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Summary

 

1.

 

Parameter uncertainty challenges the use of matrix models because it violates key assumptions
underlying elasticity analyses. We have developed a matrix model to compare Monte Carlo meth-
ods with elasticity analyses for estimation of the relative importance of factors in the asymptotic
population growth rate, 

 

λ

 

, of  

 

Cirsium vulgare

 

 (spear thistle) in Nebraska, USA.

 

2.

 

We calculated 

 

λ

 

 for a base model using 11 parameter estimates available for Nebraska popula-
tions plus eight extracted from the literature, causing parameter uncertainty. We then calculated 

 

λ

 

for 10 000 alternative models using Monte Carlo parameter estimation; parameters were drawn
from the full range of each parameter in the literature and partial rank correlation analysis (PRCC)
was used to order the parameters by the magnitude of their effect on 

 

λ

 

.

 

3.

 

Monte Carlo analysis found that insect floral herbivory, affecting the regeneration transition,
was the most important parameter affecting 

 

λ

 

, whereas elasticity analyses suggested that the tran-
sition from small to medium size was the most significant. Statistical comparison, using PRCC
vs. lower level elasticity (LLE), showed that the Monte Carlo analysis provided a more accurate
assessment.

 

4.

 

As 

 

λ

 

 > 1 in 99% of the model runs even with significant floral herbivory, we added two para-
meters influenced by weed management (probability of  large thistles dying without producing
seed and proportion of  seeds that failed to germinate). Simulations that included reductions in
these parameters, along with floral herbivory, led to 

 

λ

 

 < 1 in 17% of the runs, suggesting these three
factors interact to produce the low densities observed for this invasive thistle in our study area.

 

5.

 

Synthesis and applications.

 

 This study demonstrates the utility of the Monte Carlo approach for
modelling weed dynamics with parameter uncertainty and multiple, potentially interacting, para-
meters. Invasive population growth by 

 

C. vulgare

 

 could be limited by a combination of  weed
management practices and the biotic resistance imposed by native floral herbivores.

 

Key-words:

 

bull thistle, floral herbivory, partial rank correlation analysis, plant population
dynamics, sensitivity analysis

 

Introduction

 

Matrix projection models are a prevailing tool for analys-
ing the dynamics of stage-structured populations (Seno &
Nakajima 1999; Ehrlén 2000; Caswell 2001; Mandujano 

 

et al

 

.
2001). To be realistic, however, such models require multiple
parameters, and one constraint on wider use is the availability of
sufficient data to estimate model parameters. Integral projection
models (Ellner & Rees 2006) often require fewer parameters, and

maximum likelihood and Bayesian methods can estimate
missing or incompletely known parameters, using time series
data (Hilborn & Mangel 1997; Gross, Craig & Hutchinson 2002).
These methods, however, are difficult to implement; so addi-
tional ways to resolve high parameter uncertainty are needed
for models to contribute to the management of weedy plants.

Perturbation analyses, used to rank the relative impor-
tance of factors influencing population growth rate, currently
examine elasticity and sensitivity of  matrix transition rates
or parameter values (Caswell 2001). Such local perturbation
analyses should be confined to examining the consequences
of very small perturbations of single, well-known, independent
parameters (Horvitz & Schemske 1995; Caswell 2001). Thus
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alternative methods are needed if  there is parameter uncer-
tainty, values vary widely or the effect of perturbation of one
parameter is not independent of other values. Nevertheless,
many authors suggest that elasticities give robust predictions
of  the effect of  large changes in demographic parameters
on the asymptotic population growth rate, 

 

λ

 

 (Caswell 2000;
de Kroon, van Groenendael & Ehrlén 2000). For example,
Caswell (2001) argued that ‘although elasticities are local
slopes, they do a good job of  predicting the results of  even
relatively large (

 

± 

 

50% at least) perturbations’. As a con-
sequence, the results of sensitivity or elasticity analyses are
used to infer the effect of large perturbations and to derive
management recommendations (Crooks, Sanjayan & Doak
1998; Fisher, Hoyle & Blomberg 2000; Hunt 2001).

We have used Monte Carlo methods, to assess the effect
of large parameter uncertainty on matrix model predictions
of 

 

λ

 

, and partial rank correlation analysis (PRCC), to deter-
mine the relative importance of each contributing variable
(Blower & Dowlatabadi 1994). PRCC results are comparable
to elasticity but the Monte Carlo/PRCC approach is a global
perturbation analysis, successfully applied to complex ecolo-
gical models (Blower & Dowlatabadi 1994; Hilborn & Mangel
1997; Rushton 

 

et al

 

. 2000a,b; Tenhumberg 

 

et al

 

. 2004) but
not previously to matrix models.

We focused on the relative importance of factors influen-
cing the population growth rate of the Eurasian thistle 

 

Cirsium
vulgare

 

 (Savi) Ten., a highly invasive monocarpic thistle (Jul-
ien & Griffiths 1998) and a noxious weed in nine USA states
(http://plants.usda.gov/, accessed November 2005). Despite
its presence for more than 50 years, 

 

C. vulgare

 

 occurs only at
low densities in western tallgrass prairie in eastern Nebraska,
USA, along rural roadsides and in perennial pastures (Stub-
bendieck, Friisoe & Bolick 1994; Andersen & Louda 2007). A
high level of floral herbivory significantly reduces seed pro-
duction in Nebraska (Louda 1999; Louda & Rand 2002) and
weed management practices probably affect its demography in
rural areas. Roadside vegetation is generally mowed early and
late in the growing season, and intensive row-crop agriculture
involves cultivation and herbicide application.

Our overall aim was to understand the factors that lead to
the observed population stasis in this invasive thistle. Our first
goal was to evaluate the relative contribution of floral herbiv-
ory to the 

 

C. vulgare

 

 population growth rate and to identify
parameters still requiring additional local data. The para-
meters for the base matrix model were extracted from studies
of local populations performed over the last 15+ years, supple-
mented by parameter estimates from the literature. As eight of
the estimates had to be derived from foreign populations,
parameter uncertainty was high; thus a second goal was to
compare a global perturbation analysis using Monte Carlo
simulations to the usual local sensitivity and elasticity ana-
lysis for evaluating relative parameter importance in this
situation. Our third goal was to explore the consequences of
weed management practices on 

 

λ

 

, by including the proportions
of bolting thistles that die before producing seed (increased
by mowing) and seed germinating successfully (reduced by
dispersal into intensively managed cropland) in the model.

