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Abstract

Two or more competing predators can coexist using a single homogeneous prey species if the system containing all three

undergoes internally generated fluctuations in density. However, the dynamics of species that coexist via this mechanism have not

been extensively explored. Here, we examine both the nature of the dynamics and the responses of the mean densities of each

predator to mortality imposed upon it or its competitor. The analysis of dynamics uncovers several previously undescribed

behaviors for this model, including chaotic fluctuations, and long-term transients that differ significantly from the ultimate patterns

of fluctuations. The limiting dynamics of the system can be loosely classified as synchronous cycles, asynchronous cycles, and

chaotic dynamics. Synchronous cycles are simple limit cycles with highly positively correlated densities of the two predator species.

Asynchronous cycles are limit cycles, frequently of complex form, including a significant period during which prey density is nearly

constant while one predator gradually, monotonically replaces the other. Chaotic dynamics are aperiodic and generally have

intermediate correlations between predator densities. Continuous changes in density-independent mortality rates often lead to

abrupt transitions in mean population sizes, and increases in the mortality rate of one predator may decrease the population size of

the competing predator. Similarly, increases in the immigration rate of one predator may decrease its own density and increase the

density of the other predator. Proportional changes in one predator’s birth and death rate functions can have significant effects on

the dynamics and mean densities of both predator species. All of these responses to environmental change differ from those observed

when competitors coexist stably as the result of resource (prey) partitioning. The patterns described here occur in many other

competition models in which there are cycles and differences in the linearity of the responses of consumers to their resources.

r 2003 Elsevier Science (USA) All rights reserved.

0. Introduction

Much current thought on competition is based upon
the Lotka–Volterra model of two competing species.
Because this model always has a stable equilibrium when
two species coexist, the role of population cycles is
seldom considered in empirical studies when trying to
understand the interactions between coexisting compe-
titors. The Lotka–Volterra model also leads to expecta-
tions about the responses of the densities of each
competitor to parameters affecting the fitness of the
other species, such as its mortality rate. For instance,
continuous increase in the per capita mortality rate of

one species decreases its equilibrium density and
increases the equilibrium density of its competitor.
Similar qualitative behaviors characterize many models
of direct competition in which there is stable coex-
istence. Similarly, increasing the immigration rate of
that species will increase its density and decrease that of
its competitor. Because empirical studies of competitor
and community structure are guided by theoretical
expectations, it is important to identify situations in
which these expectations are unlikely to be realized. In
this paper, we show that models with explicit resource
dynamics, differences in the linearity of the predators’
responses, and the potential for sustained oscillations,
can exhibit sharply different effects. Because it has long
been known that consumer–resource interactions can
easily produce cycles (Rosenzweig and MacArthur,
1963), and that cycles can alter conditions for coex-
istence (Armstrong and McGehee, 1980), it is surprising
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that the implications of cycling for interactions between
competitors have not received more attention.

In a previous article (Abrams and Holt, 2002), we
argued that a mechanism of coexistence proposed by
Koch (1974) and by Armstrong and McGehee (1976a, b,
1980), McGehee and Armstrong (1977) may play an
important role in species coexistence in natural commu-
nities. This mechanism is based on differences in the
nonlinearity of two competitors’ responses to a single
resource combined with consumer–resource cycles gen-
erated by the interaction of one of those consumers with
the resource. The more linear species has a relatively
high resource requirement, and therefore cannot exclude
the species with the more nonlinear response. The latter
generates cycles when alone with the resource; these
cycles increase the mean resource density so that linear
species can invade. If the ‘robustness’ of coexistence is
measured by the range of prey (resource) requirements
for zero population growth (i.e., efficiencies) that allow
coexistence, then Armstrong and McGehee’s model can
produce very robust coexistence. The range of efficien-
cies allowing coexistence via Armstrong and McGehee’s
mechanism is often as wide as the range of efficiencies
allowing coexistence of competing predators which do
not cycle, but which have a high degree of partitioning
of prey species (Abrams and Holt, 2002). This observa-
tion, together with the fact that a significant number of
species cycle (Ellner and Turchin, 1995; Kendall et al.,
1998), suggests that cases of coexistence via the
Armstrong–McGehee mechanism may be reasonably
common. However, well-supported empirical examples
of coexistence due to competitor–resource cycles
are absent from the published literature. By describing
the dynamics of such competitive systems, and how
they respond to changes in mortality rates, we hope
to find dynamical signals that may help identify
examples in natural systems. Moreover, Armstrong
and McGehee’s (1980) model exhibits a wider range
of dynamics than has been described previously,
including chaos, alternative limit cycles, and long-lasting
transients.

