
INTRODUCTION

The debate between density-dependent and density-
independent population regulation is one of the oldest
and most vociferous in ecology. Australian ecologists
participated from the beginning (Nicholson 1933;
Andrewartha & Birch 1954). Despite recent efforts to
put the debate to rest (Turchin 1995, 1999), there
appears little likelihood of either side abandoning the
ramparts (Bonsall et al. 1998). Murray (2000; this
issue) uses a stochastic simulation model to argue that
a significant statistical relationship between birth rate
and population size (i.e. density dependence) can arise
in the absence of negative feedbacks of population size
on fecundity. In this comment we demonstrate that
Murray’s simulation model has a negative feedback of
population density on birth rate embedded in it, so
density dependence in birth rate is not a surprising
outcome.

We begin with some definitions. Turchin (1995)
defines population regulation as the presence of ‘a long-
term stationary probability distribution of population
densities’. This definition is both more general and
more precise than historical definitions that relied on
return to a deterministic equilibrium, or floors and
ceilings of density. It recognises that ecological systems
are inherently noisy. Not all densities are equally likely,
and the further a particular density is from the average,
the less likely it is to occur. There is both an ‘equilib-
rium’, or a population density that is most likely to
occur, and soft boundaries beyond which populations
do not often go.

We use the following definition of density depen-
dence: a (non)linear relationship between density and
realized population growth rate (Turchin 1999). The
realized population growth rate, r, is ln(Nt11) – ln(Nt),
where Nt is population size or density at time t. Density
dependence is a phenomenological relationship that
may be present in population time series. Direct den-
sity dependence means a decrease in growth rate with
increasing density, while inverse density dependence

means an increase in growth rate with increasing den-
sity. The word non-linear is also important; it means
that population growth rate need not always change
with density. This is a descriptive definition, and many
different ecological mechanisms can lead to such a
relationship.

Murray’s model

The main conclusion of Murray (2000; this issue) is
that a density-dependent relationship between density
and growth rate can arise from a simulation model that
has no negative feedbacks from population size on
fecundity or survival. The density-dependent relation-
ship in question is a decrease in per capita birth rate
with increasing population size (Murray’s figs 3a and
5a). This argument hinges entirely on whether or not
Murray’s simulation model has a negative feedback
loop of population size on birth rate embedded in it.
In this section we develop a deterministic analogue of
his stochastic simulation model and demonstrate that
it does in fact contain a negative feedback between
density and per capita birth rate.

It is important to note that Murray’s use of a random
number table does not contribute anything special to
the simulation model: a random number table is simply
a source of random numbers. Murray uses the table
by drawing pairs of digits to generate random numbers
between 0 and 99. These numbers have a uniform
distribution because a random number table presents
single digits in such a way that there is an equal prob-
ability of getting each of the 10 digits on the next
choice. A random number table that does not have this
property is highly suspect. The expected value (i.e. the
mean) of a uniform distribution is (b–a)/2 where a is
the lower boundary and b the upper boundary. The
variance is ((b–a)2–1)/12.

We define ni, t as the number of individuals in the age
i cohort at time t, and the total population at time 
t as Nt 5 Sni,t. Likewise, si,t is the number of survivors
from the age i cohort at the end of time t, and
St 5 Ssi,t/Nt is the proportion of the total population
that survives to time t 1 1. Where feasible, we confirm
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with standard statistical tests (Sokal & Rohlf 1981) that
the predictions of our deterministic, analytical model
match Murray’s simulation using the data in his
Table 1.

Murray’s first assumption is ‘the number of individ-
uals in a cohort decreases in time’. Therefore, the
number of survivors in cohort i from t to t 1 1, si,t, is
uniformly distributed between 0 and ni,t-1. Survival is
commonly expressed as a proportion, and the propor-
tion surviving (obtained by dividing the number sur-
viving by the cohort size) will always be greater than
or equal to 0 and less than 1. As the distribution of the
number of survivors is perfectly uniform the expected
value would be just less than 0.5. For example, if a
cohort has 32 individuals, then the number of survivors
is uniformly distributed between 0 and 31, and
31/2 5 15.5 individuals will survive on average. This
mathematical interpretation of Murray’s first assump-
tion is supported by his plots of the per capita death
rate against population size (Murray’s figs 3b and 5b).
In both cases the slopes are not significantly different
from 0 (statistics in Murray’s paper), and the intercepts
are near 0.5. It is not easy to predict the variance in
survival, because that will depend on the size of the
cohorts making up the population at any time step.