 

Methods

 

MATRIX

 

 

 

MODEL

 

 

 

STRUCTURE

 

We constructed stage-classified, pre-breeding census (late summer),
birth-pulse matrix models (Caswell 2001) using annual time steps
(Fig. 1). We modelled 

 

C. vulgare

 

 reproduction as a birth-pulse
process because seed release occurs during a relatively short period
near the end of the growing season (Barkley 1986). We assumed
seed was produced and released after the population census. Seeds
either die or overwinter; surviving overwintered seeds germinate
and grow into small plants by the next census or they enter the seed
bank. As survival of seeds in the soil for more than two winters is
very low (van Breeman & van Leeuwen 1983), the seed bank con-
sisted only of seeds that stayed in the soil for a second winter, after
which we assumed that they either germinated or died. The model
had four size-stage classes: seed bank (SB), small-sized plants (S;
diameter < 10 cm, comprising mainly seedlings), medium-sized
plants (M; diameter 11–20 cm) and large-sized plants (L; diameter
> 21 cm), following Bullock, Hill & Silvertown (1994).

 

PARAMETER

 

 

 

ESTIMATION

 

, 

 

BASE

 

 

 

MODEL

 

To calculate the elements, 

 

a

 

ij

 

, of matrix 

 

A

 

, we used 19 parameters
suggested by the natural history of 

 

C. vulgare

 

 (Table 1 and Table 2).
For example, the transition rate for plants from the small (S) to the
medium (M) size class was calculated by multiplying four para-
meters: winter survival of small plants (

 

i

 

), proportion of small plants
growing to a medium size (

 

a

 

), summer survival of medium-sized
plants (

 

d

 

) and the proportion of medium-sized plants surviving
insect foliage herbivory (

 

g

 

).
Where available, we used parameter estimates derived directly from

 

C. vulgare

 

 populations in Nebraska to derive base values (Table 1;
bold values). Values from the similar, co-occurring, native 

 

Cirsium
altissimum

 

, were used as second choice (Table 1; underlined values).
Failing that, 

 

C. vulgare

 

 populations in other regions, both native and
non-native, were used, taking the midpoint of the large range of
values observed (Table 1). Our perturbation analysis to determine
the effect of this parameter uncertainty assumed that there was no
covariance between parameters; thus our results were biased towards
an overestimation of the effect on 

 

λ

 

.

 

Size-class transitions (a, b)

 

Local data on transition rates were supplemented with data for

 

C. vulgare

 

 in Britain (Bullock, Hill & Silvertown 1994). It was found

Fig. 1. Life cycle graph of the Cirsium vulgare population model. The
arrows indicate transitions between the size-stage classes.
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that, for plants that survived, 90% of the small-sized ones graduated
into medium-sized plants, while 10% graduated into large-sized plants;
37·5% of the medium-sized plants remained in the medium size class,
while 62·5% graduated to large-sized plants. Plant size reductions
were not observed, so size regression was not included in our model;
the transition from medium to small plants (Fig. 1) represented
small-sized plants recruited from seed produced by medium-sized
plants, seed that overwintered, germinated, survived and grew into
the small size class by the next census date. All small-sized plants
that did not die or grow into medium-sized plants were assumed to
grow into large-sized plants.

 

Survival rates (c–k)

 

Survival of 

 

C. vulgare

 

 rosettes generally increases with size (de Jong
& Klinkhamer 1986). For small plants (S), we recorded survival for

480 small seedling plants that germinated in 2004 in a seed-addition
experiment in a prairie restoration (M. Takahashi & S. Louda,
unpublished data) and 8066 seedlings that germinated in 2005 in an
experiment to quantify spatial dynamics of the 

 

C. vulgare–

 

insect
herbivore interaction (J. Eckberg, S. Louda & B. Tenhumberg,
unpublished data). For the 2004 cohort, 30·0% of the small (seedling)
plants survived the summer; in addition, 24·8% of those remaining
seedlings survived over the following winter. These survival rates
included the effects of foliage herbivory. For the 2005 cohort, we
found that, of the initial 3979 small (seedling) plants exposed to insect
foliage herbivory (controls = no insecticide), 26·6% survived the
summer; 51·6% in the insecticide-treated seedlings (

 

n

 

 = 4087)
survived the summer. So the proportion of small plants that died
from foliage herbivory was 1 – the survival ratio of both experi-
ments (1 – 0·266/0·516 = 0·485). For convenience, in this model we
used the survival ratio (

 

f

 

 = 0·266/0·516 = 0·515) such that the survival

Table 1. Life-history parameters of Cirsium vulgare (S, small plants; M, medium plants; L, large plants). Base values were used to calculate the
transition rates in a matrix model of C. vulgare populations in eastern Nebraska, USA. Parameters derived directly from Nebraska populations
of C. vulgare are in bold and from the related native C. altissimum are underlined (parameter values are rounded to 3 decimal points); other base
parameters are the midpoint of the parameter range in the literature. The low and high points of the reported parameter range in the literature
were used as lower and upper limits in the Monte Carlo simulations. Where we could not extract a parameter range from the literature (n = 5;
indicated by *), we created a range by adding and subtracting 0·1 from the mean values; larger ranges would have resulted in some rates > 1·0.
Estimates of summer survival (c – d ) in the literature did not exclude leaf herbivory, making them conservative estimates that cause some
underestimation of λ calculated in the Monte Carlo simulations. However, experiments used to estimate the base value for summer survival in
Nebraska controlled for insect herbivory (insecticide application)

