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Abstract. Stage-structured population models predict transient population dynamics if
the population deviates from the stable stage distribution. Ecologists’ interest in transient
dynamics is growing because populations regularly deviate from the stable stage distribution,
which can lead to transient dynamics that differ significantly from the stable stage dynamics.
Because the structure of a population matrix (i.e., the number of life-history stages) can
influence the predicted scale of the deviation, we explored the effect of matrix size on predicted
transient dynamics and the resulting amplification of population size. First, we experimentally
measured the transition rates between the different life-history stages and the adult fecundity
and survival of the aphid, Acythosiphon pisum. Second, we used these data to parameterize
models with different numbers of stages. Third, we compared model predictions with
empirically measured transient population growth following the introduction of a single adult
aphid. We find that the models with the largest number of life-history stages predicted the
largest transient population growth rates, but in all models there was a considerable
discrepancy between predicted and empirically measured transient peaks and a dramatic
underestimation of final population sizes. For instance, the mean population size after 20 days
was 2394 aphids compared to the highest predicted population size of 531 aphids; the
predicted asymptotic growth rate (kmax) was consistent with the experiments. Possible
explanations for this discrepancy are discussed.

Key words: Acythosiphon pisum; aphids; life-history stages; matrix population models; population
dynamics; transient amplification.

INTRODUCTION

Structured population models are common tools used

to examine population dynamics. Most researchers

focus on analyzing the long-term, asymptotic population

growth rate (kmax, the largest eigenvalue of the

population projection matrix), the rate at which the

population grows at the stable stage distribution (but see

Burgman et al. 1993, Koons et al. 2005, 2007, Caswell

2007, Townley et al. 2007). However, a population can

be perturbed away from the stable stage distribution by

disturbances such as environmental catastrophes, selec-

tive harvesting regimes, and management actions (e.g.,

animal release and translocation programs); even in

established populations the assumption that the popu-

lation growth follows the asymptotic growth is unwar-

ranted in many cases (e.g., Clutton-Brock and Coulson

2002, Koons et al. 2005, Townley et al. 2007).

Deviations away from the stable stage distribution

change the population dynamics, resulting in sometimes

dramatically different transient dynamics (Townley et

al. 2007). The scale of the deviation and the time until

the population returns to the stable stage distribution

depend upon the population matrix structure, parameter
values, and hence the net reproductive value of a
population (Koons et al. 2005). If matrix size influences
predicted transient dynamics it raises the question of
how many life-history stages need to be included in a
matrix to accurately predict the nature of transient
population dynamics of real populations.

Short-term dynamics are highly relevant for many
ecological systems (Hastings 2004). Transient dynamics
not only influence short-term dynamics but they can
significantly alter the long-term population size as well
(Hodgson and Townley 2004, Koons et al. 2005).
Caswell (2001:95) wrote ‘‘More comparisons of asymp-
totic and transient dynamics would be useful.’’ As a
result scientists have started to explore the ecological
implications of this phenomenon, called ‘‘transient
amplification’’ (Neubert and Caswell 1997). In this
paper we define the transient amplification as a ratio of
the predicted transient and asymptotic population sizes.
The numerator is population size starting from an
unstable stage distribution (transient growth), and the
denominator is population size starting from the stable
stage distribution (asymptotic growth). A transient
amplification of 2.5 means that the population that
started from a particular unstable stage distribution is
2.5 times larger than a population of the same initial size
at the stable stage distribution. Since the stable stage
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distribution is a unique property of a population matrix,
the population size after t time steps assuming asymp-
totic growth is highly predictable (kt

max). In contrast,
there is a different transient dynamic for every possible
initial population structure. It has been suggested that
one can take advantage of transient behavior in
population management (Koons et al. 2005) by manip-
ulating the stage distribution to temporarily increase the
population growth rate (and thus reduce the extinction
risk). D. Hodgson, R. Rebarber, and S. Townley
(unpublished data) explore how to exploit transient
dynamics in captive breeding programs.

Although it is common to estimate the parameters of
projection matrices by analyzing life-history events for
individuals, as far as we know the predictions of matrix
models parameterized in this way have rarely been
empirically tested. The logistical difficulties in observing
populations for many years in relatively constant
environments are enormous. Bierzychudek (1999) con-
structed matrix models for two Arisaema triphyllum
populations and measured population sizes 15 years
later; only one of the populations performed as
predicted. This could be attributable to poor parameter
estimation due to limited data or to changing environ-
mental conditions and consequently changing parameter
values. Pfister and Stevens (2003) evaluated the accuracy
of matrix models as mean field approximation for
individual-based models. They argued that matrix
models do not always capture long-term population
growth trajectories in the presence of large individual
variation in growth; similar reservations might hold for
predicted transient dynamics.

We estimated stage-structured matrix models for the
aphid Acyrthosiphon pisum from data on individual life-
history events, explored the effect of model complexity
on predicted transient dynamics, and compared predict-
ed transients with empirically observed transients. We
also compared our observed population growth rates
with those predicted by another model that exhibits
strong transient dynamics (Gross et al. 2002); the
parameters of this model were estimated from stage-
structured time series data. Our laboratory experiments
confirm that real populations can show transient
amplification. The models with the highest number of
stage classes are most consistent with the experimental
results, although all models show ecologically significant
departures in total population size from observed.

