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Integral projection models show exotic thistle is more limited
than native thistle by ambient competition and herbivory
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Abstract. Both competitors and natural enemies can limit plant population growth. However,
demographic comparisons of the effects of these interactions on introduced versus co-occurring, related
native species are uncommon. We asked: (1) does plant competition, insect herbivory, or their combination
reduce population growth rate, log A, of the Eurasian thistle Cirsium vulgare sufficiently to explain its
limited invasiveness in western tallgrass prairie; and (2) how do the effects of these interactions compare to
those for C. altissimum, its co-occurring, synchronously-flowering native congener? We developed integral
projection models (IPMs) to estimate log A for both species, using parameter estimates from field
experiments. Our models predicted that the growth potential (growth rate at minimal competition and
herbivory) for the introduced thistle (log A =3.5 (2.5, 4.6)) was twice as large as for the native thistle (log A =
1.6 (0.4, 3.1)); however, a high level of competition and ambient insect herbivory together reduced log A to
similar values for both thistle species (C. vulgare: log A =—1.3 (-2.4, —0.3) vs C. altissimum: log A =—0.9
(—1.4, —0.3)). This suggests that the introduced thistle was more affected by competition and insect
herbivory. For the introduced thistle, neither competition nor insect herbivory alone led to negative log A.
In contrast, for the native thistle, high competition alone also led to negative population growth (log A =
—0.8, percentile limits do not overlap with zero). Ambient herbivory alone prevented the spread for both
thistle species (percentile limits include zero). Overall, the results show that interspecific competition
followed by ambient levels of insect herbivory strongly constrained log A for both thistles, limiting C.
vulgare invasiveness and C. altissimum abundance. The outcome highlights the importance of synergy
between the two biological interactions in limiting plant population growth. Improved understanding of
mechanisms limiting log A for weedy plants enhances our ability to predict when biotic resistance will
contribute to invasive plant species management.
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INTRODUCTION

Most plant introductions fail, and species that
do establish typically remain at low densities
(Rejmanek 1989, Williamson and Fitter 1996,
Mack et al. 2000). This is surprising because
introduced species generally leave their co-
evolved competitors and natural enemies behind.
For instance, compared to their conspecifics
within the home range, introduced plants in a
new range averaged 84% fewer fungi, 25% fewer
virus infections (Mitchell and Power 2003), as
well as significantly less herbivory, resulting in
larger energy allocation to growth and reproduc-
tion (Liu and Stiling 2006, Hawkes 2007, Chun et
al. 2010).

On the other hand, introduced species inevita-
bly encounter novel competitors and natural
enemies in their new habitats (Mitchell et al.
2006). Some of these new antagonists may be
pre-adapted, or evolve rapidly, to compete with
or to consume the introduced plants (Maron et al.
2004, Parker and Hay 2005). Elton (1958) was
among the first to recognize the potential
importance of novel biotic interactions within
the introduced range in the outcome of biological
invasions. Elton’s “biotic resistance hypothesis”
posits that native communities often limit the
colonization, establishment, and spread of intro-
duced species through intense antagonistic inter-
actions (Crawley 1997, Keane and Crawley 2002).

The evidence to date suggests that, although
new biological interactions reduce individual
performance and establishment probability of
introduced species in some cases, on average
new interactions are not strong enough to
prevent population establishment, growth and
spread (Levine et al. 2004). However, current
studies do not adequately assess the role of biotic
resistance in limiting invasiveness of introduced
plants for at least two reasons. First, most studies
have focused on evaluating a single biotic
interaction (i.e,, competition or herbivory) on
the performance of individuals of the introduced
species (but see Zou et al. 2008, Suwa et al. 2010,
Huang et al. 2012, Suwa and Louda 2012). Single
interactions are seldom sufficient to explain
species dynamics; the simultaneous effects of
multiple key interactions on performance of an
introduced species usually need to be examined
(Lau and Strauss 2005, Mitchell et al. 2006, Parker
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and Gilbert 2007). For example, the effects of
interspecific competition and herbivory on plant
performance may not be independent; interac-
tions could either magnify or lessen the effect of
either interaction alone (Harper 1977, Rand
2003).

Second, the influence of biotic interactions on
the rate of invasion ultimately depends upon
their effect on the plant population growth rate,
rather than on individual plant performance
(Maron and Vila 2001, Liu and Stiling 2006,
Ramula et al. 2008). Most studies quantifying the
effect of competitors or consumers examine only
a subset of performance traits (e.g., biomass,
number of seeds) or vital rates (e.g., emergence
rate, survival), rather than population growth
rate. Yet, the contribution of specific traits, or
specific vital rates, to the population growth rate
can vary dramatically (Caswell 2000). Estimating
impact on vital rates and population growth
rates requires long-term demographic data or
demographic models based on experimental
estimates of demographic parameters (Maron
and Vila 2001, Halpern and Underwood 2006);
such data or models are seldom available.

In this study, we used mathematical models to
synthesize our empirical work on this system in
order to estimate the combined effects of exper-
imentally modified interspecific competition and
insect herbivory on population growth rates of
Eurasian Cirsium vulgare Savi Tenore (Bull or
Spear thistle), a known invasive species world-
wide (Julien and Griffiths 1998), and on its
native, co-occurring, synchronously-flowering
congener, C. altissimum (L.) Spreng (Tall thistle).
This modeling effort is distinguished from our
previous work on this system in that it is the first
quantification of effects of insect herbivory and
interspecific competition on populations of both
species using the same modeling framework;
hence, it provides the best comparison of the
population limiting effects of these factors. Such
comparisons between introduced and native
congeners are useful for identifying factors that
may promote or limit invasiveness (Mack 1996,
Agrawal and Kotanen 2003). Both interspecific
competition and insect herbivory can reduce
plant vital rates, influencing population growth
either independently (Newingham and Callaway
2006, Doyle et al. 2007) or interactively (Parme-
san 2000, Russell et al. 2010). Data for our model
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parameters come from our published field
experiments that manipulated both interspecific
competition and insect herbivory for these
species (Suwa et al. 2010, Rose et al. 2011, Suwa
and Louda 2012).

Using integral projection models (IPMs), we
addressed two specific questions: (1) does com-
petition from the resident plant community,
herbivory by native insects, or their interaction
significantly reduce the population growth rate
of the introduced C. vulgare and (2) how do the
effects of these biotic interactions on C. vulgare
compare to their effects on the co-occurring
native C. altissimum? Given the limited occur-
rence of C. vulgare in our region (Andersen and
Louda 2008), we expected that population
growth rates of the introduced C. vulgare would
be impacted more severely by resident compet-
itors and native insect herbivores than the
population growth rates of the related native
thistle.

