
INTRODUCTION

Ecological processes commonly operate on timescales
of decades or longer. Consequently, testing models of
these processes is problematic. When land manage-
ment decisions need to be made immediately, then the
issue of model testing becomes pressing. This situation
calls for an active adaptive management (AAM)
approach where the management process facilitates the
test of the model (Parma et al. 1998).

Lonsdale et al. (1998) faced the problem of needing
a management model quickly in their study of the
effects of wet season burns on savannah vegetation,
particularly the grass Sorghum brachypodum. They were
interested in determining how best to use wet season
burns to reduce the risk to infrastructure and reveg-
etation sites from more destructive dry season fires, a
clear management objective with a specific control
option. Unfortunately, there was little information
available on the ecological effects of wet season burns
on Sorghum. An AAM strategy (Parma et al. 1998)
recognises this problem and seeks to use management
actions as experiments to increase ecological knowl-
edge about the system being managed. Ecological
models, experimentation and monitoring are crucial
components of the AAM process.

Lonsdale et al. (1998) have all three of these com-
ponents in their study and are to be congratulated on

taking an AAM approach to their land management
problem. A crucial part of the approach is testing the
predictions of the model to gain confidence in the pre-
dictions and hence the management decision. While
Lonsdale et al. (1998) did test the prediction of their
model, we would like to comment on their testing
procedure and suggest a better alternative. We find that
their test of the model predictions is strongly biased.
We suggest how future tests might be carried out and
comment on the importance of model testing in the
AAM framework.

METHOD AND RESULTS

The Watkinson model for Sorghum population
dynamics

The model of annual plant population growth Lonsdale
et al. (1998) used was developed by Watkinson et al.
(1989) for another species of Sorghum:

lNtNt 11 5 , l 5 s•d (1)
(1 1 aNt)b 1 mlNt

where Nt is population density (units of m–2) t years
since a fire, a is the reciprocal of the density at 
which competition begins to take effect (0.0051 m2),
b describes the efficiency of resource uptake (0.73), m
is the reciprocal of the asymptotic density following self
thinning (0.0085 m2), s is the per capita seed output
at low densities (4–18 seeds) and d is the fraction of
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individuals surviving density independent mortality
from all sources (0.08–0.21). Both s and d have a range
of values because they are assumed to fluctuate ran-
domly from year to year. Lonsdale et al. (1998) estim-
ated the range for d by changing the values until the
average long-term density predicted by the model
matched that in unburned sites. Lonsdale et al. (1998)
did not specify the probability distributions used, so we
have assumed they followed Watkinson et al. (1989) and
used uniform or rectangular distributions between the
limits described above. Neither paper described the
correlation structure between the random variables
either in time or between sites. Therefore, we assumed
that there was no correlation in environmental variation
of s and d in either space or time.

We implemented the model in Microsoft Excel
(Version 7), using the macro language to generate repli-
cate runs (spreadsheet available from the first author
on request). We used the parameters given above to
replicate the results of Lonsdale et al. (1998) (Fig. 2 in
their paper) using 100 replicate runs starting from
either the minimum (0.7 m–2) or maximum (6.8 m–2)
post-burn densities reported (Fig. 1). The coincidence
of our results with theirs satisfied us that the models
were the same, although the 95% confidence limits on
our average densities were much smaller because we
used more than eight times as many runs to calculate
them (100 vs 12).

Lonsdale et al. (1998) concentrated on the average
trajectory, calculated by averaging predicted density at
each time over all replicate runs. Knowing the average

density of Sorghum over 100 replicate simulations can
be misleading. This is clear from 95% confidence inter-
vals of the overall distribution of population sizes (i.e.,
the 2.5 percentile and 97.5 percentile) for the low
density trajectory (Fig. 1). Despite the fact that the
average density rises to 15 m–2 over the first 10 years
post-burn, a population density of < 1 m–2 is not an
unreasonable occurrence (i.e. it is inside the 95% con-
fidence interval of the total distribution) starting from
a population density of 0.7 m–2. The oldest post-burn
site in their sample (4 years) had a density this low and
this was almost certainly part of the reason they falsi-
fied their prediction. This 4-year density is much lower
than the average trajectory, but that does not mean that
it is an impossible occurrence if the model is exactly
true.

Model spurned by unfair test

Lonsdale et al. (1998) tested the prediction of the
model that the average population density increases
with time up to the long-term average density in
unburnt patches. In other words, the (entirely reason-
able) prediction is that there is a positive correlation
between time post-burn and Sorghum population
density. Their empirical data set consisted of five sites
sampled at various post-burn times. They calculated
the correlation coefficient between population density
and time post-burn, and falsified the prediction because
their empirical observations had a non-significant
negative correlation coefficient. However, even if the
model was a perfect description of reality, the correl-
ation test they applied would almost always falsify the
prediction. We showed this by using the model itself to
generate sets of data, and then calculated the correl-
ation test on this computer-generated data.