MATERIAL AND METHODS

Life history of Acyrthosiphon pisum

Pea aphids, Acyrthosiphon pisum (Harris) (Homop-
tera: Aphididae), feed on the phloem of alfalfa plants and
other legumes (Dixon 1985; see Plate 1). From spring to
autumn aphids are viviparous (give birth to live young)
and parthenogenic (asexual reproduction); under labo-

ratory conditions the production of sexual morphs can
be completely avoided. Aphid populations consist of
winged (alatae) and unwinged (apterae) morphs; if

feeding conditions become unfavorable (e.g., low host
plant quality or crowded conditions) an increased
proportion of winged morphs are born, which disperse
to new habitats (Dixon 1985). Wingless morphs usually
remain in the vicinity of their birth location unless they
are disturbed (e.g., by predators; Nelson and Rosenheim
2006, Nelson 2007), thus single plants may host a few
generations of aphids. Aphids have five distinct life-
history stages: four juvenile instars and one adult stage
(Hutchinson and Hogg 1984, 1985), a fact that makes
them ideal candidates for stage-structured models.
Acyrthosiphon pisum have a very short generation time
and can develop from first instar to reproducing adult in
only 10 days (Campbell and Mackauer 1977). This rapid
development makes it feasible to observe aphid popula-
tions for several generations, which is a prerequisite for
experimentally studying transient population dynamics.

Experiment 1: Estimating model parameters

We conducted this experiment in an insect rearing room
under controlled conditions (23–258C, 12 h daylight, 40–
50% relative humidity). We transferred single wingless
adult aphids to clip cages (4 cm diameter) and attached
them to three-week-old alfalfa plants (Medicago sativa L.,
cv. ‘Vernal’; one cage per plant). Each pot (12.5 cm
diameter) contained four to six alfalfa plants, and each pot
contained up to four clip cages. After 12 hours we
removed all aphids, except one first-instar aphid per cage,
which were then followed through their life cycle
development. We began with 80 aphids and discarded
two cages in which adults did not produce any offspring;
this left us with a sample size of 78 aphids. Each cage was
identified by a unique number, allowing the identification
of each individual aphid. We recorded aphid development
and mortality in daily intervals. Exuviae in the cages
indicated transitions to the next developmental stage and
were removed upon discovery. In 11 cages we overlooked
an exuvia; these aphids were only used to determine adult
fecundity. Thus, we calculated the stage-specific frequency
of daily transitions to the next developmental stage based
on 67 aphids (see the matrix model for calculation of
transition probabilities), and the fecundity was recorded
from all 63 aphids that survived to the reproductive stage.
Once aphids molted to the adult stage we counted and
removed all newborns daily until all adult aphids died.
Adult survival and fecundity was analyzed using the
statistical software R (R Development Core Team 2006).
We modeled daily offspring production as a Poisson
process and used parametric survival analysis to estimate
age-independent (exponentially distributed survival times)
and age-dependent (Weibull distribution) survival func-
tions. We also compared these parametric survival curves
to nonparametric Kaplan Meier survival estimates (Cox
and Oakes 1984).

Experiment 2:

Measuring transient population dynamics (time series)

We used the same insect rearing rooms as in the

previous experiment, except the temperature increased
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by 28C unintentionally as a result of fluctuation in the

air-conditioning system of the building. We transferred

one adult aphid of unknown age to a large cage (45 cm

wide3 55 cm high3 50 cm deep) that initially contained

a single three-week-old alfalfa plant; we used a sample

size of 12 cages. Because our aphid cultures contained

very few winged (alate) aphids, we used wingless adults

to start this experiment. Compared to wingless (apter-

ous) aphids, alate A. pisum have a slightly lower total

fecundity (10% at 19.78C; Campbell and Mackauer

1977); some authors report lower fecundity of alate

aphids during the first few days of adulthood (the gross

reproductive rate was 20% lower in a field population in

Wisconsin, USA; Hutchinson and Hogg 1984). We do

not know of any study reporting fitness differences

between offspring of alate and apterous aphids.

For the next 20 days we counted aphid numbers in

daily intervals. To prevent density dependence from

affecting aphid population dynamics we increased the

number of plants in each cage to a maximum of eight

plants per cage. We did not follow the population

dynamics for a longer time because with increasing

aphid abundance it is increasingly difficult to accurately

count aphids and to avoid density-dependent effects on

aphid survival and fecundity. Additionally, based on our

model predictions, population growth rates reached an

asymptote after 20 days.

Matrix model

Our models consider population dynamics in the

absence of density dependence, such as in the early

phase of colonizing a new habitat (e.g., an alfalfa field).

We constructed stage-structured birth flow models with

a time step of one day. The models varied in the number

of juvenile and adult stages. To account for age-

dependent fecundity and mortality (Table 1), our most

complex models divided adults into seven different

stages: the first adult stage represents pre-reproductive

adults; the next five stages have durations of d¼ 3 d and

the last one lumps all remaining ages into a single age

class (Appendix A). The last adult age class had a very

small contribution to population growth as a result of

very low fecundity. Then we successively reduced the

model structure to a 333 matrix model (first and second

instar; third and fourth instar; adults), as used by Gross

et al. (2002). All models had the same general form:
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0 a32
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where s is the total number of stages in the model, the ai,j
are transition probabilities, and the fi are the fertilities or

contributions to the youngest stage class by reproducing

adults.