1. The model

We begin by analyzing the model that Armstrong and
McGehee (1980) used to illustrate nonequilibrial coex-
istence of two species on a single biotic resource. This
system is characterized by logistic prey growth, a linear
functional response for one predator, and a type-2
functional response for the other predator. We argue
below that this model displays many dynamics that are
common to a much broader set of models characterized
by differences in the linearity consumer species and
endogenously generated cycles. The dynamics of the two
predators (consumers), P1 and P2; and the prey

(resource), N; are given by

dP1

dt
¼ P1

B1C1N

1 þ hC1N
� D1

� �
;

dP2

dt
¼ P2ðB2C2N � D2Þ;

dN

dt
¼ rN 1 � N

K

� �
� C1NP1

1 þ hC1N
� C2NP2: ð1a; b; cÞ

The parameter Bi is the conversion efficiency of food
into offspring for predator i; h is the handling time per
prey item for predator 1, Di is a density independent
death rate, Ci is a searching predator’s attack rate, and r

and K are logistic growth parameters. The variables in
this equation can be scaled to reduce the number of
parameters, as follows: t0 ¼ rt; N 0 ¼ N=K ; and P1

0 ¼
P1=ðKB1Þ; and P2

0 ¼ P2=ðKB2Þ: After making substitu-
tions and dropping the primes on the new variables, the
model becomes

dP1

dt
¼ P1

a1N

1 þ bN
� d1

� �
;

dP2

dt
¼ P2ða2N � d2Þ;

dN

dt
¼ Nð1 � NÞ � a1NP1

1 þ bN
� a2NP2; ð2a; b; cÞ

where the new parameters are a1 ¼ KB1C1=r; a2 ¼
KB2C2=r; b ¼ KC1h; d1 ¼ D1=r; d2 ¼ D2=r: Below we
refer to predator 1 as the nonlinear predator, and
predator 2 as the linear predator.

There is no equilibrium point with positive densities
of all three species. However, the species can coexist for
some range of the parameters a2 and d2 if P1 and N

undergo limit cycles in the absence of the second
predator (McGehee and Armstrong, 1977; Armstrong
and McGehee, 1980). Limit cycles occur in the
subsystem lacking predator 2 if

d1o
a1ðb � 1Þ
bðb þ 1Þ : ð3Þ

The right-hand side of this inequality will be referred to
as the stability threshold value of d1: Here we only
consider cases where d1; a1 and b satisfy (3). We consider
coexistence to occur if each predator species can increase
when it is rare and the other predator and prey are
undergoing their limiting dynamics (stable point or limit
cycle). This differs from Armstrong and McGehee’s
(1980) definition of coexistence, and there are circum-
stances when such ‘mutual invasion’ definitions of
coexistence may be misleading (Armstrong and McGehee,
1980). The most serious problem is the possibility that
initial invasion is eventually followed by exclusion of the
invading species. This outcome was never observed in any
numerical solution of Eq. (2), or in any other model
that we consider here. Previous examples of this
phenomenon (the reversal of initially successful inva-
sion) have had alternative attractors for the subsystem
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being invaded (Abrams and Shen, 1989; Case, 1995),
unlike the models considered here. A second potential
problem with the mutual invasion definition of coex-
istence is that invasion from very low densities may be
impossible, yet an attractor with bounded positive
densities of all species may be attainable, given a
sufficiently high initial density. This was also not
observed in our simulations. Were such outcomes to
occur, maintenance of all three species in a stochastic
environment would be unlikely, as each predator would
probably experience low enough densities to lead to
eventual extinction.

