators which can
be written as bcT , where b ∈ X and cT is a functional on X . A
functional on X is an operator from X into scalars; when X = Rn,
we think of vectors in X as column vectors, and functionals on
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X as row vectors. The fecundity structure F = bcT is common
in structured models of single-populations because cT xt can be
interpreted as the number of offspring produced by the population
xt , and this offspring will be distributed into the stage classes with
a distribution described by b. For instance, in the case of an integral
projectionmodel describing plant populations, this decomposition
describes a situation where the number of seeds produced at time
t is cT xt , and b describes the size distribution of the plants resulting
from these seeds in the next time period.

In this plant population example,we can also include an average
recruitment probability pe, which represents the probability of
a seed becoming a seedling in the following year. The resulting
density independent (i.e. linear) system is then

xt+1 = Axt + pebcT xt . (1.1)

Now consider a situation where the recruitment probability pe is
density dependent, i.e. it is a nonlinear function of the number of
seeds. In particular, we expect that the recruitment probabilitywill
decrease with seed density. This type of density dependence has
been seen in numerous plant species, see Tenhumberg et al. (in
preparation), Rose et al. (2005) and Pardini et al. (2009) and the
references therein. We write this density dependence as

(pe)t = g(cT xt),

where g is typically non-negative and decreasing. The resulting
system becomes

xt+1 = Axt + bf (cT xt), f (y) := yg(y). (1.2)
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For natural choices of g motivated by ecological considerations,
it has been observed in simulation studies that solutions of (1.2)
converge to a limiting stable stage structure v as t goes to
infinity, see for instance Rose et al. (2005). This apparently global
asymptotic stability is in contrast with the linear model (1.1),
where there is a limiting asymptotic growth rate, and hence no
asymptotic population unless the asymptotic growth rate is 1.

Two papers that are closely related to our work are Hirsch
and Smith (2005) and Krause and Ranft (1992). In Theorem 6.3
of Hirsch and Smith (2005), a trichotomy of stability results are
given for general abstractmonotonemaps in a Banach space. These
extend analogous results in Krause and Ranft (1992) for systems
evolving on Rn. However, for many ecological applications, the
results in Hirsch and Smith (2005) and Krause and Ranft (1992)
cannot be applied. This is because of the types of vector spaces
and the types of vectors b and functionals cT that are likely
to appear in the applications we consider. This is explained at
the end of Section 2. Our proofs are constructive, whereas the
results in Hirsch and Smith (2005) and Krause and Ranft (1992)
are existence proofs which do not show how to find the global
asymptotic limit. By exploiting the specific structure in (1.2),
we can characterize the trichotomy via computable formulas.
Furthermore, our approach introduces nonlinear stability tools
from control theory (Vidyasagar, 1993) to the modeling and
analysis of density dependent population models. The formulas
we obtain are easy to use, and can be readily adapted to other
studies. For instance, in Eager et al. (in press), the asymptotic
formula is used to make sure that two models have the same
asymptotic population, so that we can accurately compare the
transient dynamics.

The paper is organized as follows: In Section 2, we give the
abstract formulation for this problem. In Section 3, we prove global
asymptotic stability of a general class of systems of the form (1.2)
in a Banach space X . In Section 4, we consider integral projection
models (IPMs) which fit the abstract framework (1.2). A class of
IPMs is introduced in Easterling (1998), Easterling et al. (2000) and
Ellner and Rees (2006). Suchmodels have been developed in Childs
et al. (2003, 2004), Easterling (1998), Easterling et al. (2000), Ellner
and Rees (2006, 2007), Rees and Rose (2002) and Rose et al. (2005).
In Briggs et al. (2010), Easterling (1998) and Easterling et al. (2000)
it is shown how to construct such an integral projection model,
using continuous stage classes and discrete time. The types of
density dependence we are considering can be found in Ellner and
Rees (2006), Rose et al. (2005), Tenhumberg et al. (in preparation)
and Zetlaoui et al. (2008) (the latter is a matrix model rather than
an integral model). We discuss the integral projection model for
the Platte thistle in Rose et al. (2005), which we will show to be
of the form (1.2). By applying Corollary 4.1 (the IPM version of the
more abstract Theorem 3.3), we prove that the global asymptotic
stability seen (via simulation) in Rose et al. (2005) does indeed
hold.