The transitions ai, j indicate the rate of surviving

individuals graduating from stage j to i. For larval

instars we could directly estimate these rates from

observed transitions using

âij ¼
mijX

h

mhj

where mi, j is the number of individuals in stage i that

were in stage j the previous time step. Because all models

considering two to four juvenile stages underestimated

observed transient peaks, we also constructed a model

with a negative binomial distribution of juvenile ages

within stages, which generally increases transient dy-

namics (Caswell 2001). This model delays individuals in

their progress through each larval instar by dividing each

juvenile period into k pseudo-stages. If T is the mean

duration and V(Ti ) the variance in duration of a larval

instar, then the number of pseudo-stages, ki, and their

transition probabilities, ci, are calculated as follows:

ki ¼
T̄ 2

i

VðTiÞ þ T̄i

ci ¼
T̄i

VðTiÞ þ T̄i
:

Assuming the pre-reproductive survival is ri, then the

transition to the next juvenile stage aiþ1, j is ric
ki

i . For

TABLE 1. Matrix models of the pea aphid Acyrthosiphon pisum.

Model N1 kmax N20 T20

Two juvenile stages þ one adult stage (0,0,1) 1.29 (1.26, 1.31) 293 (216, 415) 2.49 (2.37, 2.66)
Two juvenile stages þ two adult stages (0,0,0,1) 1.23 (1.21, 1.26) 143 (106, 201) 2.64 (2.52, 2.85)
Four juvenile stages þ one adult stage (0,0,0,0,1) 1.25 (1.23, 1.27) 170 (131, 228) 2.43 (2.32, 2.60)
Four juvenile stages þ two adult stages (0,0,0,0,0,1) 1.21 (1.19, 1.23) 100 (77, 133) 2.60 (2.47, 2.81)
Two juvenile stages þ seven adult stages (0,0,0,1,0,0,0,0,0) 1.30 (1.28, 1.33) 529 (370, 784) 3.53 (3.36, 3.8)
Four juvenile stages þ seven adult stages (0,0,0,0,0,1,0,0,0,0,0) 1.27 (1.24, 1.29) 298 (222, 414) 3.42 (3.25, 3.69)
Seven juvenile pseudo-stages
þ seven adult stages�

(0,0,0,0,0,0,0,0,1,0,0,0,0,0) 1.27 (1.25, 1.32) 283 (229, 518) 3.05 (2.75, 3.68)

Notes: Transient amplification after 20 days is calculated as N20/(kmax)
19, where N20¼ Ri ni,20 and ni,20 indicates the number of

aphids in stage class i, 20 days after releasing the founder aphids, which we assume to be in the second adult age class. The numbers
in parentheses are upper and lower 95% confidence intervals using bootstrapping.

� During bootstrapping the means and variances of juvenile developmental time and consequently the number of pseudo-stages
changed. Thus, the 95% confidence intervals are based on matrices with 6–9 juvenile pseudo-stages.
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adults, the ai, j are the products of the graduation and

survival probabilities. The probability of graduating to

the next stage for an adult is 1/d where d is the duration

of the stage, assuming a geometric distribution of

individuals within stages. For the stage-specific survival

of adults we use geometric averages over the entire stage.

Survival was modeled as a Weibull distribution; hence

the death rate at age x (McCallum 2000, Tenhumberg et

al. 2004a) is

jqðqxÞj�1

where q is the rate, and j is the shape parameter. Hence

the probability to survive from age x to xþ d is

l̄x to xþd ¼ exp �
Z xþd

x

jqðquÞj�1du

� �
¼ eðqxÞj�½qðxþdÞ�j

and the per time step survival of adults in stage i is Pi¼
(l̄x to xþd)

1/d.

The daily reproductive output of an adult aphid, the

fecundity bi, was modeled using a smooth spline term in

a generalized additive model with a log link and Poisson

error distribution.

The type of parameterization can affect the magnitude

of transients; Caswell andNeubert (2005) found that post-

breeding census birth pulse models have larger transients

than pre-breeding birth pulse models. However, aphids

reproduce more or less continuously during adulthood

fecundity so a1, j is best approximated with a birth flow

model; the fertility of individuals in stage i, fi, is

fi ¼
ffiffiffiffiffi
P1

p ð bi þ
X

j

tjibj

2
Þ

where P1 is the survival rate of first-instar A. pisum, bi is

the fecundity of adults in stage i, and tji accounts for

individuals that are transitioning from stage i to j (Caswell

2001). This formula takes into account the change in birth

rate of individuals transitioning to the next stage within a

single population census interval; it also assumes that on

average all observed first-instar larvae have survived half

of a census interval.

We projected the population growth rate, Ntþ1/Nt,

following from the introduction of a single adult aphid.

If the model consisted of more than one reproductive

age class we assumed that the aphid belonged to the

second youngest reproductive age class. It is safe to

assume that our source population (our main aphid

culture) was at the stable stage distribution, which is

highly skewed toward younger adults (data not shown).

Transient amplification

Let N1 be the initial population vector, and M1 be the

stable stage distribution vector of the same total

population size as N1. Here we use Tt;N1
to denote the

transient amplification at time t with initial population

N1, which is the ratio of population size at t starting

from initial state N1 (hence under the influence of

transient dynamics) to the population size that would

have existed at t assuming the population started with

M1 and grew at the asymptotic population growth rate.

Thus, Tt;N1
¼ 1 means the population is the same size at t

whether it started from M1 (asymptotic growth) or from

some other stage distribution N1 (transient growth).