Using the model to generate data to test a statistic 
is a recommended standard technique for testing new
statistics (Hilborn & Mangel 1997). Assuming that the
model is a good representation of reality in order to
generate test data for the statistic does not lead to con-
cluding that the model is ‘true’. The approach leads
only to a test of whether or not a particular statistic is
biased, given the model is a good representation.

Each run of the model generated a sequence of popu-
lation densities starting from a specific initial density.
We generated 1000 sets of five runs, one run for each
study site in the study of Lonsdale et al. (1998) study.
Each run within a set had its own sequence of random
values for r and d, because it was assumed that there
was zero correlation in environmental stochasticity
between sites. The starting densities for the five runs
in each set were fixed at 0.7, 2.2, 3.7, 5.2 and 6.8 m–2.
Only the lowest and highest densities were provided by
Lonsdale et al. (1998) in their paper. We chose the three
intermediate densities to be equally spaced between the
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Fig. 1. Average return trajectories from the model starting
from the highest initial density (j), and the lowest initial den-
sity (m). Error bars are 95% confidence limits on the aver-
age density. The fine horizontal line is the estimated pre-burn
stable density used to estimate the range for d. The dashed
lines represent the 95% confidence interval for the entire dis-
tribution of the low initial density trajectory (triangles).



minimum and maximum. We sampled data generated
by the model for three sites at 1 year post-burn, one at
2 years, and the last at 4 years post-burn. The actual
post-burn sample times were 0.25, 1.25 and 3.25 years
post-burn (Lonsdale et al. 1998), but the model can
only generate predictions for integer times because it
is a discrete time model. They did not describe the 
population densities immediately post-burn, so we 
randomly assigned starting densities to sampling times
for each set. For each of these five points, we then cal-
culated the Pearson correlation coefficient between
density and the number of years post-burn. This gave
us 1000 replicate tests of the model when the model
predictions were perfect, because the data were gener-
ated directly by the model. The power of the test was
determined by the number of times, as proportion of
total, that a significant positive correlation was
obtained. The prediction was rejected if the correlation
was not significant or was significantly negative.

The correlation test rejected the prediction 84% of
the time, and nearly one-third of all correlations were
negative (Fig. 2). Nearly 9% of data sets had correl-
ations more negative than that observed by Lonsdale
et al. (1998) for their empirical data (r 5 –0.58). Only
positive correlations above 0.88 were significantly
greater than 0. More samples and/or greater spread of
post-burn times would probably improve the power 
of the correlation. The primary reason why the test
rejected the predictions of a good model was that there
was inadequate power: it relied on getting a positive
correlation between time post-burn and density, which

paradoxically means rejecting a null hypothesis of no
correlation. With only five data points, rejecting the null
hypothesis of no correlation was unlikely.

The secondary reason why this test failed is more
intriguing: the ‘space for time’ swap. Placing sites
burned at different times along a single time-axis did
not reproduce the average trajectory because each site
had been following an independent path and there was
no temporal auto-correlation between the sites (as there
would be for a single site followed through time).
Lonsdale et al. did in fact suggest this as a reason for
why the prediction failed, but considered it a less-likely
explanation than changes in the parameter values of the
model post-burn.

The standard deviate test: equity for models

The second problem with the approach used by
Lonsdale et al. (1998) is that it assumes that the prop-
erties of the mean trajectory are what should be tested.
A stochastic model predicts both a mean and a vari-
ance. Both properties are important and should be
tested. Furthermore, the ‘space for time swap’ could
be avoided by a procedure that compares each point
with the distribution of population sizes that could be
observed at that time, given a particular starting point.
This can be done by standardizing the observed den-
sity by the predicted average and predicted standard
deviation:

xobserved – x–predicted
xtransformed 5 (2)spredicted

where x (either observed, predicted or transformed)
is population density and spredicted the standard deviation
predicted by the model. These standard deviates will
be normally distributed with a mean of 0 and a vari-
ance of 1, if the model is correct (Sokal & Rohlf 1981).
Thus, both mean and variance predicted by the model
can be tested. This approach has been suggested for
testing forestry models (Reynolds et al. 1981) and used
to test ‘null models’ in community ecology (Gilpin &
Diamond 1982). To our knowledge it has not been
widely employed in population ecology.