2. Abstract formulation

Let X be a Banach space with norm ‖ · ‖. The solutions will
evolve in X , that is, xt is in X for all t . In an integral projection
model, X = L1(Ω) for some set of stages Ω . We wish to work
with nonnegative vectors in X and nonnegative operators on X .
We will follow Krasnosel’skij et al. (1989) for this. Let K ⊂ X be
a reproducing cone, see Krasnosel’skij et al. (1989, Section 1.5). For
future reference, we note that K is reproducing if every element
x ∈ X can be written as x = x+

− x− for x+, x−
⊂ K . The cone K

induces a partial order ‘‘ ≥’’ on X , where x ≥ y means x − y ∈ K .
If x ≥ 0, i.e. x is in K , we say that x is a non-negative vector. An
example of a reproducing cone in Rn is K = {[x1, x2, . . . , xn]T |

xj ≥ 0 for j = 1, . . . , n}. An example of a reproducing cone in
L1[α, β] is {f ∈ L1[α, β] | f (x) ≥ 0 a.e.}. In both these cases,
the definition of a non-negative vector coincides with intuition. In
Krasnosel’skij et al. (1989), such a vector is called ‘‘positive’’, but
this is not consistentwith the caseswhere X = Rn or X = L1[α, β],
so we say in this paper that such a vector is ‘‘non-negative’’.

In Krasnosel’skij et al. (1989, Section 2.2), an operator on X is
called a positive operator if it maps non-negative vectors to non-
negative vectors.Wewill call such an operator non-negative; hence
when X = Rn, an n × n matrix M represents a non-negative
operator on Rn if and only if all of its entries are non-negative.

We consider a system defined on X of the form

xt+1 = Axt + bytg(yt), yt = cT xt . (2.1)

For our three main results, we need some hypotheses which are
natural for applications to structured population dynamics. First,
we state conditions on (A, b, c).

(A1) A ∈ L(X) is a non-negative operator with spectral radius
r(A) < 1;

(A2) b is a non-negative vector;
(A3) cT : X → R is a non-negative functional, i.e.

cT x ≥ 0, for all x ≥ 0.

Associated with (2.1) is the controlled, observed system:

xt+1 = Axt + but , yt = cT xt , (2.2)

with input ut and output yt . We note that by induction, if x0 is
in the cone K , then xt is in K and yt ≥ 0 for all t ∈ N. Central
to our results is the concept of stability radius of (A, b, c), see for
example Hinrichsen and Pritchard (2005). Assume that r(A) < 1.
The stability radius of (2.2), is the smallest positive number p∗

e such
that if ut = p∗

eyt , then the resulting closed-loop system (2.2) is
not asymptotically stable. As A, b and c are non-negative, p∗

e is the
smallest positive number such that r(A + p∗

ebc
T ) = 1. It is proved

in Hinrichsen and Pritchard (2005) that the stability radius is given
by the formula

p∗

e =
1

cT (I − A)−1b
, (2.3)

with the convention that p∗
e = ∞ if cT (I − A)−1b = 0. In fact, it is

easy to see that r(A+pbcT ) is nondecreasing in p, and that A+pbcT
has an eigenvalue 1 if, and only if, p = p∗

e . Hence r(A + pbcT ) > 1
for p > p∗

e and r(A + pbcT ) < 1 for p < p∗
e . Note that p∗

e is defined
by the linear data A, b and c .