METHODS

Study system

C. vulgare (Bull thistle), a native of Eurasia, is
considered a problematic, invasive species in
many countries (Julien and Griffiths 1998). Its
most common congener in western tallgrass
prairie, C. altissimum (Tall thistle), is native to
the central and eastern United States (Kaul et al.
2006). These thistles have similar habitat re-
quirements, typically growing in disturbances
in prairie and old fields, and along roadsides.
Both species are monocarpic, short-lived peren-
nials reproducing only by seed (Guretzky and
Louda 1997, Kaul et al. 2006); and, they share a
similar, late-season flowering phenology (Louda
and Rand 2002). Studies show that 96% of the
native thistle-feeding arthropod fauna found on
the native C. altissimum, including the most
abundant thistle specialists, also feed on C.
vulgare (Takahashi 2006). Introduced thistle-
feeding insects are rare in this system (Takaha-
shi 2006).

C. vulgare is uncommon, about 100-times less
frequent than the relatively sparse C. altissimum,
on transects in the western tallgrass prairie
(Andersen and Louda 2008). Previous studies
found that native insects limit seed production
and subsequent seedling density of both thistle
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species (e.g., Louda and Rand 2002, Russell et al.
2010, Eckberg et al. 2012), as well as population
growth rate of C. vulgare under some conditions
(Eckberg et al. 2014).

Integral projection model

To estimate population growth rates for both
species, we constructed integral projection
models (IPMs). In these models, we treated
plant size as a continuous variable, and time as
a discrete variable with a time step of one year
(e.g., Easterling et al. 2000, Ellner and Rees
2006). We did not include a seed bank because
of the very low frequency of Cirsium spp. seed
survival within the seed bank (Potvin 1988,
Tenhumberg et al. 2008; F. L. Russell, unpub-
lished data).

Since time was discrete, the start and end of
the models’ time interval (population census)
needed to be specified. Here, we envisioned the
population census to be in late spring after
overwintering seeds have germinated and all
plants are still rosettes of size x (Fig. 1). After the
population census, plants either flowered and
died (as monocarpic species), with probability
PAx), or remained non-flowering vegetative
rosettes. Flowering plants survive to the end of
the season, or non-flowering plants survive to
the next census, with probability ps(x). Com-
pared to the juvenile rosette plants that re-
mained vegetative, the plants that flowered
(bolted and died) developed a much larger
biomass, including an elongated stem with more
leaves and multiple flower heads. We used two
specific, empirically-derived growth functions,
one for juvenile rosette plants (go(y x)) and one
for bolting adult plants g;(x’, x)). Seed produc-
tion, S(x’), was estimated as a function of bolting
adult plant size x’. Viable seeds geminated,
emerged, and developed into small juvenile
plants with probability p, before the next
population census. We did not keep track of
plant age; thus, in the models a very small plant
could be either a seedling or a one-year old plant
that did not grow much from one year to the
next.

Let n(x, t) describe the size distribution of
each thistle population at time ¢, and m and M
specify the range of possible sizes (x € [n, M]).
Then, the thistle population in the next time
step, t+1, is
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Fig. 1. Overview of Cirsium integral projection models. A juvenile rosette plant of size x survived with
probability py(x) and developed into an adult, bolting plant with probability ps(x). The growth function g(y, x’)
determined the size x’ of the bolting plant which produced S(x’) seeds. Seeds germinated in the spring with
probability p, and developed into y sized plants with probability p,(y). Plants that remained juvenile for another
year developed a smaller biomass than bolting plants; and their size y at the end of the time interval is

determined by the growth function go(y, x).
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where p,(y) specifies the probability that the
developing seedling will be size .

Model analysis

We estimated the asymptotic population
growth rate by computing the dominant eigen-
value (A) of the IPMs (Easterling et al. 2000,
Ellner and Rees 2006). For each of the 12
experimental treatments used to parameterize
the models (detailed below), we calculated a
distribution of A-values using parametric boot-
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strapping (Clark 2007; 500 runs for each of the 12
environmental conditions). For each A-value
distribution, we determined the median, as well
as the 5th and 95th percentile limits. In general, a
population grows if log & > 0 (so, A > 1), and
declines if log A < 0 (so, A < 1). Conservatively,
we interpreted the result to be population stasis if
either percentile limit of the log A-value distri-
bution included zero. We considered population
growth rates between experimental treatments to
be different if either percentile of one log A-value
distribution did not overlap with the median of
the other log A-value distribution. We could not
calculate t-statistics to compare the effect of the
different treatments because the predicted means
are derived from combinations of several statis-
tical models, and as a result the degrees of
freedom are unknown. We interpret the percen-
tile limits analogous to confidence limits and use
them to infer statistical differences. According to
Wolfe and Hanley (2002), and Goldstein and
Healy (1995) two treatments can be considered

April 2015 < Volume 6(4) % Article 69



statistically different if confidence limits are not
overlapping, and they are not statistically differ-
ent if confidence limits overlap the mean of the
other treatment; it is unclear if two treatments are
significantly different if confidence limits over-
lap, but not with the means (Goldstein and Healy
1995, Wolfe and Hanley 2002). To be conserva-
tive, we considered overlapping percentile limits
that did not overlap with the median as not
statistically different.

Data used to estimate model parameters

To estimate model parameters, we used pub-
lished data from three of our previous experi-
ments. Insect herbivory reduction treatments
were similar among all three experiments; and,
all three studies were conducted in restored
tallgrass prairie/old fields in eastern Nebraska
between 2006 and 2008 (see below).

Effects of competition and herbivory on growth and
survival. —For both thistle species, survival and
growth data came from the experiment described
in Suwa and Louda (2012). This experiment was
conducted at a site near Lincoln, Nebraska, and
included three levels of interspecific competition
and two levels of insect herbivory on a total of
174 plots (50 cm X 25 cm), to each of which 400
locally collected seeds of either C. vulgare or C.
altissimum had been added. Interspecific compe-
tition levels were manipulated two months
before the experimental seeds were sown (5-10
November 2006) by altering cover of ambient
vegetation with spot application of herbicide to
achieve three levels of competition: high (ambi-
ent, control, 65-90% cover); medium (reduced to
25-35% cover); and low (reduced to 0-5% cover).
Insect herbivory was reduced on a subset of the
plots within each competition treatment for each
species by spraying a non-systemic insecticide
every 20 d during two growing seasons (27 April
2006 to 15 September 2007). The remaining plots
in each competition treatment were controls, and
sprayed only with an equivalent amount of
water.