Range*

Variables Symbol Low High Base values

Probability of live plants graduating from S to M1,13 a 0·4 0·9 0·9
Probability of live plants remaining M (from M to M)1* b 0·224 0·424 0·324
Summer survival of S 1,2,5,6,14 c 0·2 0·94 0·516
Summer survival of M1 d 0·5 0·78 0·64
Summer survival of L1,2 e 0·7 0·99 0·85
Proportion of S surviving insect foliage herbivory5 f 0·25 0·63 0·515
Proportion of M surviving insect foliage herbivory7* g 0·75 0·95 0·85
Proportion of L surviving insect foliage herbivory7* h 0·65 0·85 0·75
Winter survival of S3,13 i 0·248 1·0 0·248
Winter survival of M3* j 0·8 1·0 0·9
Winter survival of L3* k 0·8 1·0 0·9
Flowering probability of L6,8 l 0·5 0·9 0·7
Flowering probability of M, as proportion of l 1,8,13 m 0·2 0·65 0·44
Seed production of L1,2,6,8,10 n 8000 30 000 22 119
Seed production of M, as a proportion of that by L14 o 0·3 0·7 0·5
Seed survival of floral herbivory2,8,9,10,11,13,14 p 0·003 0·6 0·058
Survival of post-dispersal predation1,8 q 0·4 0·8 0·6
Germination rate1,5,12,13,14 r 0·06 0·8 0·214
Seed bank germination rate1,4,8,12 s 0·0 0·1 0·03

1, Bullock, Hill & Silvertown(1994); 2, de Jong & Klinkhamer (1986); 3, de Jong et al. (1987); 4, Doucet & Cavers (1996); 5, J. Eckberg, S. Louda 
& B. Tenhumberg, unpublished data; 6, Forcella & Wood (1986); 7, Guretzky & Louda (1997); 8, Klinkhamer, de Jong & van der Meijden (1988); 
9, Louda (1999); 10, Louda & Rand (2002); 11, van Leeuwen (1983); 12, van Leeuwen (1987); 13, M. Takahashi & S. Louda, unpublished data; 
14, Young (2003).

Seed bank Small Medium Large

Seed bank 0 0 l m n o p q (1 – r) l n p q (1 – r)
Small c f s 0 l m n o p q r c f l n p q r c f
Medium 0 a d g i b d g j (1 – l m) 0
Large 0 (1 – a) e h i (1 – b) e h j (1 – l m) e h k (1 – l )

Table 2. Parameters multiplied to calculate
each size-class transition rate in the matrix
model for Cirsium vulgare. Symbols are defined
in Table 1
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rate of plants exposed to herbivores was calculated as 0·516 × 0·515
= 0·266. We set the range of f-values equal to the variation among
subplots in 2005 (mean ± SD = 0·25–0·63).

For survival of medium- and large-sized plants, we used the
midpoint of the published range to estimate these unknown rates.
Guretzky & Louda (1997) found that foliage herbivory on C. altissi-
mum reduced the survival of large rosettes by 25% but affected the
survival of the medium-sized established rosettes less. To include
such herbivory in the base model, we used a 15% reduction in sur-
vival for medium-sized plants and a 25% reduction for large-sized
plants as our parameter estimates; we handled these as we did f for
small plants (above).

Seed production rates (l–p)

The probability of flowering generally increases with C. vulgare
rosette size and, in the indigenous environment, plants can take
several years to reach flowering size (Klinkhamer, de Jong & van
der Meijden 1988; Bullock, Hill & Silvertown 1994). However, in
non-indigenous pastures in Queensland, Australia, C. vulgare
was biennial (Forcella & Wood 1986). In Nebraska, 30·8% of the
medium-sized rosettes in our experimental seed addition flowered
in their second year (M. Takahashi & S. Louda, unpublished data). As
no Nebraska data were available on the probability of flowering
by large rosettes, we used the midpoint of the published range
(Table 1 ; 70%, l = 0·7). To ensure that medium-sized plants always
had a smaller probability of flowering than large ones in the Monte
Carlo simulations, we created a parameter, m, and set m = 0·44,
such that the flowering probability of medium-sized plants was
constrained to 44% of the proportion of large-sized plants flowering
(i.e. flowering of medium-sized plants: lm = 0·7 × 0·44 = 0·308),
consistent with the data available. Similarly, we also used the
parameter o (Table 1) to constrain the calculation of seed production
of medium-sized plants that flowered (below).

To estimate production of viable seed, we used data on seed initia-
tion, floral herbivory and viable seeds recorded from 1997 to 1999
in the region (Louda 1999; Louda & Rand 2002; S. Louda, unpub-
lished data). Individual C. vulgare plants initiated an average of 22 119
florets (SE 3521) and produced an average of 1285 viable seeds
(SE 247); thus we set n = 22 119. Reduction of seed by insect floral
herbivory averaged 18 601 seeds plant–1 (84·1%) when strict criteria
of definitive evidence of insect feeding were used (Louda & Rand
2002), and 94·2% if all of the evidence of probable damage by
herbivores was included (S. Louda, unpublished data); we used the
latter value (P = 0·058) as the maximum estimate of the effect of
floral herbivory on viable seed production of populations in eastern
Nebraska.

Germination rates (q–s)

Viable C. vulgare seeds falling on the ground are readily consumed
or removed by seed predators such as rodents and ants; this post-
dispersal seed predation and loss can be as high as 68% (Klinkhamer
& de Jong 1988; Klinkhamer, de Jong & van der Meijden 1988).
We used the midpoint of the range of values in the literature in our
base model, leaving 60% of viable seeds escaping post-dispersal
predation.

The recorded germination rate of C. vulgare in this region was
highly variable. In 2004, for seeds planted in 50 × 50-cm plots along
a habitat gradient, 3–42% of the seeds germinated (M. Takahashi
& S. Louda, unpublished data). In 2005, for seeds planted in larger
plots (2 × 2 m) across a larger spatial scale and multiple sites (70 plots,

~538 seeds added per plot), the estimated germination by C. vulgare
across all plots was 21·4% (J. Eckberg, S. Louda & B. Tenhumberg,
unpublished data). Because of the larger sample size and broad
spatial representation, we used the latter estimate for our base
model. The expected number of seeds produced per plant that sur-
vive to germinate in spring is quite low (npq = 22 119 × 0·058
× 0·6 = 769), so it is unlikely that competition affects germination
and early seedling survival (J. Eckberg, S. Louda & B. Tenhumberg,
unpublished data). Therefore we assumed that recruitment was
density independent.