In the Introduction, we mentioned that the papers Hirsch and
Smith (2005) and Krause and Ranft (1992) contain very general
global stability results, but that these results do not apply to
many of the ecologically motivated systemswe consider. We focus
on Theorem 6.3 in Hirsch and Smith (2005), since that result is
closely related to the results in this paper. The operators discussed
in Theorem 6.3 are very general, and do not require the special
structure thatwe consider in this paper. However, the nonnegative
cone K in Theorem 6.3 is required to have a nonempty interior,
which can be restrictive. In particular, L1[α, β] is a standard space
for integral projection models (see Easterling, 1998; Easterling
et al., 2000; Ellner and Rees, 2006; Rees and Rose, 2002), and the
natural positive cone K = {f ∈ L1[α, β] | f (x) ≥ 0 a.e.} in L1[α, β]

has an empty interior (since every element in K is arbitrarily close
to an element in L1[α, β] not in K ). Furthermore, the type of
operators we consider in this paper typically does not satisfy the
conditions in Theorem 6.3 either, even in the finite dimensional
case. Roughly speaking, b represents the stage distribution of
newborns after one time step, and is likely to be zero for large
stages. Hence bwill not be a positive vector. Similarly, the number
of offspring cT xt might be zero for some populations xt . The results
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in Theorem 6.3 in Hirsch and Smith (2005) (the result that is most
related to this paper) require the nonlinear operator on the right
side of (1.2) (which we will call T ) to be such that T k is strongly
sublinear for some positive integer k; the finite dimensional results
in Corollary 1 inKrause andRanft (1992) require similar conditions.
If k = 1, these conditionswill require b to bepositive. If k > 1 in the
matrix case, this will typically not happen when b is not positive
and A is a survival (and hence typically reducible) matrix. If k > 1
in the Banach space case, it will be very difficult to check conditions
on the nonlinear operator T k.

3. Global stability results

We present three global stability results for the density
dependent system (2.1) which together form a trichotomy of
stability (see Hirsch and Smith, 2005, Krause and Ranft, 1992 for
a general approach to this problem): Theorem 3.1 shows that if
p∗
e exceeds a certain threshold value determined by the nonlinear

recruitment g , then the zero state is globally asymptotically stable,
i.e. the population dies out. Theorem 3.2 shows that if p∗

e is
below a lower threshold determined by g , then the population can
grow without bound. In the case where p∗

e is between these two
thresholds, Theorem 3.3 shows that the population model (2.1)
has a globally asymptotically stable, strictly positive equilibrium
vector. All convergence discussed in this paper is convergence in
the Banach Space norm ‖ · ‖.

Theorem 3.1. Suppose that (A1), (A2) and (A3) hold, and g :

[0, ∞) → [0, ∞). If p∗
e > supy>0 g(y), then the zero vector is a

globally stable equilibrium for (2.1) in the sense that for every x0 ∈ K ,

lim
n→∞

xn = 0. (3.1)

Furthermore, for every ε > 0, there exists δ > 0 such that ‖x0‖ ≤ δ
implies ‖xn‖ ≤ ε for all n ∈ N.

Proof. If p∗
e > supy>0 g(y), then

xt+1 = Axt + bg(cT xt)cT xt ≤ Axt + pbcT xt

for some p < p∗
e . By induction,

xt ≤ (A + pbcT )tx0, t ∈ N. (3.2)

Since p∗
e is the stability radius of (A, b, cT ),

r(A + pbcT ) < 1.

Combining this with (3.2), limn→∞ xn = 0. The last statement
in the result follows immediately from the boundedness of A +

pbcT . �

We next prove that if p∗
e is below a certain threshold, then

solutions can grow without bound.

Theorem 3.2. Assume that (A1), (A2) and (A3) hold and g : {x ≥

0} → {x ≥ 0}. Let m0 = infy>0 g(y). If p∗
e < m0, then there exists

x0 ∈ K such that limt→∞ ‖xt‖ = ∞.