Effects of the interactions on seed production.—
Because adult plant seed production was not
recorded in Suwa and Louda (2012), we supple-
mented these data with data from two other
parallel experiments. For C. vulgare seed produc-
tion, we used data from the experiment (Suwa et
al. 2010) that compared focal plant reproductive
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performance under two levels of interspecific
competition (ambient, reduced) and two levels of
herbivory (ambient, reduced) for established
juvenile rosettes (diameter >15 cm) that were
likely to become bolting and flowering adults
within the season. In half of the plots, competi-
tion was reduced to a level comparable to the
medium competition treatment described above
(25-35% cover) (N = 148 plots in 2006; N = 80
plots in 2007). Competition was reduced by
clipping the vegetation at ground level and by
painting the clipped vegetation with a non-
selective herbicide monthly during each growing
season. The other half of the plots were unma-
nipulated, ambient competition controls (65-90%
cover). In half the plots of each competition
treatment, we reduced herbivory on the focal C.
vulgare rosette by spraying it with a non-systemic
insecticide-in-water; focal plants used in control
plots were sprayed only with water (Suwa et al.
2010). For IPMs, we assumed that seed produc-
tion by plants of a given size was similar under
low and medium competition, an assumption
consistent with field observations (S. M. Louda,
unpublished data). For C. altissimum seed produc-
tion, we used data from an experiment (Rose et
al. 2011) that involved treating half of all the
naturally occurring C. altissimum rosette plants
that were initiating bolting with non-systemic
insecticide at 2-3 week intervals over their
flowering season. The remaining plants were
sprayed with an equal volume of water. Treat-
ments were imposed from late June through the
end of the growing season in early October (N =
159 plants in 2006, N = 145 plants in 2007). Since
competition was not manipulated in this exper-
iment, for the model we assumed that seed
production of thistles of a given size was not
influenced by competition, as above. Thus, the
effect of competition on seed production includ-
ed in the models here was exclusively related to
the effect of competition on plant growth and
size, a conservative estimate of biotic interaction
effects.

Plant size.—Plant size was estimated as above-
ground leaf biomass, a continuous variable. For
adult plants, leaf biomass was measured at the
end of the experiment by destructive sampling
(Suwa and Louda 2012). For younger plants, we
counted the number of leaves and estimated
biomass using a regression between log-trans-
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formed number of leaves and log-transformed
biomass from the destructive sampling. We
expressed all vital rates as functions of log plant
biomass.

Statistical analysis

All statistical analyses were performed with
the statistical package R version 2.5.3 (R Core
Development Team 2010). We analyzed the data
for C. vulgare and C. altissimum performance
separately, using generalized linear mixed mod-
els, or nonlinear mixed models, with vital rates
(annual change in size, survival, and fecundity)
as response variables. The set of explanatory
variables included: plant size, level of competi-
tion and level of insect herbivory, and whether a
plant bolted and flowered in its second year.
Block and plot were included as random effects.
We used a Poisson error distribution for models
estimating plant growth and seed production,
and a binomial error distribution for calculating
the probability of flowering in the next year, the
probability of surviving until the next year, and
the probability that a seed will germinate and
survive until the next population census.

Seed production of plants had a strongly
bimodal distribution, since many flowering
plants did not succeed in maturing any poten-
tially viable seeds. So, we first used a binomial
mixed model to calculate the probability of
producing zero seeds. Then, we analyzed the
seed production data of those plants that
produced at least one potentially viable seed,
using a linear model with the log-transformed
number of seeds as the response variable. The
number of seeds and plant sizes (number of
leaves or plant biomass) were log-transformed
for the statistical analysis.

Model averaging using the Bayesian
information criterion (BIC)

Including all possible interactions and combi-
nations of random and fixed effects for the
growth model would have resulted in an
extremely large, unwieldy model set. Including
too many models increases model selection
uncertainty leading to poor precision in our
predictions, while including too few models risks
overlooking important interactions between the
covariates leading to biased predictions. In order
to keep the model set to a reasonable size, we
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first selected the random effects that had to be
included, using a model with only main fixed
effects (no interactions), i.e., plant size, insect
herbivory treatment level, competition treatment
levels, and whether a plant was going to bolt and
flower. Because the population model was size
structured we only included models involving
size and one other main effect, and samples
across the space of models involving three or
four main effects. Further we evaluated a range
of plausible combinations of fixed effects and two
way interactions; considering all combinations of
the 6 possible two way interactions together with
all four main effects would have led to 64 models
for each thistle species, which was still too large a
model set. Note, those models that did include
interactions had relatively low statistical support
(BIC weights <10%). Thus, our final growth
model set consisted of 35 models for each species
(see Appendix for details). For all remaining
statistical models, it was feasible to evaluate all
combinations of main effects and pairwise
interactions, because whether or not a plant
bolted was not an issue. All combinations of
size, herbivory and competition led to 18 models.
In some cases we had fewer models because
either herbivory or competition had not been
manipulated in that particular experiment.

We used model averaging (Burnham and
Anderson 2002) to predict the vital rates as a
function of the explanatory variables because our
goal was predicting vital rates for different levels
of competition and insect herbivore pressure, and
model averaging minimizes the combination of
bias and estimation variance to achieve the best
predictive power (Shmueli 2010). Specifically, we
first estimated the parameters of each model, and
then predicted the values of the life history
parameter for all conditions for each model. The
predictions from a model were multiplied by the
BIC weight associated with that model, and then
we summed the weighted predictions to obtain a
model averaged prediction for that life history
parameter. To avoid underestimating the uncer-
tainty associated with model selection in predict-
ing the population growth rate, we included all
models in the vital rates estimates used in the
IPMs. In a few cases there was a single best
model, but for consistency we used model
averaging throughout the paper. Models with
low weight make a small contribution to the
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Table 1. Bayesian Information Criterion (BIC) weights of fixed effects with model weights >10%. Complete list of
statistical models included in model averaging is presented in the Appendix. S = plant size, H = insect

herbivory treatment levels, C = interspecific competition treatment levels, B = bolting (adult, flowering) plant,
No. seeds/seeds = number of seeds per plant that produced seed, k = number of parameters (including the