1.1. Numerical methods

Given our mutual invasion definition, two conditions
must be met for coexistence. First, predator species 1
must be able to invade the system with predator 2 and
the prey at equilibrium. This subsystem has a globally
stable equilibrium; the invasion condition is
d2=a24d1=ða1Fbd1Þ: Secondly, predator species 2 must
be able to invade the system in which predator 1 and the
prey are undergoing limit cycle dynamics. Invasion of
predator 2 is possible if d2=a2o/NS1; where /NS1

denotes the average prey density over a limit cycle. This
condition follows from the requirement that the time
average of the per capita growth rate of predator 2 must
be positive when it is too rare to influence resource
levels.

In the numerical results below, we include a small
immigration rate of prey. This prevents unrealistically
low prey densities, and is biologically plausible because
prey are usually more widely distributed than are their
specialist predators. Prey immigration leads to a term, I ;
being added to the right-hand side of Eq. (1c), and a
scaled term, i (=I=ðKrÞ) being added to Eq. (2c). If i is
several orders of magnitude less than one, there are only
small effects on equilibrium predator densities and on
the stability condition given by Eq. (3), but the prey is
buffered from excursions to very low densities. In the
simulations of Eq. (2) reported below, we generally
assumed i ¼ 0:0001; minimum prey densities are typi-
cally no less than 10�4 times the carrying capacity.

Previous work (Abrams and Holt, 2002) shows that
coexistence is only possible over a wide range of death
rates (or resource requirements) for each competing
predator if the parameter b in Eq. (2) is much greater
than unity. Here we generally assume that b ¼ 10; which
is on the order of that observed in several experimental
studies (Abrams et al., 1990; Gross et al., 1993; Messier,
1994; Eby et al., 1995; Ruesink, 1997). A more limited
set of simulations was carried out for smaller b (=1.25,
3, or 5). Given that b ¼ 10; the nature of the population
cycles produced by species 1 in the absence of species 2 is
determined by the parameters a1 and d1: In our most
extensive simulations, we examined system dynamics for

a range of a1 values spanning the prey’s intrinsic growth
rate {a1 ¼ 0:2; a1 ¼ 1; a1 ¼ 5}. For each a1; we
examined death rates, d1; approximately 20% or 60%
below the stability threshold set by inequality (3); i.e.
d1 ¼ 0:06545a1; and 0:03273a1: For each of these 6
parameter combinations, we numerically determined the
dynamics produced over a wide grid of a2 and d2 values
that allow both predator species to coexist. The results
from this initial set of simulations were used then to
explore in more detail areas of parameter space in which
a variety of different dynamic behaviors were observed.
This included much larger and much smaller values of
the parameters, ai; and values of d1 both closer to and
further below the stability threshold value.

Numerical integrations were carried out using a
fourth order Runge–Kutta procedure with adaptive
step size (Press et al., 1992) coded in C. All numerical
integrations were run for at least 20,000 time units to
attain the limiting dynamics. Many results were checked
using the function NDSolve in Mathematica 4.0
(Wolfram Research, 1999) with a setting of infinity for
the AccuracyGoal. Lyapunov exponents were calculated
using a routine based on Wolf et al. (1985) and coded in
C; these results were checked using the program
Dynamics II (Nusse and Yorke, 1998). Lyapunov
exponents were estimated over an additional 20,000
time units.

1.2. Dynamical patterns

The limiting dynamics observed across the entire set
of simulations can be roughly categorized into three
main types (see Fig. 1), which we refer to as
‘synchronous cycles’, ‘asynchronous cycles’, and ‘chao-
tic dynamics’. A description of these three types of
dynamic behavior and a rough description of the
parameter values yielding each type is as follows:

1.2.1. Synchronous cycles

The most commonly observed population dynamics
were simple limit cycles of relatively short period, with
the two predator populations varying in a roughly
synchronous fashion (as in Fig. 1A). In comparison with
the limit cycle dynamics of the unstable predator
interacting alone with the prey, the amplitudes of cycles
in the full system are smaller and the periods shorter.
Larger cycles benefit the linear predator relative to the
nonlinear, but increases in the abundance of the linear
predator reduce cycle amplitude. In most cases of
synchronous cycles, the correlation coefficient of the
two predator densities over time was between 0.8 and
1.0. The limit cycles are usually simple in the sense that
all local maxima (minima) of a given variable are
identical. However, some synchronous cycles with more
complex structure were observed over limited parameter
ranges. Synchronous limit cycles were the predominant

ARTICLE IN PRESS
P.A. Abrams et al. / Theoretical Population Biology 64 (2003) 163–176 165



type of dynamics observed over the vast majority of
{d2; a2} parameter space permitting coexistence when
the value of d1=a1 was significantly (i.e., on the order of
50% or more) below the stability threshold set by
condition (3). For example, when a1 ¼ a2 ¼ 5; synchro-

nous cycles occurred over the entire range of d2

permitting coexistence when d1 was less than 1/2 of its
stability threshold value (d1o0:2045). Synchronous
cycles also represent the only type of dynamics observed
when b is close to 1 or when both d2 and a2 are
sufficiently small relative to 1, even if d1=a1 is near the
stability threshold. One interpretation of the Arm-
strong–McGehee model is that it involves ‘temporal
niche partitioning’, in which each species enjoys a
competitive advantage during some time period. This
is true, but our results show that such niche partitioning
does not imply temporal displacement in peaks and
troughs in abundance.

1.2.2. Asynchronous cycles

In these relatively long-period cycles, there are phases
of nearly constant prey densities and opposite, nearly
monotonic, changes in the densities of the two predator
species (decline in the linear, and increase in the
nonlinear predator) during a significant fraction of the
cycle period. These periods of gradual replacement of
the linear predator are characterized by prey densities
slightly below the replacement level required by the
linear predator, and are followed by brief periods of
cycling accompanied by rapid shifts in the relative
abundances of the two predators. These reversals occur
when the linear species becomes so rare it can no longer
prevent cycles driven by the nonlinear predator. Fig. 1B
is an example of this type of cycle. Asynchronous cycles
are often complex in structure, having several different
local maxima in density of each variable over the time-
course of a single cycle. The correlation coefficient
between the densities of the two predators undergoing
asynchronous cycles is usually negative; if positive, it is
generally less than 0.3. However, the dividing line
between this type of cycle and the synchronous ones is
to some extent arbitrary, because the fraction of the
cycle during which prey density was relatively constant
varied considerably, as did the constancy of the prey.
For later figures, we adopt a somewhat arbitrary
criterion of a negative correlation coefficient of predator
densities for distinguishing asynchronous from synchro-
nous cycles. Asynchronous cycles were not observed
when the value of the parameter b was close to 1, the
minimum b for which cycles are possible. The range of
other parameters producing asynchronous cycles in-
creases as b increases. Given that b is large, asynchro-
nous cycles having very long periods are often observed
for a narrow range of death rates, d2; near the lower
boundary of the range of d2 allowing coexistence. In this
case, the two predators are very nearly equal in their
prey requirements. Asynchronous cycles with shorter
periods are observed for other, broader ranges of
parameters. Asynchronous cycles appeared to occur
over the broadest ranges of parameters when the attack
rate of the nonlinear predator, a1; was on the order of 1
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Fig. 1. Examples of the three basic categories of dynamics in the

Armstrong–McGehee model (Eq. (2) with an added resource immigra-

tion rate of i ¼ 0:0001). In all panels, the nonlinear predator (species 1)

is given by the thick solid line, the linear predator (species 2) is given by

the thin solid line, and the resource is the dashed line. Panel 1A is an

example of a synchronous cycle (parameter values are: a1 ¼ a2 ¼ 5;

d1 ¼ 0:327273; d2 ¼ 1:2; b ¼ 10). Panel 1B is an example of an

asynchronous cycle (parameter values are: a1 ¼ a2 ¼ 1; d1 ¼ 0:076;
d2 ¼ 0:4; b ¼ 10). Panel 1C is an example of chaotic dynamics

(parameter values are: a1 ¼ a2 ¼ 5; d1 ¼ 0:327273; d2 ¼ 1:7; b ¼ 10).