We generated predicted averages and standard devi-
ations for 1–4 years post-burn from each of the five
starting densities described above, with 200 replicates
at each density. As with the correlation test, we then
generated 1000 sets of ‘real’ data sampled at the same
five points in time described by Lonsdale et al. (1998)
and with sample times and starting densities randomly
ordered. We used the predictions to transform each set
of ‘real’ data (Eqn 2) and then tested the hypothesis
that the average of the transformed values was zero and
the variance was 1. We used a standard t-test for the
hypothesis that the mean was zero:
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Fig. 2. Distribution of correlation coefficients for 1000
replicate sets of data generated by the model. Correlations
to the right of the fine vertical line are significantly different
from zero.



xtransformed – m
ts 5 (3)sx–

where ts is the sample statistic, distributed as a 
t-variate with n-1 degrees of freedom (n 5 5 here), sx

is the standard deviation of xtransformed, and m is the
theoretical expected value of zero (Sokal & Rohlf 1981).
The hypothesis that the variance of the standard
deviates was 1 can be tested with:

X2 5 (n–1)s2/s2 (4)

where the sample statistic X2 is distributed as a x2

variate with n – 1 degrees of freedom, s2 is the sample
variance of the transformed observations, and s2 is the
theoretical expected value of 1 (Sokal & Rohlf 1981).
If these were fair tests then the model would be rejected
5% of the time (i.e. have a Type I error rate of 5%)
when the data have been generated by the model itself.

For this model x was significantly different from zero
in 59 out of 1000 tests, not significantly different from
the expected 5% (x2 test, p 5 0.23). The variance of
the transformed observations was significantly different
from one in 66 out of 1000 tests, which was significantly
different from the expected 5% (x2 test, p 5 0.04). The
distribution of the variances did not quite match the
theoretical expectation of the x2 with four degrees of
freedom (Fig. 3), suggesting that our assumption that
the xtransformed are normally distributed was not quite cor-
rect with this model. Although this is not perfect, the
standard deviate test still performed much better than
the correlation test used by Lonsdale et al. (1998). It
also avoided the ‘space for time’ swap problem because
it treated each observation independently, obviating any
need to assume that variation in space reflects variation
in time.

DISCUSSION

While it is very important to test ecological models
before using them for management, it is equally
important to use tests that are not biased in one direc-
tion or another. An unfair test gives models (and mod-
ellers) a bad name. In this case, the model prediction
made by Lonsdale et al. (1998) may have been unfairly
rejected. The model may still make poor predictions,
but the test Lonsdale et al. (1998) used is heavily biased
towards rejection. By contrast, the standard deviate test
not only is much fairer, but could also help to identify
the situations under which the model is most incorrect.
If the model makes poor predictions, Lonsdale et al. 9s
(1998) discussion about the reasons why is still per-
fectly valid.

One disadvantage of the standard deviate test is that
it requires some assumptions about the starting
densities of the populations in order to make reasonable
predictions. Lonsdale et al. (1998) did not have (or did

not report) this information. Therefore, we assumed
evenly spaced densities over a reasonable range.
Alternatively, we could assume that all sites started at
the average density in the three sites sampled at 1 year
post-burn. Even better, if those five sites were to be
sampled again in 1999, the comparison of the observed
densities with the model using the standard deviate test
would be quite powerful because accurate estimates of
the starting densities were obtained in 1994.

Returning to the primary reason why Lonsdale et al.
(1998) unfairly rejected the model predictions, there
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Fig. 3. Distribution of (a) x–transformed and (b) the variance
of x–transformed from comparing 1000 ‘real’ data sets with the
predictions from the model. The normal distribution with
m 5 0, m 5 0.43 is marked on (a). The theoretical standard
deviation of SD

—
is 1/sqrt(5) 5 0.45. The x2 distribution with

4 degrees of freedom is marked on (b).



is a clear philosophical difference between the two
methods of testing models explored in this comment.
The correlation test used by Lonsdale et al. (1998)
associates model correctness with a significant result
of a statistical test. Therefore, the power of the test 
(1 – p(Type II error)) dictates fairness. The standard
deviate test associates model correctness with a non-
significant result of the statistical test. Therefore, it is
the Type I error rate that makes the test fair or unfair.
For further information, Rykiel (1996) provides a good
entry point into the more philosophical background of
model testing and validation.

A final philosophical issue is the approach of testing
just one model. For applied science (rather than pure)
there is no use subjecting just one management model
to testing: it is much better to have alternatives
(Hilborn & Mangel 1997). In the example explored
here, if we had thrown out the model, then there is no
model to manage the system with: what actions do
management take then? The alternative is to propose
two or more models, even if one of them is unrealistic,
such as a model that proposes that the abundance of
Sorghum is constant or increases linearly. Once the
alternatives are proposed we can use a likelihood
approach to assign degrees of belief in the alternatives.
We can either proceed with the most likely model, or
make decisions weighted by the likelihood of alter-
natives. Either way the manager has something to act
on while we gather more information (Possingham
1998).

There is much more that could be done using the
general approach outlined here. For example, it may
be possible to detect departures from model assump-
tions by plotting standard deviates as a function of
observed density or time post-burn. More importantly,
it is possible to determine the ability of the standard
deviate test to detect any particular departure from the
model assumptions, in other words, to calculate its
power. This is beyond the scope of our intent here, but
it is both feasible and necessary if firm conclusions
about the quality of a model are to be drawn.

We would like to emphasize that the approach of
Lonsdale et al. (1998), when coupled with good tests

of model predictions, is exactly the way we feel
Australian applied ecology should be moving.
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