PERTURBATION ANALYSES

We compared three methods for calculating the sensitivity of C.
vulgare population growth rate to perturbation of model para-
meters. First, we calculated elasticity matrices (E) to assess the
relative importance of small linear perturbations of individual
matrix transitions (aij) for asymptotic population growth rate, λ,
when other parameters were held constant (Caswell 2001). So,
Eij = (aij/λ)(viwj /<w, v>), where v is the vector of scaled reproductive
values, w is the scaled age distribution, and the bracket < > indicates
the scalar product.

Second, because the calculation of each matrix element used
multiple parameters, we also calculated the elasticity for specific
components of the matrix entries, the lower level elasticities
(LLE; Caswell 2001). The lower level elasticity of parameter X
(LLEX) is calculated as the weighted sum of the sensitivities (Sij =
viwj /<w, v>) of those matrix elements that are influenced by X; thus,

 Lower level elasticity values also assess
the effect of small linear perturbations of single parameters;
however, in contrast to elasticity values of the matrix entries, lower
level elasticity values are not required to add up to 1.

Thirdly, we performed a Monte Carlo sensitivity analysis,
given the uncertainty imposed by multiple estimated parameters
and the possibilities of parameter interactions and non-linearities
in response to larger perturbations associated with weed population
dynamics. We used a Latin Hypercube (Blower & Dowlatabadi
1994) to produce 10 000 random parameter combinations, with each
parameter drawn (sampling without replacement) from a uniform
distribution bounded by the lowest and highest values in the C. vulgare
literature (Table 1). According to Blower & Dowlatabadi (1994),
the minimum number of simulations required for Latin Hypercube
sampling is 3/4K, given K equals the number of uncertain variables.
In our case K = 19 or 21, so the number of simulations we used is
orders of magnitude higher. No information exists on the true distri-
bution of parameter values, and with the lack of such knowledge
our uniform distribution is justifiable (Hilborn & Mangel 1997).
Alternate distributions led to similar results (see Tables S1 and S2 in
the Supplementary material). The only exception in this parameter-
ization was that we excluded an unusually low estimate for seed
reduction by floral herbivory (19%) from a non-native locale,
Australia (Forcella & Wood 1986).

Thus the Monte Carlo analysis consisted of 10 000 unique para-
meter combinations in which all parameters varied simultaneously;
we calculated λ-values for each parameter combination. Because input
variables were not normally distributed and the outcome variables
were generally non-linear functions of the input variables, non-
parametric tests of ranked data were necessary (Conover 1980). We
calculated partial rank correlation coefficient (PRCCs) as in Blower
& Dowlatabadi (1994) to determine the statistical relationship of
each parameter to the estimate of λ (Conover 1980) and the relative
importance of each variable (Blower & Dowlatabadi 1994). This

LLEx
i j

ij ij xx S a  ( / ) ( / ).
,

= ∑ ∂ ∂λ
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procedure enabled us to determine the independent effect of
each parameter, even with unknown levels of correlation among
parameters (Conover 1980).

EXAMINATION OF VARIATION IN TWO PARAMETERS 
AFFECTED BY WEED MANAGEMENT

The initial analyses above fell short of fully explaining the low popu-
lation densities of C. vulgare observed in eastern Nebraska; therefore,
we asked whether reduction in seed production and regeneration, the
aim of local land management practices, could interact with biolo-
gical factors to limit λ. We considered the probability of large plants
surviving to flower and set seed (e), which is reduced by roadside
mowing, and the probability of successful seed germination (r), which
is reduced in croplands by intensive weed management.

Thus, as a first approximation, we explored how much e and r
would have to be reduced in order to produce λ ≤ 1 at various levels
of floral herbivory. To do so, we defined two new parameters, the
proportion of large flowering plants dying early (u), for example in
response to mowing, and the proportion of seed lost to unsuitable
habitat (v), for example into cropland, such that the new proportion
of large plants surviving the summer was e(I – M) and the new
germination rate was T (I – V). We varied u and v simultaneously
between 0 and 1·0, assuming all other parameters were those in the
base model (where u and v = 0, by definition). By varying these two
parameters between 0 (no effect) and 1·0 (where all bolting thistles
died or no seeds germinated), we could quantify the effects, examine
the parameter interactions and calculate the relative importance of
such variation to the estimated λ, given the parameter uncertainties,
for varied levels of floral herbivory.

Finally, we used a Monte Carlo perturbation analysis to explore
the sensitivity of λ to variation in u and v, and determine the relative
contribution of these parameters to the population growth rate in
the presence of uncertainty in the 19 other model parameters. The
outcomes were viewed as predictions for further testing.

Results

COMPARATIVE ANALYSIS OF PARAMETER INFLUENCE 
ON λ

We analysed the matrix model (Fig. 1) using base parameter
values (Table 1) that represented the current best estimates
of vital rates for C. vulgare populations in eastern Nebraska.
The estimate of  the asymptotic population growth rate (λ)
for this model (Table 3) was 1·538, suggesting an annual
population increase of 53·8%, much higher than observed.
With floral herbivory set to zero, λ was even higher (5·20;
analysis not shown).

Elasticity analysis suggested that small changes in the
transition from small- to medium-sized plants had the great-
est impact on the base model estimate of λ. This transition
was influenced by the proportion of  plants growing from
small to medium size (a), winter survival of small-sized plants
(i), summer survival of  medium-sized plants (d ) and the
proportion of medium-sized plants surviving insect foliage
herbivory (g) (Table 2). Two of  these parameter estimates
(a, i) were from C. vulgare populations in eastern Nebraska
and one (g) was an estimate from the co-occurring native
C. altissimum. The second most important transition was
recruitment, represented by the large-plant to small-plant
transition (Table 3). This transition involved seven parameters
(Table 2), of which five (n, p, r, c, f ) were based on direct data
from C. vulgare populations in Nebraska (Table 1) whereas
two (l, q) had been estimated from the literature.