Transient amplification depends on the initial stage

distribution (N1); different initial stage distributions lead

to greater or lesser degrees of amplification. Throughout

the paper we use a single initial stage vector with one

aphid in the first reproductive class, so we simplify the

notation and use Tt instead of Tt;N1
. Transient amplifi-

cation is therefore defined as

Tt ¼
X

i

ni;t

 !
=ðkmaxÞt�1

where ni,t indicates the number of aphids in stage class i

on day t. For example, T20 ¼ 2 indicates that 20 days

after the arrival of the first individual (i.e., one adult

aphid) population size is twice as high as expected under

asymptotic growth with normalized initial data. Assum-

ing asymptotic growth, the expected population size at

time t is proportional to (kmax)
t�1; if we start with a

single aphid the expected population size equals

(kmax)
t�1.

Bootstrapping confidence limits

We used nonparametric bootstrapping to generate

95% confidence limits for kmax, T20, and the total

population size at 20 days, N20. Bootstrapping was

carried out by sampling with replacement from the

population of individuals in experiment 1. Each selected

individual’s entire development and reproductive history

was included as a single unit; this ensured that within-

individual correlations were maintained. For each

bootstrap replicate, the survival curves, development

rates, and fecundity models were recalculated, the

matrices constructed, and the statistics kmax, T20, and

N20 calculated. We used 10 000 bootstrap replicates for

each matrix structure and calculated bias-corrected 95%

intervals from these distributions (Efron and Tibshirani

1993).

Monte Carlo simulation of demographic stochasticity

Predicted population size after 20 days was much

smaller than the average observed population size.

Because demographic stochasticity can influence popu-

lation growth rates (e.g., Morris and Doak 2002), we

used a Monte Carlo simulation to evaluate whether

demographic stochasticity could explain any disagree-

ment between experiment and model prediction. For the

simulation we used the programming language R (R

Development Core Team 2006). We simulated data

from matrices with juvenile pseudo-stages (which is most

consistent with observations). We simulated 10 repli-

cates from each of 1000 bootstrapped matrices; each run
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was initialized with a single aphid in the first reproduc-
tive adult class. We then projected the populations

forward in time for 20 days, including demographic
stochasticity by using Poisson distributions for fecundity
and multinomial distributions for survival and growth.

At each time step individuals in each stage on a single
plant either died, moved up to the next stage, or

remained in the current stage according to the proba-
bilities in the matrix; this is a multinomial random
variable. For example, if there are 10 second-instar

aphids one possible multinomial outcome is two
remaining in the first instar, seven growing to the third

instar, and one dying. In addition, aphids on a single
plant in the ith reproductive stage produced a random

number of first-instar aphids from a Poisson distribution
with the mean equal to fini,t; the total number of new
first instars is the sum over all reproductive stages.

Because we intended to simulate aphid population
growth under controlled laboratory conditions, we did

not include environmental stochasticity.

Perturbation analysis of the pseudo-stages model

It is possible that changes in the life-history rates

between experiments 1 and 2 are responsible for the
discrepancy in the observed and measured transient

dynamics. Possible reasons for these changes include
small temperature differences during the parameter
estimation experiments and the experiment recording

transient dynamics, performance differences between
single aphids (reared in clip cages) and aphid popula-

tions (Allee effects), and maternal effects (high-‘‘quality’’
founder aphids). We elaborate on these possibilities in

the discussion. It is not possible to estimate the matrix

parameters from our time series data as Gross et al.

(2002) did, because we did not track the stage structure

within the growing populations. Doing so would have

required destructive sampling and dramatically in-
creased the number of replicates needed. We designed

the experiment to get detailed data on the time evolution

of total population size. As a result, the matrix

parameters are ‘‘unidentifiable’’ based only on the time
series of total population size, since there are many

parameter combinations that yield similar trajectories.

To get around this issue we used a numerical

perturbation analysis to evaluate the magnitude of

parameter perturbations required to obtain an approxi-
mate match between empirical observations and model

predictions. This was similar to the ‘‘pattern based

modeling’’ approach (Grimm et al. 2005, Tyre et al.

2007). First, we perturbed vital rates individually to

determine which ones influenced transient dynamics the
most. For instance, it is reasonable to assume that higher

temperature or improved rearing conditions will decrease

the mean and variance of larval developmental time.

Second, we perturbed combinations of vital rates simul-
taneously using a grid search and selected the smallest

perturbations that matched three different aspects of the

empirical results: the timing of the initial transient peak in

the growth rate, the amplitude of the initial transient peak,

and the total population size on day 20.

RESULTS

A. pisum vital rates

The developmental time for the different juvenile instars

were: 1.96 d (variance [var]¼0.31) for the first instar, 1.90

d (var¼ 0.27) for the second instar, 1.90 d (var¼0.63) for

the third instar, and 2.31 d (var ¼ 0.46) for the fourth
instar. After reaching adulthood, aphids went through a

pre-reproductive period of 2.03 d (var ¼ 0.90). The first

offspring of the second generation were born eight days

after the start of the experiment. The juvenile mortality
rate was extremely low; only five of 67 aphids died before

reaching adulthood. Adult fecundity and mortality were

strongly age dependent.Wemodeled survival as aWeibull

distribution (q ¼ 0.058, j ¼ 2.66, Akaike Information
Criterion [AIC] ¼ 414.8); for comparison, modeling

survival as an age-independent probability (exponentially

distributed survival times) resulted in a very poor fit of our

data (Fig. 1; AIC¼ 471.8). The daily number of offspring

produced decreased with age and is consistent with a
Poisson process (Fig. 2). We used these results to

parameterize seven models by varying the number of

juvenile stages (two, four, and pseudo-stages) and the

number of adult stages (one, two, and seven; Table 1).
Constructing models with more than seven adult stages

did not change model predictions (data not shown).