Note the different scaling of the x- and y-axis in the different panels.
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or less, given that b was large relative to 1. When these
conditions on a1 and b were satisfied, asynchronous
cycles were most common when d1 was relatively close
to its stability threshold value. These conditions
allow the linear predator to maintain stability of the
resource population for significant periods of time as its
own population gradually declines, and the population
of the nonlinear predator increases; eventually, the
inherent instability of the latter predominates and so in
effect, the system shifts between alternative dynamical
domains.

1.2.3. Chaotic dynamics

Chaotic dynamics (identified by a positive value of the
largest of the three Lyapunov exponents) produced
more ambiguous correlations between the densities of
the two species. Chaotic dynamics occurred over a
substantial fraction of parameter space when: (i) the
value of b in Eq. (2) was relatively large; (ii) the value of
d1 in Eq. (2) was moderately close to the stability
threshold given by Eq. (3); (iii) the scaled attack rate (a1)
of the nonlinear predator was significantly greater than
unity; and (iv) the prey requirement for zero growth of
species 2, d2=a2 (=N2�), was intermediate in the range
of values allowing coexistence. Chaos was rare or absent
if the demographic rates of the linear predator were
sufficiently slow relative to the prey (d2; a251). When
a1 ¼ a2 ¼ 5; chaotic dynamics were only observed when
d1 was greater than approximately 1/2 of its stability
threshold value (d1 ¼ 0:40909). For these values of ai

with b ¼ 10; chaos was absent for d1p0:21; and the
broadest range of d2 values produced chaos when d1 was
between approximately 0.28 and 0.38. Fig. 1C is an
example of chaotic dynamics in this system when d1 ¼
0:3273 and d2 ¼ 1:7:

Most of the above results can be understood by
considering the ability of the linear competitor to
control the dynamics of the resource while the nonlinear
species increases to a density where it is able to drive
cycles of the prey. Such phases are a key characteristic of
asynchronous cycles. Small demographic rates of the
nonlinear species and a value of d1 near the stability
threshold both reduce the strength of the destabilizing
effect of the nonlinear species, while large demographic
rates of the linear species increase its ability to
temporarily stabilize resource densities. These condi-
tions lead to asynchronous cycles or chaos. The opposite
conditions increase the relative impact of the nonlinear
species on resource dynamics, and tend to lead to
synchronized cycles. Nonsynchronous dynamics require
a large half saturation constant (large b); this largely
decouples the demographic rates of the nonlinear species
from resource density over a wide range of resource
densities. In this case, damped cycles driven by the linear
predator and the prey do not entrain cycles in the
nonlinear predator, because the latter experiences little

variation in its per capita growth rate when the resource
fluctuations are modest.

The above classification of dynamics is neither
complete nor unambiguous. There are a variety of
intermediate cases; for example, chaotic dynamics with a
very small positive maximum Lyapunov exponent arise
that appear superficially similar to the asynchronous
cycles in Fig. 1B. Another example is roughly asyn-
chronous cycles in which the phase of nearly constant
prey density is replaced by one in which prey density
fluctuates above and below the prey requirements of the
linear predator. Fig. 2 (see next paragraph) illustrates
another type of dynamics observed for a narrow range
of parameter values. Nevertheless, most of the observed
dynamics could be clearly assigned to one of the above
three categories.