We then analysed the effect of perturbing single-component
parameters using LLE. The sign of the LLE values indicates
whether λ increases or decreases as a parameter increases; the
larger the absolute value, the higher its influence on λ. The
highest absolute LLE value was a = −0·571 (Table 4), suggest-
ing growth from small to medium size influenced λ the most.
Further, λ decreased as the proportion of plants growing from
small to medium size (a) increased (1 − a is the proportion of
plants growing to large size, with the highest seed produc-
tion). Other parameters with high (and identical) absolute
LLE values were: seed surviving floral herbivory (p); summer
and winter survival of small-sized plants (c, i); seed produc-
tion of large plants (n); proportion of small plants surviving
insect foliage herbivory ( f ); and survival of post-dispersal pre-
dation (q). These parameters are all in life-history loops that
determine recruitment (M → SB, M → S, L → SB, L → S),
but other parameters in these loops had much smaller LLE
values (0·251 and 0·085 for l and m).

Results from the PRCC1 of the Monte Carlo Latin Hypercube
perturbation are shown in Table 4 and Fig. 2. Only 1% of the
simulations, which encompassed 10 000 different random
parameter combinations across the reported range of each
parameter in the literature, predicted a population growth
rate of  λ = 1. In this analysis, λ was most sensitive to insect
floral herbivory (PRCC1 = 0·871) but it was not sufficient
to completely halt C. vulgare population growth in the
model. Other parameters with high PRCC1 values (> 0·5)
were: germination rate (r, PRCC1 = 0·796); summer and
winter survival of  small plants (c, i; PRCC1 = 0·680 and
0·646, respectively); and seed production of large plants (n,
PRCC1 = 0·633). We had field-based estimates for all of the

Matrix transition rates Elasticity matrix

Seed bank Small Medium Large Seed bank Small Medium Large

Seed bank 0·000 0·000 93·149 423·404 0·000 0·000 0·010 0·016
Small 0·008 0·000 6·752 30·689 0·026 0·000 0·146 0·219
Medium 0·000 0·121 0·110 0·000 0·000 0·295 0·023 0·000
Large 0·000 0·016 0·267 0·171 0·000 0·096 0·139 0·029

Table 3. Matrix projection model of Cirsium
vulgare in eastern Nebraska, USA, using base
values (Table 1). Estimated asymptotic popula-
tion growth rate λ = 1·538
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important parameters emerging from this analysis (Table 1).
In contrast to LLE, PRCC analysis differentiated among
parameters in the important life-history loops; for example,
the PRCC values of the parameters in the transition L → S
are as follows: 0·871 (p), 0·796 (r), 0·68 (c), 0·633 (n), 0·491
( f ), 0·401 (q), 0·324 (l ).

Finally, we compared the LLE from the local analysis
with PRCC1 values from the global analysis. The eight
parameters with the highest PRCC1 values also had very
high LLE values. However, the relationship between PRCC1

and LLE was non-linear, with LLE appearing to loose
resolution at the upper end of  variation. PRCC1 indicated

Variables LLE PRCC1 PRCC2

Reproductive failure of L flowering plants (mowed) (u) –0·743
Recruitment reduction by unsuitable habitat (crops) (v) –0·736
Seed survival of floral herbivory (p) 0·391 0·871 0·736
Germination rate (r) 0·358 0·796 0·608
Summer survival of S (c) 0·391 0·680 0·481
Winter survival of S (i) 0·391 0·646 0·455
Seed production of L (n) 0·391 0·633 0·451
Proportion of S surviving insect foliage herbivory ( f ) 0·391 0·491 0·329
Survival of post-dispersal predation (q) 0·391 0·401 0·258
Flowering probability of L (l ) 0·251 0·324 0·166
Summer survival of L (e) 0·264 0·186 0·140
Probability to graduate from S to M (a) –0·571 –0·458 –0·133
Proportion of L surviving insect foliage herbivory (h) 0·264 0·145 0·106
Seed production of M as a proportion of L (o) 0·156 0·142 0·068
Seed bank germination rate (s) 0·026 0·022 0·048
Summer survival of M (d ) 0·318 0·077 0·047
Flowering probability of M as proportion of L (m) 0·085 0·141 0·038
Proportion of M surviving insect foliage herbivory (g) 0·318 0·065 0·034
Winter survival of M ( j ) 0·161 –0·003 0·021
Probability of remaining in M (from M to M) (b) –0·044 0·007 –0·011
Winter survival of L (k) 0·029 –0·003 –0·004

Table 4. LLE and PRCC of each parameter
with λ, where λ compared by PRCC were
calculated in two Monte Carlo sensitivity
analyses (10 000 different parameter com-
binations each). The absolute values of LLE
and PRCC indicate the estimated relative
importance of each variable to λ (absolute
values in the upper 80th percentile in bold).
In PRCC1, the first two parameters (u, v)
were set to 0, whereas in PRCC2 these para-
meters were also varied (0–1) (see text)

Fig. 2. Population growth rate (λ) as a func-
tion of seed mortality (proportion of seeds
destroyed) as a result of insect floral herbivory
(1 – p), germination rate (r), summer survival
of small plants (c) and seed production of
large plants (n). The corresponding PRCC
are in the upper corner of each plot. Smooth
spline fits through the cloud of points illustrate
the pattern in effect of each parameter on λ
(dashed lines, λ = 1).
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substantial differences in impact between the most important
parameters ranked by LLE. For example, germination rate
had the second highest PRCC1 value but was ranked eighth by
the LLE analysis. Also, the parameter with the highest LLE
value was ranked seventh by PRCC1. Thus both statistical
analysis and direct comparison showed that, when parameter
uncertainty occurred and the effect of  disturbance on
multiple parameters was not independent, elasticity analysis
erroneously identified parameters as highly important
(false positive).

Conclusions of the PRCC analysis did not rely on the
choice of parameter distribution. The PRCC values from
Monte Carlo analyses using beta and normal distributions
were similar to the ones assuming uniformly distributed
parameter values (see Table S1, S2, and Fig. S1 in the Supple-
mentary material). The parameter ranges for the most impor-
tant parameter values (high PRCC values) were large; conse-
quently, we explored the effect of variation in the range of
parameter values on model predictions (see Figs S2–S4 in the
Supplementary material). In general, the larger the parameter
range, the smaller the average predicted population growth
rates (see Fig. S2 in the Supplementary material). Further-
more, as expected, if  the range was very small (± 0·0001% of
the nominal value), the agreement with the LLE was very
good (see Fig. S3a in the Supplementary material). However,
there were two exceptions. Winter survival of  small plants
had the second highest elasticity value (LLE = 0·391) but a
relatively small PRCC value (0·548); and the parameter with
the highest absolute LLE value (LLE of the ‘probability of
live plants graduating from S to M’ = −0·571) had only a
medium-high absolute PRCC value (–0·759). These dis-
crepancies indicated that local slopes can be dependent
on the values of  other model parameters (in the Monte
Carlo analysis parameter values were varied simultaneously).
Thus we found that the agreement between PRCC and LLE
weakens with increasing range.