Predicted and observed population dynamics

We compared three different model predictions with

our observed population dynamics: transient growth

rates, asymptotic growth rates, and population size.

FIG. 1. Survival of reproductive pea aphid (Acyrthosiphon
pisum) adults. The thin lines represent mean (solid line) and 95%
confidence limits (dotted lines) of the Kaplan-Meier survival
estimates. The thick solid line indicates the survival estimate
assuming that survival times follow a Weibull distribution
(survival decreased with age, q¼ 0.058025, j¼ 2.660962, where
q is the rate, and j is the shape parameter); and the thick dotted
line assumes exponentially distributed survival times (age
independent).
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Transient growth rates.—Following the release of a

single adult aphid the observed population growth rates

(Ntþ1/Nt) clearly oscillated. In all models predicted

population growth rates did not change by much during

the last three days and reached an asymptote after 20

days (Fig. 3). The observed number of peaks was

consistent with model predictions, but the magnitude of

the observed peak in growth rates (hereafter ‘‘transient

peak’’) was considerably larger than predicted by any of

our models.

Model structure had a large influence on the transient

population dynamics (Fig. 3). The number of juvenile

stages had the largest influence on the predicted

transient peaks. The models with only two juvenile

stages had no transient peaks, models with four juvenile

stages predicted higher transient peaks, and the model

including pseudo-stages predicted the largest transient

peaks. Among the models with four juvenile stages, the

model incorporating the effect of age-dependent fecun-

dity (seven adult stages) predicted the largest transient

peaks (Fig. 3). The values reported in Table 1 should be

interpreted as upper bounds as other ages of the initial

aphid result in smaller transient amplification (Appendix

B). Initializing populations with old aphids tends to lead

to T20 , 1, which implies that these initial conditions

lead to population growth less than asymptotic; these

stages account for ,10% of the adult population at the

stable stage distribution.

Asymptotic growth rates.—In our experiments the

population growth rate (Ntþ1/Nt) of the last three days

was 1.375 6 0.024 (mean 6 SE). The long-term

population growth rates (the largest eigenvalue of the

FIG. 2. Fecundity of reproductive Acyrthosiphon pisum
adults. The circles indicate the frequency distribution of
offspring production for aphids at different ages (area is
proportional to frequency). The dashed line is the mean fertility
assuming that offspring production follows a Poisson distribu-
tion; the dotted lines indicate the 5th and 95th quantile of the
Poisson distribution.

FIG. 3. Predicted transient dynamics as a function of model
complexity: (A) two juvenile stages, (B) four juvenile stages,
and (C) juvenile pseudostage model (seven pseudostages þ
seven adult stages). The solid circles indicate empirically
measured population dynamics with their 95% confidence
intervals, and the curves indicate predicted population dynam-
ics. Different curves indicate different numbers of adult stages
(the solid curve represents seven stages; the dashed curve
represents one pre-reproductive and one reproductive stage; the
dotted curve represents one adult stage). The initial stage
vectors are listed in Table 1.
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matrix model, kmax) were similar in all models (confi-

dence limits ranging between 1.19 and 1.33; Table 1),

which was slightly lower than 1.375. This could be due

to the somewhat higher temperature (28C) in the second

experiment; alternatively, the asymptotic growth rate

was not yet reached in our experiment.

Predicted and observed population size.—Across all

models, population size with transient amplification had

nonoverlapping confidence intervals with the corre-

sponding asymptotically growing population (e.g.,

pseudo-stages model; Fig. 4). Fig. 4 underrepresents

the magnitude of the differences; bootstrap replicates

with low transient amplification (i.e., the lower confi-

dence limit) also have lower asymptotic growth rates.

Nonetheless, the highest confidence limit for population

size from any model was 784 (Table 1), still far lower

than the empirical observations. During the experiment

the number of aphids increased from one aphid (t¼1) to

a mean of 2394 aphids per cage (1098–3406 aphids, t ¼
20). The model most consistent with the observed short-

term dynamics (largest transient peak, model with

pseudo-stages) did not predict the largest transient

amplification (Table 1); the largest amplification was

predicted from the model with seven adult and two

juvenile stages (T20 ¼ 3.53; Table 1) although the

confidence limits for all models with seven adult stages

overlapped broadly. The pseudo-stages model predicted

13% less transient amplification (T20¼ 3.05; Table 1).

Monte Carlo simulation of demographic stochasticity

To evaluate whether the disagreement between

predicted and observed population size was due to

demographic stochasticity, we simulated a population

from the pseudo-stages model using bootstrapped

matrices to incorporate parameter uncertainty (Fig. 5).

Some simulation runs had dramatically higher amplifi-

cations than the median, but even the extreme values of

10 000 simulations were outside the 95% confidence

intervals of the observed population size. Although the

lowest extremes of population size were below asymp-

totic growth, this does not mean that transient

amplification is not important or not significantly

different from asymptotic growth. The variance of

population size grows with time when there is demo-

graphic stochasticity (Gotelli 2001). Thus some fraction

of runs would always fall below asymptotic growth, even

though the mean population size was higher than

asymptotic. The distribution of mean growth under

transient amplification is always above asymptotic

growth (Fig. 4).