Alternative attractors were found for small regions of
parameter space. In all cases observed, the two
alternatives were a synchronous limit cycle of small
amplitude and an asynchronous cycle with much larger
amplitude fluctuations in densities and a much longer
period. For some parameter sets, asynchronous cycles
were also observed as long-lasting transients for a range
of parameters in which the ultimate attractor was a
simple synchronous cycle. Such cases were characterized
by having all Lyapunov exponents very close to zero.
This occurred for parameters where the linear species
had a death rate close to the minimum value that would
allow it to coexist with the nonlinear species. In these
cases, dynamics similar to those shown in Fig. 1B could
persist for thousands of time units, but would eventually
resolve into the pattern shown in Fig. 1A. An example
of an intermediate stage in such a transition is given in
Fig 2. In this transition period between the two types of
dynamics, there is a slow long-period cycle with
negatively correlated densities of the two predators that
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Fig. 2. An intermediate stage in the transition between a long-lasting

but transient asynchronous cycle to a synchronous cycle. Parameter

values are: a1 ¼ a2 ¼ 5; d1 ¼ 0:327273; d2 ¼ 0:97; i ¼ 0:0001; b ¼ 10:

The density of predator 1 is given by the upper (dashed) line, and

predator 2 by the lower (solid) line.
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is overlain upon a rapid, smaller-amplitude cycle with
positively correlated densities. There are some narrow
parameter ranges where the attractor of the system had
dynamics similar to those shown in Fig. 2.

Fig. 3 illustrates typical patterns of occurrence of
different dynamics over continuous ranges of the
parameters a2 and d2: Given that we restricted the
parameter b to large values (b ¼ 10 in most simulations),
the type of dynamics depended on the four remaining
parameters, a1; a2; d1; and d2: Figs. 3A and B show the

range of dynamics that occur over a grid of potential a2

and d2 values for cases in which a1 is significantly greater
than 1 (a1 ¼ 5). This grid is shown for two values of d1

that are approximately 0.93 and 0.80 times the stability
threshold. Dynamics are classified into the categories
identified above. We have used a conservative method of
classifying cycles as asynchronous cycles based on a
periodic attractor with a negative correlation coefficient
between the densities of the two predators. In both
Figs. 3A and B, a broad intermediate range of d2
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(A)  a1 = 5, d1 = 0.38 (B) a1 = 5, d1 = 0.327273 
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(E) a1 = 5, d1 = 0.327273 

0 0.2 0.4 0.6 0.8 1
d2

0

0.2

0.4

0.6

0.8

1

a 2

Fig. 3. Dynamics across a grid of {a2; d2} values for different combinations of a1 and d1: The values of a1 and d1 are given on top of each panel. The

value of b is 10 in all cases. The color-coding of dynamical behaviors is: red-exclusion; blue-chaotic; green-indeterminate (absolute value of all

Lyapunov exponents less than 0.001); white-synchronous cycles; gray-asynchronous cycles. Cycles were classified as synchronous if the correlation

coefficient of predator densities was greater than zero, and asynchronous if the correlation coefficient was less than zero. All simulations used a

common set of initial densities.
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produces either asynchronous cycles or chaotic dy-
namics. However, the relative sizes and locations of
parameter values producing asynchronous cycles are
quite different in the two figures, with asynchronous
cycles being more common when d1 is larger. In both
figures, there is a narrow range of d2 close to the
minimum that will allow coexistence, where very long-
period asynchronous cycles occur; these generally have
all Lyapunov exponents very close to zero. The effect of
lower values of the predator attack rates is illustrated by
Figs. 3C and D, in which a1 ¼ a2 ¼ 1: In Figs. 3C and
D, d1 is respectively approximately 0.93 and 0.8 times
the stability threshold (as in Figs. 3A and B). Most of
the differences between Fig. 3C and D and the
corresponding Figs. 3A and B are the result of the
decrease in a1 rather than a2; comparable figures for
a1 ¼ 1 and a2 ¼ 5 are very similar to Figs. 3C and D.
The lower value of a1 eliminates most of the chaotic
dynamics. When d1 is 93% of its threshold (Fig. 3C),
there is a very narrow band of chaos, similar in form to
asynchronous cycles, at the boundary between exclusion
of the nonlinear predator and coexistence. When d1 is
80% of its threshold and the ai are relatively small (Fig.
3D), there is a narrow band of chaotic dynamics at
intermediate values of d2: In 3C, the majority of the
possible {a2; d2} parameter combinations produce asyn-
chronous cycles. This would also be true of Fig. 3D if we
used a correlation coefficient of 0.3 as the dividing line
between synchronous and asynchronous. Some of the
panels in Fig. 3 appear to be characterized by
qualitatively different types of dynamics occurring as
roughly parallel bands in (a2; d2) space. However, the
ranges of qualitatively different types of dynamics does
change with a sufficiently large proportional change in
both a2 and d2; as is shown in Fig. 3E, where both a2