intercept).
Vital rate Species Model k Log likelihood ABIC w

Growth C. vulgare S+B 3 —378.8 0 0.79
S+H+B 4 —377.9 3.84 0.12

C. altissimum S+H+B 6 —657.4 0 0.98

Survival C. vulgare S+H 5 —428.6 0 0.83
S+H+C 7 —423.9 4.08 0.11

C. altissimum H 4 —481.4 0 0.82

S+ H 5 —479.7 3.20 0.17

P(flowering) C. vulgare S 3 —139.5 0 0.84
C. altissimum S+ C 5 —230.4 0 0.88

P(seeds) C. vulgare S 3 -31.6 0 0.90
C. altissimum S+H 5 —247.8 0 0.90

No. seeds/seeds C. vulgare S+ H 6 —180.0 0 0.35
S+H+SH 7 -177.6 0.186 0.32

S 5 —183.0 0.668 0.25

C. altissimum S+ H 5 —272.4 0 0.75

S+H+SH 6 —271.3 2.80 0.19

Recruitment C. vulgare C 5 —598.9 0 0.77
C+H+ HC 8 —594.0 3.62 0.13

C+H 6 —598.7 4.01 0.10

C. altissimum C+H+ HC 8 —431.0 0 0.99

averaged response. For estimating the standard
error of each of these predictions, we used the
delta method (Powell 2007) because each predic-
tion was a sum of random variables (the
coefficients in each model). This standard error
is the population standard error because it does
not include the variance attributed to random
effects, but only the variance from the estimated
population level fixed effects.

REsuLTs

Vital rates

Complete statistical models are presented in
the Appendix (Tables A1-A6). Generally, the
statistical models with fewer parameters provid-
ed similar explanatory power to the models with
more parameters (indicated by small ABICs). To
characterize the most influential effects, we
discuss only those statistical models with >10%
of the BIC weights (Table 1); however, for the
IPMs, all models were used.

For the introduced C. vulgare (Table 1), the
change in plant size (growth) from one year to
the next was most influenced by the main effects
of plant size, plus whether a plant was going to
bolt and flower. Plant survival was most influ-
enced by herbivory level plus plant size; whether

ECOSPHERE % www.esajournals.org

or not a plant flowered did not affect survival
probability. The probabilities of both a plant
flowering, and of a flowering plant producing
seed, were best predicted by models that
included only the main effect of plant size. For
plants that produced seeds, the number of
potentially viable seeds was best explained by
models that included the main effects of both
plant size and herbivory level plus the interaction
of size and herbivory. Recruitment was most
strongly influenced by level of interspecific
competition.

For the native C. altissimum (Table 1), the
change in plant size from one year to the next
was best predicted by the plant growth model
that included the three main effects: insect
herbivory level, plant size in the previous year,
and whether a plant was going to bolt and
flower. Plant survival was best explained by
insect herbivory level only. The probability of
flowering was best predicted by the main effects
of plant size and competition level. The proba-
bility of a flowering plant producing seeds, as
well as the total number of potentially viable
seeds produced if a plant produced any seed,
were best explained by the main effects: plant
size and insect herbivory level. Recruitment was
strongly influenced by a combination of: compe-

April 2015 < Volume 6(4) % Article 69



A
Cirsium vulgare

log A Wf
<

Ambient H. Reduced H.
o 1
™ -1 —‘7

N
Nl i | N
i 1

o« J
Low Med High Low Med High
Degree of Interspecific Competition
B L .
Cirsium altissimum
log &
< -

11T 1T
TLJL__JLI—I L}f

Low Med High Low Med High

Degree of Interspecific Competition

Fig. 2. Median population growth rates (log A; zero=
stable) of C. vulgare and C. altissimum at three levels of
interspecific competition (low = 0-5%, medium = 25-
35%, and high = 65-90% [ambient]), when insect
herbivory is either ambient (high) level (light grey
bars) or experimentally reduced level (dark grey bars).
Tick lines on each bar indicate 5th and 95th percentiles
of bootstrapped log A-value distributions.

tition level, insect herbivory level, and interaction
between these two factors.

Overall, insect herbivory and interspecific
competition strongly influenced more vital rates
of the native thistle than of the introduced thistle
(Table 1). While insect herbivory influenced seed
production and survival for both thistle species,
herbivory also influenced plant growth of the
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native C. altissimum. Competition affected re-
cruitment in both species, and also flowering
probability in C. altissimum. Thus, both interac-
tions influenced plant vital rates similarly, but
with several additional effects on the native
versus on the introduced thistle.

Predicted population growth rates

The model predictions were qualitatively
similar for both Cirsium species (Fig. 2). For both
thistles, populations declined (log A < 0) with
ambient levels of both insect herbivory and high
levels of interspecific competition (65-90% veg-
etation cover). Reduced herbivory with ambient
competition leads to population stasis for the C.
vulgare but population decline for C. altissimum.
Population stasis (where 5th and 95th percentiles
included zero) occurred for C. altissimum with
ambient insect herbivory at reduced levels of
interspecific competition (low or medium: 0-35%
cover). Finally, populations of both species grew
(log A > 0) when both insect herbivory and
interspecific competition were reduced.

Evaluation of the magnitude of reduction in
average population growth rate caused by
competition and by herbivory suggested that
the two interactions together had a greater
impact on the population growth of the intro-
duced C. vulgare than on the native C. altissimum,
for two reasons. First, the difference in median
log A between ambient and reduced herbivory
levels at low and high competition levels was
larger for the introduced C. vulgare than for the
native C. altissimum (Fig. 2; Appendix: Table A7).
Reducing insect herbivory increased log A for C.
vulgare by 3.28 at low competition, 1.64 at
medium competition, and 0.53 at high competi-
tion. By comparison, reducing herbivory only
increased log A for C. altissimum by 2.00 at low
competition, 2.12 at medium competition and
0.07 at high competition. These results demon-
strate that competition level influenced the
magnitude of the herbivore effect, and more so
for the introduced species than for the native
species.

Second, the same pattern held for log A
between all three competition levels within each
herbivory level. The difference in median log A
between the high, medium and low competition
levels within each herbivory level was larger in
C. vulgare than for C. altissimum (Fig. 2; Appen-
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dix: Table A7). Reducing competition from high
to low increased log A for C. vulgare by 1.52 with
ambient herbivory and by 4.27 with reduced
herbivory, whereas reducing competition simi-
larly for C. altissimum increased log A by only 0.48
at ambient herbivory and by 2.41 with reduced
herbivory. This contrast provides a basis for the
inference that competition had a larger impact on
the introduced C. vulgare than on the native C.
altissimum. Thus, overall, we found that the biotic
interactions had a greater negative effect on
population growth rate of the introduced thistle
than of the native thistle.

DiscussioN

Competition and herbivory together limit
introduced C. vulgare population growth

A primary objective of invasive species re-
search is to identify the conditions that limit
these species’ population growth and spread.
Although the spread of an introduced species can
be limited by negative interactions within the
recipient native community (Levine et al. 2004),
we know of only one previous model (Dauer et
al. 2012) that evaluated how simultaneous biotic
interactions influenced the population growth
rate of an introduced, potentially invasive plant.
Further, few studies have combined experimental
manipulations of competition and population
modeling to quantify strong effects of interspe-
cific competition in suppressing population
growth of a perennial plant (see Gustafsson and
Ehrlén 2003, Fréville and Silvertown 2005, Dauer
et al. 2012).