Perturbation analysis of the pseudo-stages model

Decreasing developmental time produced earlier but

not higher transient peaks, but shifting adult fecundity

to younger ages without increasing the total lifetime

reproduction substantially increased transient peaks;

decreasing larval survival generally reduced population

growth and shifted the growth curves toward smaller

values (Fig. 6). In the clip cage experiment almost all

larvae survived to adulthood, so it is possible that

survival was somewhat lower in the second experiment

(large cages). Adult survival had only a minor effect on

transient dynamics (Appendix C). Conditions improving

aphid performance are likely to affect both develop-

mental time and reproductive output simultaneously,

and we obtained the best match to transient population

growth rates and change in total population size over

time when simultaneously perturbing survival, develop-

FIG. 4. Mean (solid lines) and 95% bootstrap confidence
limits (dashed lines) for population trajectories under asymp-
totic (fine lines) and transient amplification (heavy lines) for the
pseudo-stages model.

FIG. 5. Comparison of observed and predicted total
population sizes of Acyrthosiphon pisum within 20 days after
releasing a single adult aphid. The circles are observed means
with their 95% confidence intervals; the box plots represent
Monte Carlo simulations based on the model with juvenile
pseudo-stages, demographic stochasticity, and parameter un-
certainty from bootstrapped matrices.
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mental time, and reproduction (Fig. 7). An acceptable

match between predicted and measured population

dynamics does not require nonlinear dynamics such as

an Allee effect.

Compared to the predictions using the unperturbed

parameter estimates, using a parameter combination

that was most consistent with the observations produced

7% higher asymptotic population growth rate and a 40%

increase in transient amplification (kmax ¼ 1.36 [1.29,

1.43], T20 ¼ 4.29 [3.8, 4.7]; Fig. 7). For all parameter

perturbations shown in Fig. 6 we calculated kmax and

T20; we also included a matrix with fecundity at half the

unperturbed value to increase the range. We found that

transient amplification increased linearly with kmax (T20

¼�9.77þ 10.05 3 kmax, r
2¼ 0.78, P , 0.001; Appendix

D). In other words, as kmax increases, so does transient

amplification. The effect of increasing kmax on popula-

tion size is already incorporated into T20, so any

additional increase in T20 with increasing kmax indicates

a further increase in population size due to transient

amplification.

Comparison with the models by Gross et al. (2002)

The model by Gross et al. (2002) used time series data

from three Wisconsin A. pisum field populations feeding

on alfalfa plants (M. satia cv. ‘Vernal’) to parameterize

models consisting of two juvenile stages (first and second

instar and third and fourth instar) and one adult stage,

equivalent to our simplest model. The predicted

asymptotic population growth rates were within the

range of our laboratory populations (kmax¼ 1.18–1.42).

The projected transient dynamics between the three

populations have similar oscillation intervals, but differ

in the amplitude of the transient peaks and the time until

the asymptotic growth rate is reached (transient

amplification¼ 2.65–3.31; Fig. 8). In general, if transient

peaks were large it took longer for the population

growth rate to stabilize. Our empirically measured

transients had lower frequencies than predicted by

Gross et al.’s model, but the predicted amplitudes of

the transient peaks were within the range of our

observed transient peak. Interestingly, the transient

dynamics of Gross et al.’s 3 3 3 matrix model were

FIG. 6. Effect of perturbations on transient growth rates in the pseudo-stages model. (A) Effect of reducing the mean and
variance of larval developmental time by 0%, 10%, and 20%; (B) juvenile survival decreased by 0%, 10%, and 20%; (C) adult
fecundity on day 0 increased by 0%, 75%, and 150%; (D) transient growth rates for the corresponding fecundity schedules in panel
C. Thinner lines correspond to shorter development time, lower survival, or lower initial fecundity. The circles are empirical
observed means with their 95% confidence intervals.
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completely different from those predicted by our 3 3 3

model for which we measured the transition rates

directly.

DISCUSSION

Most researchers focus on the asymptotic population

growth rate that is predicted if the population is at the

stable stage distribution. In many cases the assumption

of a stable stage distribution is violated during the

dispersal phase. Dispersal is often restricted to particular

life-history stages, and consequently population growth

following a dispersal event may deviate from asymptotic

growth. In this paper we mimicked aphid dispersal by

using an initial population consisting of a single adult

aphid. We demonstrated, both empirically and theoret-

ically, that the population growth rate during the initial

dispersal phase of A. pisum is larger than the long-term

growth rate, kmax. These transient amplifications result

in considerably higher population densities after 20 days

than would be expected under asymptotic growth. This

phenomenon is known as population inertia (Koons et

al. 2007). During dispersal population densities are low

and thus population dynamics are unlikely to be affected

by density dependence. In the absence of density

dependence, this boost in population density is expected

to have long-term effects (Koons et al. 2007). Our

results also imply that small variation in temperature

has a greater impact on transients than on long-term

dynamics, resulting in a striking underestimation of

kmax-based population growth during the early immi-

grations phase of aphids. This might be a critical factor

in understanding the success of natural enemies in

controlling prey population dynamics. We have shown

elsewhere that aphid density when the first predators

arrive is a key factor determining the probability of a

pest outbreak (Tenhumberg 2004). Moreover, Fagan et

al. (2005) illustrated the existence of threshold popula-

tion levels beyond which herbivores were unable to

reverse a plant invasion.