and d2 have been reduced from their values in Fig. 3B so
that d2o0:5: At very low demographic rates of the linear
predator (a2 and d2), synchronous cycles are the
predominant dynamics when coexistence occurs. Values
of a2 and d2 much larger than 5 (results not shown) tend
to make some of the chaotic dynamics more nearly
periodic; here there are many cases where dynamics are
difficult to classify as chaotic or as asynchronous cycles
because of the small magnitude of the maximum
Lyapunov exponent.

We have not illustrated cases where d1 is considerably
below the value at which the system becomes stable.
Three of our initial sets of parameters assumed that d1 is
0.4 times the stability threshold value. For all of these,
simple synchronous cycles occur across all of the
parameter space where coexistence occurs. This pre-
dominance of synchronous cycles characterized all
parameter combinations of a1 and d1 where d1 was
substantially below the stability threshold. We also do
not illustrate cases with very large values of both ai and
di: These parameter ranges generally produce more

periodic and fewer chaotic dynamics than do those
illustrated here, but they also frequently produce
extremely low minimum predator densities.

Fig. 4 presents a different cross-section of parameter
space, where a2 and d2 are fixed, and dynamic behaviors
across a range of a1 and d1 values are illustrated. The
region of asynchronous or chaotic dynamics is a
minority of the range of parameters where the two
predators can coexist in this figure; nevertheless, this
region constitutes a significant fraction of parameter
space. That fraction decreases when a1 is decreased. In
general, the results from Figs. 3 and 4 support the
qualitative comments made above regarding the occur-
rence of the three classes of dynamical behaviors across
the range of parameter values that permit coexistence.

2. Responses of mean predator densities to altered

demographic parameters

In this section we examine how the mean densities of
the two competitors are affected by changes in demo-
graphic rates. One goal of this exercise is to clarify how
competition in this model differs from competition in
models with stable, equilibrial coexistence arising from
classical niche partitioning. There are a number of
properties common to models of the latter type, as
described in the Introduction. As shown below, the
responses of predator densities to changes in demo-
graphic rates are very different in the Armstrong–
McGehee model. We again largely confine our numer-
ical results to cases in which b ¼ 10; and assume a small
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amount of prey immigration. We measure interspecific
effects by calculating changes in mean densities, because
this is the best single measure of the impact of the
affected species on other species in the community
(Abrams and Roth, 1994a, b; Abrams et al., 1998), and
is the measure used in virtually all field studies that have
quantified interspecific interactions. Clearly changes in
the pattern of variation can also be important for both
ecological and evolutionary questions, but these will not
be pursued here. Mean densities in chaotic systems are
influenced by the length of the time over which the mean
is calculated, but the 104 time unit interval used here
produced a very close (51% difference) approximation
of the mean for much longer periods for most chaotic
parameter sets (longer time intervals were used when the
period of the fluctuation was very long, as in Fig. 1B).

We begin by considering equal proportional changes
in both demographic rate parameters, Bi and Di for one
of the two competitors in Eq. (1). This is equivalent to
proportional changes in ai and di in Eq. (2), but the