Proof. Since b ∈ K and A is non-negative, if x0 ∈ K , then

xt+1 = A + bg(cT xt)cT xt ≥ A + m0bcT xt . (3.3)

Since m0 > p∗
e , we have r(A + m0bcT ) > 1. We will show that

this implies there exists x ∈ X such that {(A + m0bcT )tx}t∈N is
unbounded. If not, the principle of uniform boundedness implies
that {‖(A + m0bcT )t‖}t∈N is bounded. This would imply that

r(A + m0bcT ) = lim
t→∞

‖(A + m0bcT )t‖1/t
≤ 1,
which is a contraction. Since K is reproducing, there exists x+

and x− in K such that x = x+
− x−. Then at least one of {(A +

mbcT )tx+
}t∈N or {(A+mbcT )tx−

}t∈N is unbounded, so we can take
x0 = x+ or x0 = x−, and it follows from (3.3) that with this
x0, lim ‖xt‖ = ∞. �

To study the case where p∗
e is between infy>0 g(y) and

supy>0 g(y), for our abstract result we need to replace the non-
negativity condition (A3) on cT by the stronger condition (A3′):

(A3′) cT : X → R is a strictly positive functional, i.e. there exists
cmin > 0 so that

cT x ≥ cmin‖x‖, for all x ≥ 0.

For integral projection models, we only need (A3) instead of (A3′),
see Corollary 4.1. For finite dimensional systems, this condition can
be restrictive; for instance, for a Lesliematrix, it requires all entries
in the top row to be positive. For finite dimensional systems, (A3′)
can be replaced by primitivity of A + pbcT for some p > 0, see
Townley et al. (in press). Under the assumptions (A1), (A2) and
(A3′)

p∗

e =
1

cT (I + A + A2 + · · ·)b
< ∞.

We also need an additional condition on density dependence.
The sort of ecologically motivated recruitment functions g that we
have in mind are typified by a power law of the form

g(y) = βyα with α ∈ (−1, 0) and β > 0,

or by

g(y) =
V

K + y
with V > 0 and K > 0.

Note, in both cases, that if f (y) = yg(y), limy↘0 f (y) = 0 and
that for y > 0, we have that f (y) is nonlinear, non-negative, non-
decreasing, and possibly unbounded. More precisely, we assume
that

(A4) Let f : [0, ∞) → [0, ∞) be non-decreasing and convex
down with f (0) = 0. Let g(y) = f (y)/y for y > 0. Assume
that g ∈ C(0, ∞) and g∞ := limy→∞ g(y) < limy↘0 g(y) =:

g0.

Note that if (A4) is satisfied and

p∗

e ∈ (g∞, g0) (3.4)

then there exists y∗ > 0 such that

f (y∗) = p∗

ey
∗. (3.5)

This is illustrated in Fig. 3.1.Wewill see in the proof of Theorem3.3
that y∗ turns out to be the limiting value of the observation cT xt .

Theorem 3.3. Assume that (A1), (A2), (A3′), (A4) and (3.4) hold.
The vector x∗

∈ X given by

x∗
= (I − A)−1p∗

eby
∗ (3.6)

is a globally asymptotically stable equilibrium of (2.1) on K \ {0}, i.e.

lim
n→∞

xn = x∗, (3.7)

and for every ε > 0, there exists δ > 0 such that ‖x0 − x∗
‖ ≤ δ

implies ‖xn − x∗
‖ ≤ ε for all n ∈ N.

Proof. The first step in the proof is to show that yt = cT xt is
bounded below. Define the functional

wT
= cT (I − A)−1.
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Fig. 3.1. Typical nonlinearities (in black) and the line with slope p∗
e . With the solid

black nonlinearity, there is a positive globally stable equilibrium. With the dotted
black nonlinearities, zero is a globally stable equilibrium.

Since wTb = 1/p∗
e , we see that wT

≥ 0. It is easy to verify that
wT (A + p∗

ebc
T ) = wT . Applying wT to (2.1) we obtain

wT xt+1 = wTAxt + wTbf (yt).