Our results suggest that population decline of
the known invasive thistle, C. vulgare, requires
ambient (high) levels of both interspecific com-
petition and insect herbivory; however, ambient
levels of interspecific competition or insect
herbivory alone are sufficient to produce popu-
lation stasis of C. vulgare, preventing its spread.
This finding is consistent with the bulk of
previous experimental studies that examined
the effects of insect herbivory on plant perfor-
mance and population growth rate (Louda and
Potvin 1995, Hamback and Beckerman 2003,
Miller et al. 2009, Schutzenhofer et al. 2009, Rose
et al. 2011). Ruderal species, including thistles,
often depend upon temporary refuges from
competition provided by disturbances in order
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to experience population growth (Harper 1977,
Crawley 1997). For C. vulgare in our region, given
the temporal variation in insect numbers (Taka-
hashi 2006), high competitive pressure in rela-
tively undisturbed sites (e.g., 60-95% cover) will
be important in decreasing recruitment success
and, so, limiting population growth. Our results
suggest that ambient insect herbivory in this
system closes the window of opportunity pro-
vided by disturbances. Actions that increase or
maintain the competitive environment experi-
enced by weeds should be powerful tools in
slowing their population growth and spread.

The other studies on C. vulgare in tallgrass
prairie generally support our finding that native
insect herbivores can suppress population
growth rates of this introduced weed. For
example, Louda and Rand (2002) and Andersen
and Louda (2008) reported extensive insect
herbivory on C. vulgare in tallgrass prairie.
Further, the median population growth rates
(log A = 0.4 with ambient herbivory; log A =1.5
with reduced herbivory) predicted by the matrix
model of Tenhumberg et al. (2008) fall within the
5th and 95th percentiles of the low and medium
competition levels of our study presented here.
However, in contrast to this study, only 1% of the
bootstrapped models with ambient herbivory in
the previous study predicted a C. vulgare
population growth rate of log A < 0 in the matrix
model, which suggested that ambient insect
herbivory was not sufficient to halt C. vulgare
population growth. That matrix model, however,
used early data on this ecosystem supplemented
by data from the literature for missing parameter
values. Thus, one hypothesis is that including
parameter estimates derived from different coun-
tries introduced large parameter uncertainty that
led to an overestimation of the predicted C.
vulgare population growth rates in this ecosys-
tem. An alternative hypothesis is that the
intensity of herbivory may have varied between
studies, since there can be large spatiotemporal
variation in the impact of insect herbivory on C.
vulgare vital rates (e.g., Eckberg et al. 2012). In
any case, the cumulative evidence clearly shows
that ambient levels of interspecific competition
and insect herbivory together are able to limit C.
vulgare population growth rate in the western
tallgrass prairie region.
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Effects of biotic interactions on the introduced
thistle vs. on the native thistle

Since C. vulgare is an introduced species, with
less time to adapt to competition and herbivory
pressures in eastern Nebraska than its native
congener C. altissimum has had and since C.
vulgare is less abundant than C. altissimum
(Andersen and Louda 2008), we asked whether
the interactions would reduce population growth
rate of C. vulgare more than that of C. altissimum.
Our models suggest that C. wvulgare suffered
somewhat more from interspecific plant compe-
tition and insect herbivory than did C. altissimum.
Within each level of herbivory, interspecific
competition from the resident plant community
had a greater negative effect on the population
growth rate of the introduced C. vulgare than on
the native C. altissimum (Appendix: Table A7).
This result likely reflects both lower juvenile
survival and lower proportion flowering success-
fully by C. vulgare than by C. altissimum with
ambient levels of herbivory, as well as smaller
size (biomass) and lower flowering success by C.
vulgare than C. altissimum with reduced herbiv-
ory (Suwa and Louda 2012). One hypothesis to
explain smaller size and lower flowering success
of C. vulgare than C. altissimum even with
reduced herbivory is that C. wvulgare is less
adapted to interacting with tallgrass prairie plant
species than its native congener, C. altissimum.
This result is consistent with several experiments
with another species that found competition had
a larger negative effect on population vital rates
of an introduced species than of its related, co-
occurring native species (Garcia-Serrano et al.
2007). Our study here, however, contributes new
information by having the modeling based on
experimental data to compare the effects of
competition on population growth rate in rela-
tion to the level of herbivory for an introduced
species vs. its co-occurring, native congener.

At both ambient (high) and experimentally
reduced (medium/low) levels of plant competi-
tion, insect herbivory reduced the population
growth rate of C. vulgare more than that of native
C. altissimum. One explanation for this effect is
that juvenile rosettes of C. vulgare experience
more herbivory than do those of C. altissimum
(Suwa and Louda 2012). These results are
consistent with several other studies that found
herbivory on an introduced species was greater

ECOSPHERE % www.esajournals.org

TENHUMBERG ET AL.

than that on its native congener in the habitat
(Agrawal and Kotanen 2003, Liu and Stiling
2006, Stricker and Stiling 2012). This result is also
consistent with the hypothesis that defenses
against herbivory in an introduced species are
absent or lower than in the resident, co-evolving
native congener (e.g., Crawley 1997). Overall, the
introduced C. vulgare was more affected by both
plant competition and insect herbivory than was
the native C. altissimum.

Management applications

It is useful to know that some potentially
invasive species can be constrained by resistance
from the resident community when managing
native ecosystems. Our study also demonstrates
the value of considering multiple, simultaneous
factors to drive population decline in a weedy
plant. The implication is that maintaining, and
perhaps enhancing, components of biotic resis-
tance could be one tool for invasive species
control. Competition in grasslands can be in-
creased by both enhancing recruitment of native
competitors by seeding them in, as well as
reducing frequency or intensity of disturbance
that opens invasible space. Also, insect herbivory
of the type recorded here can be maintained by
conserving non-problematic native plant popu-
lations, such as the native thistle, as sources of
herbivore antagonists of the introduced thistle.
When disturbances are required, for example fire
in tallgrass prairie, then ensuring that native
herbivores are present to quickly recolonize an
area minimizes the opportunity for non-natives
to establish. In sum, based on our results,
managing C. vulgare, and potentially similar
weedy species, will require the combined effects
of both interspecific competition and insect
herbivory, comparable to the ambient levels here.