Dispersal to new locations is risky because small

populations are inherently in danger of extinction as a

result of demographic stochasticity (e.g., Tenhumberg et

al. 2004b, Drake 2005) and Allee effects (e.g., Keitt et al.

2001, Allen et al. 2005, Taylor and Hastings 2005). A

low probability of establishment when population size is

small is consistent with the low success rate in

establishing biocontrol agents (Grevstad 1999, Stiling

1990, Shea and Possingham 2000, Berggren 2001). High

FIG. 7. (A) Comparison of observed and predicted popu-
lation growth rates and (B) total population sizes of Acyrtho-
siphon pisum within 20 days after releasing a single adult aphid.
The circles are observed means with their 95% confidence
intervals; the solid lines indicate pseudo-stages model prediction
under transient population growth, and the dashed lines are
bootstrap 95% confidence intervals. The perturbations for this
plot are mean development reduced by 17%, variance in
development reduced by 25%, juvenile survival reduced by
6%, and initial fecundity increased by 110%. With these
perturbations the median (with bootstrap 95% confidence
limits) asymptotic growth rate, kmax, is 1.36 (1.29, 1.43), and
the median population growth size 20 days after the arrival of
the first individual, T20, is 4.29 (3.79, 4.65).

FIG. 8. Predicted transients from the model by Gross et al.
(2002) using the initial population vector, v ¼ (0, 0, 1). The
different curves indicate models for three Wisconsin aphid
populations: the solid curve represents Arlington 1980, the
dashed curve respresents Madison 1982, and the dotted curve
represents Arlington 1982.
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transient population growth rate may enhance the

probability of population establishment. So far transient

dynamics have largely been ignored in models predicting

population spread (e.g., Kot et al. 1996, Neubert and

Caswell 2000, Snyder 2003).

We know of only one other study (Clutton-Brock and

Coulson 2002) demonstrating transient dynamics in real

populations. How well the predicted transient dynamics

match empirical observations depends critically on the

number of stages included in the model. In the case of A.

pisum, the best model incorporated a negative binomial

distribution of juvenile stages and a number of adult age

classes that sufficiently represented age-dependent fe-

cundity and survival (senescence). The effect of the

number of adult stages on transient dynamics is driven

by offspring production. Peak aphid reproduction

occurred shortly after entering the reproductive stage;

six days later offspring production was already reduced

by nearly one-half. Virtually all aphids produced on the

first day after model initialization went through the

juvenile and pre-reproductive stages (low juvenile

mortality) in 10 days and entered their most fecund

period. The initial large offspring production of the new

reproductive adults produced a sharp increase in the

population growth rate (Figs. 3 and 4); each following

day adults produced a smaller number of offspring,

causing population growth rate to decline again. This

mechanism is lost when ignoring senescence by combin-

ing all adults in a single age class. We have shown

elsewhere that incorporating senescence into models can

also be critical when predicting long-term dynamics

(Lubben et al. 2008).

Other researchers have pointed out that stage-

specificity in the vital rates (e.g., senescence in fecundity)

influences transient dynamics (Koons et al. 2005,

Ramula and Lehtila 2005), but we find that, at least in

A. pisum, the number of juvenile stages with comparable

vital rates also influenced predicted transient dynamics.

Including pseudo-stages in the model essentially adds

stages with identical vital rates, and this increased the

predicted peak transient population growth rate even

further. Including more juvenile stages delays develop-

ment and ensures that larvae remain in each stage for a

minimum period of time. For instance, in the model with

two juvenile stages the daily transition rate from the first

to the second juvenile stage was 0.26 and from the

second juvenile stage to the adult stage was 0.22 (data

not shown). Thus, the model predicts that 6% of aphids

(0.26 3 0.22) reached adulthood in three days, some

larger proportion in four days, etc.

Because the model failed to secure a minimum length of

the pre-reproductive period of eight days, the frequency

distribution of newborns of the second generation is too

wide and flat; this reduced the predicted transient peaks.

PLATE 1. Pea aphids (Acyrthosiphon pisum) on a broad bean leaf. Three different juvenile instars and one adult are visible;
eyespots of developing offspring are visible inside the abdomen on the adult. Photo credit: D. Tyre (using a Leica Zoom
Stereomicroscope and Helicon Focus to combine multiple images for improved depth of focus).
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This might be a problem in many structured populations,

not just aphids. One possible solution is to delay the

progress through each larval instar by using a negative

binomial distribution of juvenile stages by dividing each

juvenile period into k pseudo-stages (Caswell 2001). Yet

models incorporating a delay in larval development were

not sufficient to correctly predict observed transient

population growth; the model using pseudo-stages un-

der-predicted peak transients and hence population size

after 20 days (Fig. 6).

Another possibility is that the discrete time step of a

matrix projection model (one day in this case) limits the

ability of the model to accurately reproduce transient

dynamics. However, the discrepancy does not disappear

when using a continuous time model with the correct

stage structure (partial differential equation [PDE]

models); the predictions of a continuous time model

are consistent with the matrix using pseudo-stages (B.

Tenhumberg and A. J. Tyre, unpublished data).

The perturbation analysis illustrates that a combina-

tion of shifting reproduction to earlier ages, decreasing

larval development rates, and decreasing larval survival

produces transient dynamics that approximately match

the experimental time series data. This perturbation

increases the predicted asymptotic population growth

rate and transient amplification. The perturbation

analysis suggests that the inconsistency between obser-

vation and model prediction may be the result of biased

parameter estimates, which could arise in several

different, not mutually exclusive, ways.