MONTE CARLO ANALYSIS OF VARIATION IN TWO 
REGENERATION PARAMETERS

In the second Monte Carlo analysis (10 000 parameter
combinations), in which the additional parameters u and
v varied 0–1, we found that increases in pre-reproductive
mortality (u) and decreases in seed germination rates (v)
could help limit population growth rate (λ = 1) over a
range of parameter combinations at realistic levels of floral
herbivory (p). In Fig. 3, the combinations of  parameter
values that restrict λ to < 1 are represented by the area
above each contour line, representing a specific level of
seed escape from floral herbivory (from half  that observed,
p/2, to three times observed, 3p). In total, 17% of  the 1000
simulation runs predicted population stasis or decline
(λ = 1). In this analysis, the parameters u, v and p had the
highest PRCC2 values (Table 4) and the similar values sug-
gested that they contributed equally to the limitation of  C.
vulgare population growth rate in the tallgrass prairie region
of Nebraska.

Discussion

DEMOGRAPHIC ANALYSIS WITH PARAMETER 
UNCERTAINTY

In theory, all of the transition rates needed to build a demo-
graphic matrix can be measured directly (16 transitions for a
4 × 4 matrix). However, in this study, as many others, we had
to supplement local field data on transitions, and on processes
affecting those transitions, with information from the literature.
As data in the literature were from studies carried out for
completely different purposes and in different locations (dif-
ferent countries), parameter uncertainties were large; also, we
could not evaluate potential correlation among parameter
values.

The reliability of local sensitivity and elasticity analyses
given such parameter uncertainty is questionable. The range
of possible parameter values is too large to meet the under-
lying assumptions, such as infinitesimally small changes in
one parameter while all other parameters are held constant
and independence of transitions. In fact, using methods
adapted from robust control theory (transfer functions),
Hodgson & Townley (2004) and Hodgson, Townley & McCa-
rthy (2006) have demonstrated that the interpretation of
sensitivity analysis can be quite misleading. One reason is
that the response of  λ to larger changes in parameter values
is frequently non-linear. Further, even if  the response of  λ
is linear for all parameters, there can be interplay between

Fig. 3. Contour plots of the predicted combined effect of three
parameters, floral herbivory, reproductive failure (increased by
mowing) and reduced germination (increased by weed management
in croplands), hypothesized to be important in determining the
asymptotic population growth rate (λ) of C. vulgare thistle popula-
tions in Nebraska, USA. The contour lines represent parameter
combinations where λ = 1 for different proportions of seeds escaping
floral herbivory (p), with the observed proportion (P = 0·058) as
well as half  (p/2 = 0·029), twice (2p = 0·116) or triple (3p = 0·174)
that base value. The area above each line indicates λ < 1, whereas the
area below each line indicates λ > 1.
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the uncertainties in two parameters, such that management
recommendations will depend upon whether there is uncer-
tainty in one or both parameters (Deines et al. 2007).

As an alternative, we used a numerical global analysis
(Monte Carlo) to deal practically with potentially large
parameter uncertainty. Such analyses have been used for
estimation of confidence intervals for λ but rarely for pertur-
bation analyses. However, adding PRCC, as a statistical
evaluation of the importance of each parameter to λ in a
Monte Carlo analysis, allowed strong inference on the rela-
tive contribution of each parameter, even within important
life-history loops. The results in this study show that Monte
Carlo sensitivity analysis with PRCC, which does not require
assumptions about parametric correlation coefficients, pro-
vides a quantitative determination of the relative importance
of matrix parameters to λ and of  their contribution to the
limitation of a biological invasion.

In the global analysis, we found that λ was most closely
correlated with floral herbivory (Table 4) rather than with the
transition from small to medium size suggested by elasticity
analyses (Table 3). Some parameters with low PRCC values
had relatively high LLE values, demonstrating that LLE had
a high false-positive error rate in identifying the predominant
parameter(s) influencing λ. Thus this study supports sugges-
tions that sensitivity and elasticity analyses are ambiguous
in the presence of large parameter uncertainty (Hodgson &
Townley 2004), which is often the case in weed management.
Monte Carlo analysis provides an effective alternative appro-
ach to evaluating matrix model predictions of the relative
importance of factors influencing the asymptotic population
growth rate, λ, of weed populations.

EVALUATION OF PARAMETER INFLUENCE ON λ

The Monte Carlo analysis identified floral herbivore reduc-
tion of viable seed as the most significant naturally occurring
constraint on C. vulgare population growth in the region
(PRCC1 = 0·871; Table 4). The estimates of parameters with
the highest PRCC1 values (> 0·41) were based on field data
from Nebraska populations (compare Tables 1 and 2). Further,
the actual parameter uncertainty was not as large as expected,
as the small contribution of parameters with high uncertainty
lowered the overall uncertainty in the predicted λ.

In addition, our analysis of the base model showed that
observed levels of floral herbivory were not sufficient to
explain fully the low population densities of C. vulgare
observed in this region. If  the eight parameter estimates from
the literature (plus two from studies of the co-occurring native
relative) were sufficient to model C. vulgare in Nebraska, seed
loss to floral herbivores would have had to average 98·2% for
λ = 1, more than that recorded (71–96·5%) (Louda & Rand
2002; S. Louda, unpublished data). Our model is determinis-
tic and ignores temporal and spatial variation in parameter
values, and deterministic models tend to overestimate popu-
lation performance (Morris & Doak 2002). However, Doak,
Gross & Morris (2005) found that, in the absence of ‘good’
data, deterministic models can provide better predictions

than stochastic ones. One hypothesis to explain this discrep-
ancy is that our initial matrix model missed at least one
mechanism critical for explaining the observed population
stasis. This led us to explore the potential interaction of var-
iation in two regeneration parameters affected by weed man-
agement practices with the floral herbivory.