Conclusion: competition and herbivory
provide biotic resistance

The goal of this study was to test the
hypothesis that biotic factors limit population
growth of the introduced thistle, C. vulgare, and
to compare the effects of those interactions with
those on its native congener, C. altissimum, within
western tallgrass prairie. With a combination of
manipulative experiments and IPMs, we found
that the combined effect of interspecific plant
competition and native insect herbivory from the
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resident community additively reduced popula-
tion growth rate of both species, and limited both
invasiveness of C. vulgare and the abundance
and, so weediness, of C. altissimum in tallgrass
prairie. The outcome highlights the importance
of maintaining multiple biological interactions in
native communities as a limit on plant invasive-
ness. Improved understanding of biotic mecha-
nisms limiting log A for potentially invasive
species and for their native relatives increases
our ability to predict when biotic resistance is
likely to contribute to invasive plant species
management.
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SUPPLEMENTAL MATERIAL

APPENDIX

Procedure used to create a priori model sets

For predicting growth including all possible
combinations of main effects and two way
interactions created too many models. Thus, we
evaluated a range of plausible combinations of
fixed effects and interactions. Because the popula-
tion model is size structured, we only included
models with the size variable. When including
interactions, we preferentially included interac-
tions with size for the same reason. The model set
is bounded by a null model with no covariates and
a global model containing all four main effects and
their two way interactions (two models).

The first group of models contained all
combinations of the main effects without inter-
actions that included the size variable (eight
models). The second group of three models
included size and one other effect, plus their
two way interaction. The third group of models
included size and two of the other three main
effects, plus both two-way interactions involving
size. The fourth group of models included the
same three main effect models plus all three two-
way interactions (three models). The final set of
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models included all four main effects and then
various combinations of two way interactions.
First, we added each possible single interaction
to the four variable model (six models). Second,
we included all possible combinations of five
two-way interactions (six models). Finally, third,
we evaluated four models with three interaction
terms: a model with interactions between her-
bivory, competition and bolting; a model with
interactions between size, herbivory and bolting;
a model with interactions between size compe-
tition and bolting; and, a model with interactions
between size, herbivory and competition (four
models).

For all remaining statistical models for param-
eters besides growth, it was feasible to evaluate
all combinations of main effects and pairwise
interactions, since whether a plant bolted was not
an issue. All combinations of size, herbivory and
competition led to 18 models. In some cases, we
had fewer models because either herbivory or
competition were not manipulated in that par-
ticular experiment.
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Table Al. List of statistical models included in model averaging of thistle growth. Cv=C. vulgare (Bull thistle), Ca
= C. altissimum (Tall thistle), k =number of parameters (including the intercept), loglik =log-likelihood; dbic =
difference in Bayesian Information Criterion (BIC), wbic = BIC weights, S = plant size, H = insect herbivory
treatment levels, C = interspecific competition treatment levels, B =bolting (adult, flowering) plant, 1 = model
uses vital rate averaged over all treatments.

Species Models k loglik dbic whbic

Cv S+B 3 —378.79 0 0.78723
S+H+B 4 —377.91 3.84304 0.11524
S+B+SB 4 —378.16 4.34353 0.08973
S+C+B 5 —378.06 9.73086 0.00607
S+H+B+SH+SB 6 —377.35 13.8983 0.00076
S+H+C+B 6 -377.5 14.2045 0.00065
S+ H+ B + SH + S:B + H:B 7 —376.3 17.3894 0.00013
S+H+C+B+SB 7 —377.02 18.8369 6.39E—05
S+H+C+B+ HB 7 —377.12 19.0321 5.80E—05
S+H+C+B+SH 7 —377.48 19.76 4.03E—-05
S+H+C+B+CB 8 —375.17 20.7241 2.49E—05
S+H+C+ B+ HC 8 —376.6 23.5915 5.93E—-06
S+H+C+B+8C 8 —377.39 25.1532 2.72E—-06
S+C+B+8SC+SB 8 —377.52 25.4128 2.39E-06
S+H+C+B+SH+ SB + HB 9 —376.08 28.136 6.12E-07
S+C+B+SC+ SB+ CB 10 —373.55 28.6711 4.68E—-07
S+H+C+ B+ HC+ HB + CB 11 —372.2 31.5558 1.11E-07
S+H+C+B+SC+SB+ CB 1 —373 33.1655 4.95E—08
S+H+C+B+SH+SB+ HC+ HB + CB 13 —368.36 35.0584 1.92E-08
S+H+C+B+SC+SH+ SB+ HB + CB 13 —370.4 39.1352 2.50E—09
S+H+C+B+SC+ SH+ HC 11 —376.02 39.1879 2.44E—09
S+H+C+B+S8C+ SB+ H:C+ HB + CB 14 —367.97 39.8726 1.73E-09
S+H+C+B+SC+SH+ SB+ H:.C+ HB + CB 15 —367.69 44.9051 1.40E-10
S+H+C+B+S8C+SH+ SB + H:C+ CB 14 —-370.71 45.3432 1.12E-10
S+H+C+B+SC+ SH+ SB + H:C + H:B 13 —373.94 46.2261 721E-11
S+H+C+B+5&C+SH+HC+HB+CB 14 —372.12 48.168 2.73E-11
S 2 —460.12 157.075 6.13E-35
S+C 4 —455.5 159.026 2.31E-35
S+H 3 —459.95 162.328 4.44E-36
S+H+C 5 —455.45 164.502 1.50E—-36
S+H+SH 4 —459.27 166.554 5.36E-37
S+C+8C 6 —453.99 167.18 3.92E-37
S+H+C+S8C+ SH 8 —453.3 176.988 2.91E-39
S+H+ C+SC+ SH + HC 10 —453.19 187.935 1.22E—-41
1 1 —510.55 252.351 1.26E—-55