If yt ≤ y∗, then using (A4) we get f (yt) ≥ p∗
eyt , so

wT xt+1 ≥ wTAxt + wTbp∗

eyt = wT (A + p∗

ebc
T )xt = wT xt . (3.8)

If yt > y∗, then (A4) implies that f (yt) ≥ p∗
ey

∗, so

wT xt+1 ≥ wTAxt + wTbp∗

ey
∗

≥ wTbp∗

ey
∗. (3.9)

It follows that

wT xt ≥ min

wT x0, y∗


for all t ∈ N. (3.10)

Recall that the norm of the functional wT is

‖wT
‖ = sup

‖x‖=1,x∈X
|wT x|,

so

wT xt ≤ ‖wT
‖ ‖xt‖, i.e. ‖xt‖ ≥

1
‖wT‖

wT xt .

Using this, (3.10) and (A3′), it now follows that

yt = cT xt ≥ cmin‖xt‖ ≥
cmin

‖wT‖
min


wT x0, y∗


. (3.11)

We note that since x0 ∈ K ,

(I − A)−1x0 = x0 +

∞−
k=1

Akx0 ≥ x0,

so, using (A3′),

wT x0 = cT (I − A0)
−1x0 ≥ cmin‖x0‖.

Similarly, wTbp∗
ey

∗ is bounded below, so the right side of (3.11) is
greater than zero.

Hence yt is uniformly bounded away from zero from below for
all t ≥ 1. Therefore (see Fig. 3.1) the secant slope f (yt) − f (y∗)

yt − y∗

 < p∗

e

for all t ≥ 1. Hence there existsm < p∗
e so that

|f (yt) − f (y∗)| ≤ m|yt − y∗
|, for all t ≥ 1. (3.12)

We see from (3.6) that x∗
= Ax∗

+ p∗
eby

∗
= Ax∗

+ p∗
ebf (y

∗).
Combining this with (2.1),

xt+1 − x∗
= A(xt − x∗) + p∗

eb(f (yt) − f (y∗)).
From the variation of parameters formula, when t ≥ 1,

xt − x∗
= At(x0 − x∗) +

t−1−
j=0

At−j−1b(f (yj) − f (y∗)). (3.13)

Multiplying this on the left by cT and using (3.12) gives

|yt − y∗
| =

cTAt(x0 − x∗) +

t−1−
j=0

cTAt−j−1b(f (yj) − f (y∗))


≤ |cTAt(x0 − x∗)| + m

t−1−
j=0

cTAt−j−1b|yj − y∗
|.

Hence, for an arbitrary N ∈ N,

N−
t=1

|yt − y∗
| ≤

N−
t=1

|cTAt(x0 − x∗)|

+m
N−

t=1

t−1−
j=0

cTAt−j−1b|yj − y∗
|.

Switching the summation order and changing the summation vari-
able in the last sum,

N−
t=1

|yt − y∗
| ≤

N−
t=0

|cTAt(x0 − x∗)| + m
N−1−
j=0

N−j−1−
k=0

cTAkb|yj − y∗
|

≤

N−
t=0

|cTAt(x0 − x∗)| + m
N−1−
j=0

∞−
k=0

cTAkb|yj − y∗
|

Using
∑

∞

k=0 c
TAkb = cT (I − A)−1b,

N−
t=1

|yt − y∗
| ≤

N−
t=0

|cTAt(x0 − x∗)| + mcT (I − A)−1b
N−
j=0

|yj − y∗
|.

Using (2.3) and the fact that m < p∗
e ,

N−
t=1

|yt − y∗
| ≤ (1 − m/p∗

e )
−1

∞−
t=0

|cTAt(x0 − x∗)|. (3.14)

Since N is arbitrary and ρ(A) < 1, this shows that limt→∞ yt = y∗.
It follows from (3.12), the fact that r(A) < 1 and (3.13) that (3.7)
holds.

From (3.14) and the fact that r(A) < 1, there existsM > 0 such
that

|yt − y∗
| < M‖x0 − x∗

‖, for all t ∈ N.