MONTE CARLO ANALYSIS OF VARIATION IN TWO 
REGENERATION PARAMETERS

In a second Monte Carlo analysis, we evaluated the condi-
tions under which reductions in two regeneration parameters
targeted by weed management practices (mowing, cropland
weed management) could result in thistle population control.
We found that increased proportions of large plants dying
before setting seed and seeds lost prior to germination, in
combination with floral herbivory, predicted λ ≤ 1 for a wide
range of values (Fig. 3). These results suggest that weed man-
agement practices that limit seed production and seedling
establishment, added to the extensive floral herbivory, con-
tribute to halting C. vulgare population growth in this region.
Thus understanding the low C. vulgare abundance in eastern
Nebraska, or the invasive potential of exotic plants in general,
requires evaluation of the interaction of land management
practices with other factors, such as biotic resistance. An
important next step would be a direct test of the effect of land
management practices on λ, and quantification of  spatial
patterns leading to the development of a spatially explicit model.

CONCLUSION

Ideally, studies of  plant demography should include all
necessary life-history parameters. However, limited time
and funding, as well as logistical constraints, often lead to
data sets that fall short of ideal. As a consequence, parameter
uncertainty and interdependencies are common, particularly
for invasive plants. Monte Carlo sensitivity analysis, along
with PRCC, provides a robust numerical alternative to
elasticity analysis in these cases. We found that the interactions
between floral herbivory and two parameters that can be
influenced by local weed management practices (survival
to flowering and successful seed germination) predict popu-
lation stasis across a wide range of parameter values, and
probably explain the limited population growth and invasive-
ness of C. vulgare in Nebraska. This finding is consistent with
the suggestion that multiple, interacting factors are generally
needed for effective weed control (Shea, Thrall & Burdon
2000; Grigulis et al. 2001; Huwer et al. 2005).

Acknowledgements

We are indebted to the colleagues and students who have discussed these issues
with us or contributed to the data collection. We also thank Andrew J. Tyre and
Joy Kogut for insightful suggestions to improve the manuscript. Partial funding
for work on thistle–insect interactions in Nebraska was provided by grants from
The NSF (DEB9616210, DEB0414777), The Nature Conservancy and the USDA
National Research Initiative Program 2001-35320-09882; 2004–02252 to S. M.
Louda, and the University of Nebraska Research Council Layman Funds to B.
Tenhumberg.



446 B. Tenhumberg et al.

© 2007 The Authors. Journal compilation © 2007 British Ecological Society, Journal of Applied Ecology, 45, 438 –447

References

Andersen, C.P. & Louda, S.M. (2007) Abundance of  and floral herbivory
on bull thistle in western tallgrass prairie. Proceedings of the 20th North
American Prairie Conference, Kearney, NE, 24–26 July 2006 (ed. J. Springer)
in press.

Barkley, T.M. Ed. (1986) Flora of the Great Plains. Great Plains Flora Associa-
tion, p. 1392. University Press of Kansas, Lawrence, KS.

Blower, S.M. & Dowlatabadi, H. (1994) Sensitivity and uncertainty analysis of
complex models of disease transmission: an HIV model as an example.
International Statistical Review, 62, 229–243.

van Breeman, A.M.M. & van Leeuwen, B.H. (1983) The seed bank of three
short-lived monocarpic species, Cirsium vulgare (Compositae), Echium vulgare
and Cynoglossum officinale (Boraginaceae). Acta Botanica Neerlandica, 32,
245–246.

Bullock, J.M., Hill, B.C. & Silvertown, J. (1994) Demography of  Cirsium
vulgare in a grazing experiment. Journal of Ecology, 82, 101–111.

Caswell, H. (2000) Prospective and retrospective perturbation analyses: their
roles in conservation biology. Ecology, 81, 619–627.

Caswell, H. (2001) Matrix Population Models, 2nd edn. Sinauer Associates
Inc., Sunderland, MA.

Conover, W.J. (1980) Practical Nonparametric Statistics, 2nd edn. John Wiley
and Sons Inc., New York, NY.

Crooks, K.R., Sanjayan, M.A. & Doak, D.F. (1998) New insights on cheetah
conservation through demographic modeling. Conservation Biology, 12,
889–895.

Deines, A., Peterson, E., Boekner, D., Boyle, J., Keighley, A., Kogut, J.,
Lubben, J., Rebarber, R., Ryan, R., Tenhumberg, B., Townley, S. & Tyre, A.
(2007) Harvesting peregrine falcon populations: guaranteeing population
growth under uncertainty. Ecological Applications, in press.

Doak, D.F., Gross, K. & Morris, W.F. (2005) Understanding and predicting the
effects of sparse data on demographic analyses. Ecology Letters, 86, 1154–
1163.

Doucet, C. & Cavers, P.B. (1996) A persistent seed bank of  the bull thistle
Cirsium vulgare. Canadian Journal of Botany–Revue Canadienne de Bota-
nique, 74, 1386–1391.

Ehrlén, J. (2000) The dynamics of plant populations: does the history of indi-
viduals matter? Ecology, 81, 1675–1684.

Ellner, S.P. & Rees, M. (2006) Integral projection models for species with com-
plex demography. American Naturalist, 167, 410–428.

Fisher, D.O., Hoyle, S.D. & Blomberg, S.P. (2000) Population dynamics and
survival of an endangered wallaby: a comparison of four methods. Ecolo-
gical Applications, 10, 901–910.

Forcella, F. & Wood, H. (1986) Demography and control of Cirsium vulgare
(Savi) Ten. in relation to grazing. Weed Research, 26, 199–206.

Grigulis, K., Sheppard, A.W., Ash, J.E. & Groves, R.H. (2001) The compara-
tive demography of the pasture weed Echium plantagineum between its
native and invaded ranges. Journal of Applied Ecology, 38, 281–290.

Gross, K., Craig, B.A. & Hutchinson, W.D. (2002) Bayesian estimation of a
demographic matrix model from stage-frequency data. Ecology, 83, 3285–
3298.

Guretzky, J.A. & Louda, S.M. (1997) Evidence for natural biological control:
insects decrease survival and growth of a native thistle. Ecological Applications,
7, 1330–1340.