Ca S+H+B 6 —657.37 0 0.97907
S+H+ B+ SH + SB 8 —655.48 8.39316 0.01473
S+H+C+B 8 —656.88 11.1939 0.00363
S+H+C+B+SH 9 —654.95 13.4167 0.0012
S+ H+ B+ SH + S:B + H:B 9 —655.2 13.9113 0.00093
S+H+C+B+SB 9 —656.75 17.0107 0.0002
S+H+C+B+ HB 9 —656.79 17.0945 0.00019
S+H+C+B+CB 10 —656.16 21.9197 1.70E—-05
S+H+C+ B+ HC 10 —656.28 22.1679 1.50E—-05
S+H+C+B+S8C 10 —656.45 22.5117 1.27E-05
S+B 5 —672.39 23.9578 6.14E—06
S+H+C+ B+ SH+ SB+ HB 1 —654.7 25.098 3.47E—06
S+B+SB 6 —672.2 29.675 3.52E-07
S+C+B 7 —670.84 33.034 6.57E—08
S+H+C+B+SC+ SH+ HC 13 —653.65 35.1562 2.27E-08
S+H+C+B+SC+SB+ CB 13 —655.05 37.9569 5.61E—-09
S+H+C+ B+ HC+ HB + CB 13 —655.53 38.9241 3.46E—-09
S+H+C+B+SH+SB+ HC+ HB+ CB 15 —652.7 45.4299 1.34E-10
S+H+C+B+SC+SH+ SB+ HB + CB 15 —653.49 46.9974 6.10E—11
S+H+C+B+8C+ SH+ SB+ H:C + HB 15 —653.5 47.0369 5.98E—11
S+C+B+SC+SB 10 —669.93 49.4614 1.78E-11
S+H+C+B+S8&C+ SH+ H:C+ HB + CB 16 —652.45 51.0212 8.16E—12
S+H+C+B+SC+ SH+ SB+ H:C+ CB 16 —652.51 51.1263 7.74E—12
S+H+C+B+SC+ SB+ HC+ HB + CB 16 —654.32 54.7489 1.27E-12
S+H+C+B+SC+SH+ SB+ H:.C+ HB + CB 17 —652.33 56.857 4.41E-13
S+C+B+SC+SB+ CB 12 —668.83 59.4333 1.22E-13
S+H+C 7 —791.6 274.556 2.35E—-60
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Species Models k loglik dbic whbic
S+H 5 —799.12 277413 5.64E—61
S+ H + S:H 6 —796.5 278.27 3.67E—61
S 4 —804.37 281.837 6.18E—62
S+C 6 —799.05 283.373 2.86E—62
S+H+ C+S8C+ SH 10 —788.53 286.656 5.55E—63
S+ C+8C 8 —798.92 295.269 7.48E—65
S+H+ C+SC+SH+ HC 12 —786.98 295.73 5.94E—65
1 3 —891.17 449.352 2.60E—98

Table A2. List of statistical models included in model averaging of thistle survival. Cv = C. vulgare (Bull thistle),
Ca=C. altissimum (Tall thistle), k =number of parameters (including the intercept), loglik =log-likelihood; dbic
= difference in Bayesian Information Criterion (BIC), wbic = BIC weights, S = plant size, H = insect herbivory
treatment levels, C = interspecific competition treatment levels, 1 = model uses vital rate averaged over all

treatments.

Species Models k loglik dbic whbic

Cv S+H 5 —428.593 0 0.830231
S+H+C 7 —423.903 4.079979 0.107955
S+ H+ S:H 6 —428.592 6.727979 0.028723
H+C 6 —428.611 6.772993 0.028084
S+H+ C+ SH 8 —423.847 10.69784 0.003946
S+H+ C+SC 9 —422.537 14.80768 0.000506
S+H+ C+ HC 9 —423.319 16.37099 0.000231
H 4 —440.735 17.55855 0.000128
S 4 —440.886 17.85519 0.00011
H+ C+ HC 8 —428.071 19.15482 5.75E—05
S+H+C+SC+SH 10 —422.518 21.49965 1.78E—05
S+H+ C+ SH + HC 10 —423.201 22.86459 9.00E-06
S+H+ C+ S:.C+ HC 11 —422.378 27.9497 7.08E—07
S+ C 6 —439.592 28.72685 4.80E—07
S+H+ C+ S:.C+ S:H + H:C 12 —422.364 34.6515 2.48E—08
S+ C+SC 8 —437.859 38.72218 3.24E-09
C 5 —448.008 38.83656 3.06E—09
1 3 —455.662 40.68222 1.22E-09

Ca H 4 —481.422 0 0.819971
S+H 5 —479.652 3.204552 0.165173
H+C 6 —479.611 9.870769 0.005894
S+ H+ S:H 6 —479.651 9.949838 0.005665
1 3 —490.783 11.97371 0.002059
S 4 —488.536 14.22765 0.000667
S+H+C 7 —478.864 15.12138 0.000427
H+ C+ H.C 8 —477.499 19.13952 5.72E—-05
S+H+C+SC 9 —474.207 19.30144 5.28E—05
S+H+ C+ SH 8 —478.863 21.86732 1.46E—05
C 5 —489.21 22.32108 1.17E-05
S+H+ C+ HC 9 —476.94 24.76684 3.43E-06
S+H+ C+SC+ SH 10 —474.197 26.0275 1.83E—06
S+ C 6 —487.962 26.57267 1.39E—06
S+ C+SC 8 —482.427 28.99529 4.15E—-07
S+H+C+SC+ HC 11 —472.609 29.59728 3.07E-07
S+H+ C+ SH + HC 10 —476.82 31.27445 1.33E—07
S+H+ C+ S:.C+ S:H + H:C 12 —472.53 36.18574 1.14E—-08
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Table A3. List of statistical models included in model averaging of thistle flowering probability. Cv = C. vulgare
(Bull thistle), Ca = C. altissimum (Tall thistle), k = number of parameters (including the intercept), loglik =

loglikelihood; dbic = difference in Bayesian Information Criterion (BIC), wbic=BIC weights, S=plant size, H=
insect herbivory treatment levels, C = interspecific competition treatment levels, B =bolting (adult, flowering)
plant, 1 = model uses vital rate averaged over all treatments.

Species Models k loglik dbic Whic

Cv S 3 —139.468 0 0.836828
S+C 5 —135.993 4.560017 0.085594
S+H 4 —139.34 5.498842 0.053528
S+H+SH 5 —137.686 7.947145 0.015737
S+H+C 6 —135.866 10.06252 0.005465
S+H+C+SH 7 —134.18 12.44619 0.00166
S+C+8C 7 —134.629 13.34342 0.00106
S+H+C+S8C 8 —134.52 18.88134 6.65E—05
S+H+C+ HC 8 —135.014 19.87027 4.05E-05
S+H+C+S8C+ SH 9 —133.063 21.72453 1.60E—05
S+H+C+SH+ H:.C 9 —133.994 23.58655 6.32E—06
S+H+C+SC+ HC 10 —134.163 29.67982 3.00E—-07
S+H+C+SC+SH+ H:.C 11 —133.058 33.22582 5.10E—08
H+C 5 —170.317 73.22512 1.05E—-16
C 4 —173.399 73.6293 8.59E—17
1 2 —183.766 82.84589 8.57E—-19
H+ C+ H:C 7 —169.396 82.90099 8.34E—-19
H 3 —182.32 85.71322 2.04E-19