The claimed stability of x∗ then follows from (3.12) and (3.13). �

Remark 3.4. The limiting population vector x∗ can be approxi-
mated by noting that it is the eigenvector of A + p∗

ebc
T associated

with the eigenvalue 1. Furthermore, we note that p∗
e can be char-

acterized as

p∗

e = lim
t→∞

f (yt)/yt = lim
t→∞

g(yt).

Remark 3.5. We can summarize Theorems 3.1–3.3 (by taking the
hypotheses fromTheorem3.3) to immediately get that if (A1), (A2),
(A3′) and (A4) hold, then a trichotomyof stability holds in the sense
that:

1. If p∗
e < g∞, there is an x0 ∈ K such that limt→∞ ‖xt‖ = ∞.

2. If p∗
e ∈ (g∞, g0), then x∗ is a globally stable equilibrium.

3. If p∗
e > g0, then 0 is a globally stable equilibrium.
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4. Integral projection models

A class of integral projection models (2.1) was introduced by
Easterling (1998) and Ellner et al. in Easterling et al. (2000) and
Ellner and Rees (2006). We describe here a subclass of integral
projection models, which are of the form (1.2). We will show that
models in this subclass satisfy conditions (A1), (A2), (A3), and we
prove a corollary to Theorem 3.3 to categorize the asymptotic
stability properties of these models. We then describe the Platte
thistle (Cirsium canescens) model found in Rose et al. (2005).
We will give numerical simulations that are consistent with our
results. Some of the discussion of themodel below is adapted from
Briggs et al. (2010), Easterling (1998), Easterling et al. (2000), Ellner
and Rees (2006) and Rose et al. (2005).

Let n(ξ , t) be the population distribution as a function of stage
ξ at time t . For example, ξ could be the size of the individual. We
assume that ξ ∈ [ms,Ms], where ms is the minimum size, and
Ms is the maximum size. Assume that k is continuous on [ms,Ms]

2

and k(x, ξ) ≥ 0, and consider the general linear integro-difference
model

n(x, t + 1) =

∫ Ms

ms

k(x, ξ)n(ξ , t)ds. (4.1)

The kernel k(x, ξ) determines how the stage-distribution of
individuals at time t moves to the stage-distribution of individuals
at time t + 1. The kernel is determined by statistically derived
functions for survival, growth and fecundity.

Let X = L1(ms,Ms) with the usual L1 norm. Let the positive
reproducing cone be given by K = {f ∈ L1[α, β] | f (x) ≥ 0 a.e.}.
For every t > 0, the population distribution n(t) := n(t, ·) is in
L1(ms,Ms), and the total population is ‖n(t)‖. Define the operator
P : L1(ms,Ms) → L1(ms,Ms) by

(Pv)(·) :=

∫ Ms

ms

k(·, ξ)v(ξ)dξ .

Then (4.1) is equivalent to

nt+1 = Pnt . (4.2)

It follows immediately from the continuity and boundedness of k
that P is a compact operator in L1(ms,Ms).

We consider structured populationmodels forwhich the kernel
is the sum k(x, ξ) = p(x, ξ) + F(x, ξ), where p is a growth and
survival kernel and F is a fecundity kernel. The growth kernel
p(x, ξ) is the probability that an individual of size ξ will survive and
grow to be an individual of size y in one time step, so p(x, ξ) > 0
for all x, ξ ∈ [ms,Ms]. Therefore, we assume that

sup
x∈[ms,Ms]

∫ Ms

ms

p(x, ξ) dξ < 1, (4.3)

that is, the probability that all individuals will survive is less than
1. Using this, it is easy to verify that the operator A : X → X given
by

(Av)(·) :=

∫ Ms

ms

p(·, ξ)v(ξ)dξ

satisfies ‖A‖ < 1, which implies that r(A) < 1. Since it is clear that
A is nonnegative if p(x, ξ) ≥ 0 for all x, ξ ∈ [ms,Ms], A satisfies
condition (A1).