Hilborn, R. & Mangel, M. (1997) The Ecological Detective: Confronting
Models with Data. Princeton University Press, Princeton, NJ.

Hodgson, J. & Townley, S. (2004) Linking management changes to population
dynamic responses: the transfer function of a projection matrix perturbation.
Journal of Applied Ecology, 41, 1155–1161.

Hodgson, D.J., Townley, S. & McCarthy, D. (2006) Robustness. Predicting the
effects of life history perturbations on stage-structured population dynamics
Theoretical Population Biology, 70, 214–224.

Horvitz, C.C. & Schemske, D.W. (1995) Spatio-temporal variation in
demographic transitions of a tropical understorey herb: projection matrix
analysis. Ecological Monographs, 65, 155–192.

Hunt, L.P. (2001) Heterogeneous grazing causes local extinction of edible per-
ennial shrubs: a matrix analysis. Journal of Applied Ecology, 38, 238–252.

Huwer, R.K., Briese, D.T., Dowling, P.M., Kemp, D.R., Lonsdale, W.M.,
Michalk, D.L., Neave, M.J.N., Sheppard, A.W. & Woodburn, T.L. (2005)
Can an integrated management approach provide a basis for long-term
prevention of weed dominance in Australian pasture systems? Weed Research,
45, 175–192.

de Jong, T.J. & Klinkhamer, P.G.L. (1986) Population ecology of the biennials
Cirsium vulgare and Cynoglossum officinale: an experimental and
empirical approach. PhD Dissertation. University of  Leiden, Leiden, the
Netherlands.

de Jong, T.J., Klinkhamer, P.G.L., Nell, H.W. & Troelstra, S.R. (1987) Growth
and nutrient accumulation of the biennials Cirsium vulgare and Cynoglossum
officinale under nutrient rich conditions. Oikos, 48, 62–72.

Julien, M.H. & Griffiths, M.W. (1998) Biological Control of Weeds. A World
Catalogue of Agents and their Target Weeds, 4th edn. CABI Publishing,
Wallingford, UK.

Klinkhamer, P.G.L. & de Jong, T.J. (1988) The importance of  small scale
disturbance for seeding establishment in Cirsium vulgare and Cynoglossum
officinale. Journal of Ecology, 76, 383–392.

Klinkhamer, P.G.L., de Jong, T.J. & van der Meijden, E. (1988) Production,
dispersal and predation on seeds in the biennial Cirsium vulgare. Journal of
Ecology, 76, 403–414.

de Kroon, H., van Groenendael, J. & Ehrlén, J. (2000) Elasticities: a review of
methods and model limitations. Ecology, 81, 607–618.

van Leeuwen, B.H. (1983) The consequences of predation in the population
biology of the monocarpic species Cirsium palustre and Cirsium vulgare.
Oecologia, 58, 178–187.

van Leeuwen, B.H. (1987) An explorative and comparative study on the
population ecology of Cirsium arvensis, C. palustre, and C. vulgare. PhD
Dissertation. University of Leiden, Leiden, the Netherlands.

Louda, S.M. (1999) Ecology of  interactions needed in biological control
practice and policy. Bulletin of the British Ecological Society, 29, 8–11.

Louda, S.M. & Rand, T.A. (2002) Native thistles: expendable or integral to
ecosystem resistance to invasion? The Importance of Species: Perspectives on
Expendability and Triage (ed. S.A. Levin), pp. 5–15. Princeton University
Press, Princeton, NJ.

Mandujano, M.C., Montana, C., Franco, M., Golubov, J. & Flores-Martinez,
A. (2001) Integration of demographic annual variability in a clonal desert
cactus. Ecology, 82, 344–359.

Morris, W.F. & Doak, D.F. (2002) Quantitative Conservation Biology; Theory
and Practice in Conservation Biology. Sinauer Associates Inc., Sunderland,
MA.

Rushton, S.P., Barreto, G.W., Cormack, R.M., Macdonald, D.W. & Fuller, R.
(2000a) Modelling the effects of mink and habitat fragmentation on the
water vole. Journal of Applied Ecology, 37, 475–490.

Rushton, S.P., Lurz, P.W.W., Gurnell, J. & Fuller, R. (2000b) Modelling the
spatial dynamics of parapoxvirus disease in red and grey squirrels: a possible
cause of the decline in the red squirrel in the UK. Journal of Applied Ecology,
37, 997–1012.

Seno, H. & Nakajima, H. (1999) Transition matrix model for persistence
of monocarpic perennial plant populations under periodically ecological
disturbance. Ecological Modelling, 117, 65–80.

Shea, K., Thrall, P.H. & Burdon, J.J. (2000) An integrated approach to
management in epidemiology and pest control. Ecology Letters, 3, 150–
158.

Stubbendieck, J., Friisoe, G.Y. & Bolick, M.R. (1994) Weeds of Nebraska and
the Great Plains. Nebraska Department of Agriculture, Bureau of Plant
Industry, Lincoln, NE.

Tenhumberg, B., Tyre, A.J., Pople, A.R. & Possingham, H.P. (2004) Do harvest
refuges buffer kangaroos against evolutionary responses to selective harvesting.
Ecology, 85, 2003–2017.

Young, L. M. (2003) Native insect herbivory community provides resistance to
invasive spread by an exotic thistle. Masters University of Nebraska-Lin-
coln, Lincoln, NE.

Received 3 October 2006; accepted 12 September 2007
Handling Editor: Fangliang He

Supplementary material

The following supplementary material is available for this article.

Table S1. PRCC values calculated from a Monte Carlo ana-

lysis assuming that all parameters follow a beta distribution

Table S2. PRCC values calculated from a Monte Carlo analysis
assuming that all parameters follow a normal distribution

Fig. S1. Population growth rate (λ) as a function of seed mortality
as a result of  insect floral herbivory (1 – p), germination rate
(r), summer survival of small plants (c) and seed production
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of large plants (n), assuming that all parameters follow a beta
distribution.

Fig. S2. The effect of parameter range on population growth
rate.

Fig. S3. Correlation between LLE and PRCC calculated for
different ranges around the nominal values.

Fig. S4. Correlation between LLE and PRCC calculated for
different ranges around the midpoint of the reported range.
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