Ca S+C 5 —230.427 0 0.884341
S 3 —239.604 5.945243 0.045251
S+H+C 6 —230.381 6.112943 0.041611
S+C+68C 7 —227.87 7.295202 0.02304
S+H 4 —239.531 12.00237 0.002189
S+H+C+SH 7 —230.238 12.03011 0.002159
S+H+C+8C 8 —227.819 13.39846 0.001089
S+H+C+ HC 8 —229.848 17.45535 0.000143
S+H+SH 5 —239.387 17.92063 0.000114
S+H+C+8C+SH 9 —227.788 19.5406 5.05E—05
S+H+C+SH + H:.C 9 —229.758 23.48063 7.04E-06
S+H+C+S8C+ HC 10 —227.374 24.91603 3.44E—06
S+H+C+SC+ SH+ H:.C 11 —227.357 31.08659 1.57E-07
C 4 —249.811 32.56271 7.51E—-08
H+C 5 —249.74 38.6259 3.62E—09
H+ C+ HC 7 —249.394 50.34323 1.03E-11
1 2 —269.375 59.28176 1.19E-13
H 3 —269.292 65.32017 5.79E—-15

Table A4. List of statistical models included in model averaging of the probability of zero seed production by a

bolting plant. Cv = C. vulgare (Bull thistle), Ca = C. altissimum (Tall thistle), k = number of parameters
(including the intercept), loglik = log-likelihood; dbic = difference in Bayesian Information Criterion (BIC),
whbic = BIC weights, S= plant size, H= insect herbivory levels, C = interspecific competition levels, B =bolting

(adult, flowering) plant, 1 = model uses vital rate averaged over all treatments.

Species Models k loglik dbic whbic

Cv S 3 —31.6224 0 0.897102
S+C 4 —31.6198 4.658206 0.087363
S+C+8C 5 —31.2495 8.580955 0.012289
1 2 —39.677 11.44559 0.002934
C 3 —39.586 15.92719 0.000312

Ca S+H 5 —247.797 0 0.903723
S+H+SH 6 —246.98 4.506147 0.094959
H 4 —257.709 13.68363 0.000965
S 4 —258.719 15.70379 0.000352
1 3 —269.309 30.74354 1.91E-07
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Table A5. List of statistical models included in model averaging of the number of seeds produced per bolting
plant. Cv = C. vulgare (Bull thistle), Ca = C. altissimum (Tall thistle), k = number of parameters (including the

intercept), loglik = loglikelihood; dbic = difference in Bayesian Information Criterion (BIC), wbic = BIC
weights, S = plant size, H = insect herbivory levels, C = interspecific competition levels, B = bolting (adult,
flowering) plant, 1 = model uses vital rate averaged over all treatments.

Species Models k loglik dbic whbic

Cv S+H 6 —180.048 0 0.348186
S+H+SH 7 —177.561 0.185862 0.317287
S 5 —182.961 0.667831 0.249341
S+H+C 7 —179.882 4.828335 0.031142
S+H+C+SH 8 —177.454 5.130625 0.026774
S+C 6 —182.771 5.446251 0.022865
S+H+C+ HC 8 —180.49 11.20266 0.001286
S+H+C+SH+ H:C 9 —178.154 11.69017 0.001008
S+H+C+8C 8 —180.987 12.19636 0.000782
S+H+C+8C+ SH 9 —178.494 12.37023 0.000717
S+C+8C 7 —183.921 12.90504 0.000549
S+H+C+S8C+ HC 9 —181.512 18.40539 3.51E—-05
S+H+C+SC+SH+ H:C 10 —179.171 18.88367 2.76E—05
H+C 6 —260.95 161.8052 2.55E—-36
H 5 —264.165 163.0765 1.35E—-36
C 5 —265.097 164.9387 5.32E-37
1 4 —268.353 166.2929 2.70E-37
H+ C+ H:C 7 —261.162 167.3879 1.56E—37

Ca S+ H 5 —272.392 0 0.754721
S+H+SH 6 —271.273 2.80399 0.185741
H 4 —277.46 5.091624 0.059177
S 4 —282.606 15.38351 0.000345
1 3 —288.159 21.44739 1.66E—05

Table A6. List of statistical models included in model averaging of recruitment probability. Cv = C. vulgare (Bull
thistle), Ca = C. altissimum (Tall thistle), k = number of parameters (including the intercept), loglik = log-
likelihood; dbic = difference in Bayesian Information Criterion (BIC), wbic = BIC weights, S = plant size, H =
insect herbivory levels, C =interspecific competition levels, B =bolting (adult, flowering) plant, 1 =model uses
vital rate averaged over all treatments.

Species Models k loglik dbic whbic

Cv C 5 —598.908 0 0.770172
C+H+ HC 8 —594.018 3.616345 0.126272
C+H 6 —598.682 4.013013 0.103556
1 3 —745.139 283.5299 2.08E—-62
H 4 —744.919 287.5562 2.78E—63

Ca C+H+HC 8 —430.998 0 0.999995
C 5 —450.031 24.66914 4.40E—06
C+H 6 —449.883 28.83785 5.47E-07
1 3 —579.655 274.984 1.94E—-60
H 4 —579.483 279.1066 2.47E—-61
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Table A7. Population growth rate, log A, for different levels of insect herbivory at each level of competition. The
numbers in brackets indicate 5th and 95th percentile limits of bootstrapped log A-value distributions. “Max
Competition Effect on log A" indicates the difference in log A values between the ambient high and reduced
low Competition treatments (log }\'ambient high competition — 108 xlow reduced competition)~

C. vulgare C. altissimum
Ambient Reduced Ambient Reduced Herbivory
Competition level herbivory herbivory herbivory herbivory effect on
Ambient, high -1.27 —-0.74 —-0.88 —0.81 exotic > native
(—2.35, —0.25) (—1.59, 1.18) (-1.42, —0.32) (-1.22, —-0.57)
Medium, reduced —0.05 1.59 —0.64 1.48 native > exotic
(—1.11, 1.18) (0.25, 3.13) (—-1.32, 0.55) (0.40, 2.90)
Low, reduced 0.25 3.53 —-0.4 1.6 exotic > native
(—1.00, 1.70) (2.5, 4.58) (—1.59, 0.51) (0.4, 3.14)
Max competition effect on log A 1.52 4.27 0.48 241

Note: Competition levels are: ambient, high = 65-90% cover; medium, reduced = 25-35% cover; low, reduced = 0-5% cover.

SUPPLEMENT

Data files and R scripts for statistical analysis and integral projection modeling described in the
main text (Ecological Archives, http://dx.doi.org/10.1890/ES14-00389.1.sm).
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