The function F(x, ξ) is the number of offspring of size x that
an individual of size ξ will produce in one time step. For details
on the appropriate statistical models for obtaining the kernel, see
Easterling et al. (2000), Ellner and Rees (2006), Rose et al. (2005)
and Tenhumberg et al. (in preparation).We assume that F(x, ξ) can
be decomposed as peb(x)c(ξ), where b, c ∈ X are continuous on
[ms,Ms], b(x) ≥ 0 for x ∈ [ms,Ms] and c(ξ) ≥ 0 for ξ ∈ [ms,Ms].
The fecundity operator

A1 : v ∈ X →

∫ Ms

ms

F(x, ξ)v(ξ) dξ

can be decomposed into A1 = pebcT , where cT is the functional on
X given by

cTv =

∫ Ms

ms

c(ξ)v(ξ) dξ .

Since b and c are both non-negative, it is clear that conditions
(A2) and (A3) are satisfied. We now show that the conclusions of
Theorem 3.3 hold for the density dependent system

nt+1 = Ant + f (cTnt)b. (4.4)

Corollary 4.1. Suppose A, b and c are as in this section, f satis-
fies (A4), and p∗

e is given by (2.3) and satisfies (3.4). Then the vector x
given in (3.6) is a globally asymptotically stable equilibriumof (4.4) as
in Theorem 3.3.

Proof. The only part of the proof of Theorem 3.3 where the
condition (A3′) is used instead of (A3) is to establish that yt is
uniformly bounded above away from 0, i.e.

yt > m for somem > 0. (4.5)

To prove this for the systems considered in this section, we
introduce a new IPM system which is ‘‘close to’’ (4.4). For ε > 0,
let

Ωε := {ξ ∈ [ms,Ms] | c(ξ) > ε}, Xε := L1(Ωε),

Aε : Xε → Xε, (Aεv)(x) =

∫
Ωε

p(x, ξ)v(ξ) dξ,

bε = b |Ωε
, cTε v =

∫
Ωε

c(ξ)v(ξ) dξ .

For v ∈ X , let vε be the restriction of v to Ωε . From (4.3),

sup
x∈[ms,Ms]

∫
Ωε

p(x, ξ) dξ < 1,

soρ(Aε) ≤ ρ(A) < 1 andAε satisfies (A1). It is clear that bε satisfies
(A2). Note that for v ≥ 0 and v ∈ Xε, cTε v ≥ ε‖v‖, so cTε satisfies
(A3′) for all ε > 0. Let (p∗

e )(ε) = (cTε (I − Aε)
−1bε)

−1. It is easy to
see that limε→0(p∗

e )(ε) = p∗
e . Since p

∗
e satisfies (3.4), we can choose

ε > 0 such that (p∗
e )(ε) also satisfies (3.4). Let nt(ε) satisfy

nt+1(ε) = Aent(ε) + bef (cTε nt(ε))

and

yt(ε) = cTnt(ε).

Then by the proof of Theorem 3.3, yt(ε) satisfies (4.5). Since Ωε ⊂

[ms,Ms], it is easy to show that yt ≥ yt(ε), hence yt satisfies (4.5).
Hence we can apply the proof of Theorem 3.3 to (4.4), to get the
desired conclusions. �

We now discuss the model for the Platte thistle found in Rose
et al. (2005), modified to ignore effects of herbaceous predators.
The Platte thistle is an indigenous perennial plant in the midgrass
sand prairies of central North America. It is strictly monocarpic,
meaning that plants die after reproducing, so the flowering
probability will need to be incorporated into the kernel. In this
model, we use the log root crown diameter ξ as the continuous
stage variable. For the specific form of the survival kernel p, see
Briggs et al. (2010) and Rose et al. (2005). For this model p satisfies
(4.3). For the fecundity kernel F(x, ξ), we note that in order to
reproduce, a plant must survive, and it must also flower. Let s(ξ)
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Fig. 4.2. Asymptotic population density of the Platte thistle.