Murray’s second assumption is ‘the initial size of a
cohort is less than 100’. In our terms, this means that
the recruitment into each new cohort has a uniform
distribution between 0 and 99. The expected number
of new recruits each year is 49.5, and the variance will
be 833.25. The average recruitment is 52 and the
variance is 557 in Murray’s 15 years simulation. These
values are not significantly different from our theoretical
expectations for a uniform distribution (t14 5 0.38,
P 5 0.7 and x2

14 5 9.4, P 5 0.81, respectively).
In Murray’s simulation model, the population N at

time t 1 1 is equal to the survivors from time t plus the
new recruits. Because there is no difference between
individuals of any age class (they all have the same aver-
age probability of survival), Murray’s model can be
rewritten as a single difference equation:

Nt 1 1 5 S•Nt 1 F (1)

where N is the population size, S is the average annual
survival as a proportion, and F is the average annual
recruitment. By setting Nt11 5 Nt 5 N* and rearrang-
ing, we get the equilibrium value

F
N* 5 (2)

1–S

which using F 5 49.5 and S 5 0.5 gives N* 5 99.
This is not significantly different from the average
population size of 105 in Murray’s 15 years simulation
(t14 5 0.66, P 5 0.51). His average population size of
96 for the 100 years simulation is even closer to the
predicted equilibrium.

Equation 1 is a deterministic model and therefore

always predicts the same value for Nt11, given a par-
ticular Nt.Murray’s simulation model is stochastic, and
so a particular population size leads to a distribution
of outcomes. For example, N0 5 106 changes to
N1 5 68, while N12 5 106 changes to N13 5 85. The
expected value from Eqn 1 in both cases is 102.5. 
The best way to confirm that Eqn1 is a good approxi-
mation of Murray’s simulation model is to compare the
predicted change for each population size with the
actual simulated change; if Eqn 1 is a good approxi-
mation there will be a significant correlation (Fig. 1;
Pearson r 5 0.56, P 5 0.03). Equation 1 correctly pre-
dicts the direction of the change in population size in
10 out of 14 of the observations. From this point 
we will proceed assuming we have demonstrated that 
Eqn 1 contains the essential dynamic features of
Murray’s simulation model.

We rearrange Eqn 1 to provide the realized popula-
tion growth rate (Appendix):

F
r 5 lnNt11 –lnNt 5 ln(S 1 ) (3)

Nt

Equation 3 explains quite clearly why the per capita
birth rate decreases as a function of density while the
per capita survival rate does not (Murray’s Figs 3 and
5). The growth rate of the population is the sum of
survival rate and birth rate terms. The birth rate
declines proportional to the reciprocal of population
density. The reciprocal shape of the per capita birth rate
described in Eqn 3 is clearly observable in Murray’s
Fig. 5a, despite having a straight line fitted through it.
The large amount of scatter in the relationship is a con-
sequence of the large variance introduced by the uni-
form distributions.

The per capita birth rate and consequently the
realised population growth rate in Murray’s simulation
model are functions of population density as a direct
consequence of the assumptions made by Murray. As
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Fig. 1 Comparison of predicted and observed changes in
population size, Nt11 – Nt, between Murray’s 15 years sim-
ulation (observed change) and the changes predicted from
Eq. 1. Empty symbols indicate observations where the direc-
tion of the change was not correctly predicted.



APPENDIX

a result the average number of new recruits to the pop-
ulation is always the same, regardless of population 
density. We cannot see how this can arise without the 
action of either competition among breeding indiv-
iduals for resources, or predation risk to newborns 
that increases with population density, both of which
represent negative feedbacks of population density on
per capita birth rate. A single breeding individual 
must be able to produce up to 100 offspring, while a
population of 100 breeders can produce no more than
one offspring each. We should like to point out that it
is perfectly possible to model a process without
mentioning it in words, especially if one does not clearly
state the ecological mechanisms underlying the
assumptions.

To reiterate: the key point on which we differ from
Murray about the interpretation of his simulation
model is whether or not there is a negative feedback of
population density on population growth embedded in
the assumptions. He claims there are not: we have
demonstrated that there are.
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The initial model is

Nt 1 1 5 S•Nt 1 F (1)

rearranged and placed on a logarithmic scale,

F
Nt11 5 Nt (S 1 )Nt

F
lnNt11 5 lnNt 1 ln(S 1 )Nt

and finally,

F
r 5 lnNt11 – lnNt 5 ln(S 1 )Nt