First, the temperature during the parameter estima-

tion experiments was on average 28C lower than during

the experiment recording transient dynamics. Higher

temperature speeds up aphid development and shifts

offspring production to younger ages (i.e., young adults

have more offspring and old adults have fewer; Morgan

et al. 2001). Both factors would result in an increased

population growth rate, and higher fecundity increases

transient peaks. However, very high temperatures are

detrimental to A. pisum; reported optimal temperatures

vary between 238C (Morgan et al. 2001) and 308C

(Siddiqui et al. 1973).

Second, for some aphid species it is beneficial to feed

in small groups (Allee effect; Way and Banks 1967,

Dixon and Wratten 1971), so estimating model param-

eters from solitary aphids might underestimate develop-

mental rate, survival, and fecundity. This effect may not

be ubiquitous, as other work found no effect of group

size on aphid performance (Messina 1993, Hodgson and

Godfray 1999). A higher fecundity would produce

higher transient peaks (Fig. 3) and consequently higher

population size after 20 days. A potential effect on

survival is negligible because in our experiments larval

mortality was extremely low (only 7.6% of individuals

died before reaching adulthood), thus it was unlikely

that the rearing conditions affected larval survival

significantly. Additionally, model predictions were

insensitive to changes in adult survival (Appendix C).

Third, because aphid fecundity is highly variable

between individuals (Fig. 2), it is possible that by chance

the founder aphids had above-average fecundity. We

distinguished adult aphids by size, which might have

biased our choice of founder aphids toward larger

adults; adult size and fecundity are positively correlated

in many insect species. To avoid a size bias would

involve determining the size or mass of live aphids,

which would be extremely difficult and might negatively

affect aphid’s physical condition (e.g., anesthetizing

aphids, food deprivation, etc.).

When using our laboratory experiments to parame-

terize a 3 3 3 matrix model, all predicted transient

oscillations of our model disappear and the model

reaches asymptotic growth very quickly. In contrast,

when using the parameters estimated by Gross et al.

(2002) the model predicts large oscillations at a higher

frequency than our observed populations. This discrep-

ancy is unlikely due to environmental conditions or to

the fact that we used laboratory populations and Gross

et al. (2002) used field populations, because the model

predictions for the three different field populations in

Wisconsin (Arlington 1980, 1982, Madison 1980; kmax¼
1.35, 1.18, 1.42, respectively) differ only in amplitude of

the transient peaks and not frequency. There is nothing

wrong with the parameter estimation method used by

Gross et al. (2002); it is an excellent method to use when

only time series data are available. However it is

important to fit models to data that include a sufficient

amount of complexity to summarize the biology.

It is difficult to visually distinguish between the four

larval instars or identify adult age. This is probably why

the empirical data used by Gross et al. (2002) only

discriminated between small (first and second instar) and

large larvae (third and fourth) and adults. But fitting a

model with too few stages resulted in somewhat

‘‘unrealistic’’ model parameter estimates. For instance,

within a single day .40% of aphids move from first- and

second-instar stages to the third- and fourth-instar

stages and as a consequence the predicted generation

times of models by Gross et al. (2002) are 3.1–3.48 days.

This is much lower than the generation time recorded

for A. pisum populations in Wisconsin (Arlington, 1982,

18.7–11.9 days; Hutchinson and Hogg 1984). In our

laboratory experiments, the first aphid that molted to

the third instar was four days old and only one out of 66

aphids reached adulthood seven days after birth. In

other studies generation time of A. pisum at 208C varied

between 6.4 and 9.9 days (Siddiqui et al. 1973, Campbell

and Mackauer 1975, Bieri et al. 1983, Lamb 1992,

Morgan et al. 2001). Even so, the asymptotic growth

rates from the Gross et al. (2002) model are a close

match to our empirically observed data.

CONCLUSION

In this paper we explored the population dynamics

following a dispersal event. We demonstrated that

transient dynamics occur after the arrival of a single A.
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pisum and that in the absence of density dependence this

transient amplification results in considerably higher

population sizes.We suspect that transient dynamics may

be important for the dispersal dynamics of other species

as well, and if this is so, transient dynamics should be

considered in theoretical and empirical dispersal studies.

This paper also demonstrates that the number of life-

history stages is critical for correctly predicting transient

dynamics; this suggests that structural uncertainty should

not be ignored in model development. Furthermore, this

paper points to some challenges involved with testing

model predictions empirically. Biases in parameter

estimates as a result of small variations in temperature

or rearing conditions were likely responsible for the large

discrepancy in predicted and observed transient dynam-

ics, with the consequence of underestimating transient

amplification (T20¼4.29 instead of 3.06). If the variation

in vital rates of field populations as a result of temporal

and spatial variation is similar or larger than in our study

we have to treat the quantitative estimates from

population viability analysis based on density-indepen-

dent matrix models with caution.
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APPENDIX A

Matrix model of Acyrthosiphon pisum (Ecological Archives E090-130-A1).

APPENDIX B

Effect of initial conditions on transient amplification after 20 days (Ecological Archives E090-130-A2).

APPENDIX C

Perturbation analysis of the Acyrthosiphon pisum model that includes larval pseudo-stages (Ecological Archives E090-130-A3).

APPENDIX D

Transient amplification (T20) as a function of asymptotic population growth rate (k) (Ecological Archives E090-130-A4).
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