be the survival probability and fp(ξ) be the flowering probability.
Each plant will produce seeds, and these seeds must germinate
and survive to the next population census for an offspring to be
included in the next population census. Let S(ξ) be the number of
seeds produced by a plant of size ξ , and the average germination
probability be pe. Finally, let the distribution of the offspring sizes
be b(x) with b ∈ X . The b used here is the statistically derived
distribution of offspring sizes. In general, b will be non-negative
but not positive. Therefore the fecundity kernel can be written as

F(x, ξ) = b(x)c(ξ), where c(ξ) = pes(ξ)fp(ξ)S(ξ). (4.6)

In Rose et al. (2005), it is assumed that the recruitment
probability pe is a function of ST (t) = cTnt , the total number
of seeds produced; in particular, they chose the germination
probability to be (pe)t = (ST (t))−0.33. This density dependent
system can be written as

nt+1 = Ant + b(cTnt)
−0.33cTnt = Ant + bf (cTnt),

f (y) = y0.67.

This system clearly satisfies conditions (A1), (A2), (A3) and (A4).
Since g(y) = f (y)/y = y−0.33, we see that g∞ = 0 and g0 = ∞,
so (3.4) is satisfied. Therefore, Corollary 4.1 applies to this system.
Using (2.3), we find that p∗

e = 0.067. The limiting number of seeds
y∗

= cT x∗
= limt→∞ ST (t) satisfies (3.5), which becomes

y∗
= p∗

e
−1/0.33

= 3609.

Therefore, the limiting population vector n∗ given by (3.6) is a
globally stable equilibrium. The unit vector n∗/‖n∗

‖ is the limiting
age distribution, which is shown in Fig. 4.2. It is found in Rose et al.
(2005) that there is a good match between the model predictions
and the observed size distributions—our simplified model has a
similar size distribution to that in Rose et al. (2005).

It follows from the dominated convergence theorem that the
total population N(t) = ‖nt‖ converges to ‖x∗

‖ as t → ∞,
and that the limiting total population is independent of the initial
population vector. This is illustrated in Fig. 4.3, where a numerical
simulation of the total population as a function of time is shown for
five different initial conditions. The continuity and boundedness
of the integrand in the integral mapping implies that a Riemann
approximation to the integral operator will approximate the
operator to any desired accuracy. The total population size of the
Platte thistle in the field decreases over a 12 year interval (Rose
et al., 2005).We used a simplified version of themodel in Rose et al.
(2005) that did not include herbivores. Rose et al. (2005) showed
that models including herbivory predicted decreasing population
densities; simulations of models without herbivory predicted an
asymptotic population size of 5000, which is consistent with
Fig. 4.3.
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Fig. 4.3. The trajectories of the total population. Each curve shows the trajectory
with different initial states.

5. Concluding remarks

We proved the existence of globally asymptotically stable
equilibria for a class of nonlinear discrete-time systems defined
on Banach spaces. The conditions on the system are motivated by
examples in population ecology, and these systems often do not
satisfy the conditions in Hirsch and Smith (2005) and Krause and
Ranft (1992). Conditions (A1), (A2), (A3) and (A4) are naturally
satisfied for many plant and animal species, and are sufficient for a
complete analysis of global asymptotic stability of a class of density
dependent integral projection models, including the Platte thistle
model we analyzed. These results are also applicable to matrix
models, by taking X = Rn; however, the condition (A3′) required
in Theorem 3.3 is not typically satisfied by matrix models. In such
matrix models, the functional cT typically satisfies (A3) but not
(A3′). In Townley et al. (in press), we restrict our attention to
matrix models, and prove a result which is applicable to a wide
range of density dependent matrix models. The proof is more
involved, and uses matrix methods. In Townley et al. (in press), we
also address asymptotic behavior when (A4) is not satisfied, and
there is no asymptotically stable equilibrium. The techniques we
use in this paper included ‘‘small gain’’ arguments and the use of
the stability radius, which are common in engineering problems
where nonlinear dynamical systems are often analyzed as feedback
systems, see Vidyasagar (1993).
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