change in Bi also changes the scaling of the density of
predator i: Thus we will use the unscaled equations to
examine the effects of changes in demographic rates on
population densities. Such changes are analogous to
changes in intrinsic growth rates, r; in the two-species
Lotka–Volterra model, in that model they have no
impact on the ultimate densities of either species, and
only determine the speed of approach to equilibrium.
An example of the mean densities of both competitors in
the Armstrong–McGehee model is shown as a function
of the demographic rates of the linear predator species
in Fig. 5. In general, slower dynamics for this species
imply simpler dynamics of the entire system. At the
lowest demographic rates shown, the dynamics are
simple synchronized cycles, and the mean density of
species 2 decreases rapidly (and that of species 1
increases rapidly) as the demographic rates of species 2
are increased. Cycles become more complicated and
asynchronous as the demographic scaling factor in-
creases above unity. The complicated multimodal
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pattern of mean densities shown in the figure is the
consequence of changes in the complexity of the
asynchronous cycles with increasing demographic speed.
In general, qualitative changes in the nature of the
population fluctuations as demographic rates shift will
cause significant changes in the mean densities of the
two predators for most parameter values. Fig. 3 shows
that such qualitative shifts are likely to occur frequently
with proportional changes in the two demographic rate
parameters of one or both species. Proportional changes
in both a1 and d1 are the only difference between Figs.
3B and D, and between Figs. 3A and C; in these cases,
slower dynamics of the nonlinear species greatly
decrease on the range of parameters that produce chaos,
and increase the range of parameters leading to
asynchronous cycles. Faster dynamics of predator 1
have the opposite effects. Large proportional decreases
in a2 and d2 cause asynchronous or chaotic dynamics to
shift to synchronous limit cycles (Fig. 3E), accompanied
by significant changes in mean predator densities.

Mortality rates experience a great deal of natural
variation, and can often be manipulated in field or
laboratory experiments. Increased mortality of either
competitor in the 2-species Lotka–Volterra model
decreases its density and increases the competitor’s
density. In the Armstrong–McGehee model the con-
sequences of altered per capita mortality rates for mean
population densities are strongly influenced by the
resultant qualitative changes in system dynamics. Figs.
6 and 7 show two examples of the changes in mean
population densities that occur with increases in the
death rate of one of the two predators in Eq. (2). In both
figures, the system changes through all three of the
qualitative types of dynamics as the mortality rate of
one of the species is changed. Significant features of the
results that differ from standard equilibrium models of
competition are:

(1) The mean density of a predator may increase with
its own death rate. This is true of the linear predator
species (2) over a limited range of mortalities, as
shown in Fig. 6. It is true of the nonlinear predator
(1) over most of the range of death rates that allow
coexistence, as shown in Fig. 7.

(2) The mean density of a predator may increase with
decreases in the death rate of its competitor. This is
true of species 1 over roughly the upper half of the
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range of death rates of its competitor that permit
coexistence (Fig. 6). It should also be noted that the
mean density of species 1 when alone is approxi-
mately given by its density at the right-hand side of
Fig. 6 (d2 ¼ 3:2); the graph shows that the presence
of species 2 increases the mean density of species 1
for all of the possible range of mortality rates of
species 2 that allow coexistence. In Fig. 7, an
increase in species 1 mortality decreases the density
of species 2 over the upper part of the range of per
capita mortality rates of species 1 that allow
coexistence. In fact, raising the death rate of species
1 actually results in exclusion of species 2 in this
example, because the system becomes stable at d1 ¼
0:409: However, a small additional increase in d1 to
0.42 in Fig. 7 would reverse the outcome, and
species 2 would then exclude 1. This example is also
interesting because both species increase in response
to increased mortality of species 1 over most of the
range of potential death rates.

(3) When there are alternative attractors, the mean
population densities of a given predator often
respond in opposite directions to changes in one
of the two per capita death rates in the two
attractors (as is true in Fig. 6 over most of the
range of mortality rates of predator 2 where
alternative attractors occur).

(4) A change in the mortality rate of one predator that
alters the number of predator species present often
results in a discontinuous change in the mean
densities of both predators. Although not shown in
Fig. 6, there are large and abrupt changes in the
densities of both predators when the death rate of
the linear predator drops to a level where the
nonlinear predator is excluded. When d2 decreases
from 1.59 to 1.58 in that example, the density of
predator 2 increases from 0.053 to 0.1364, while the
density of predator 1 drops from 0.348 to zero.
These discontinuous changes in mean densities at
the lower end of the range of d2 that allows
coexistence appear to occur for all of parameter
space yielding coexistence for Eq. (2). In all cases,
the linear predator attains a much higher abun-
dance when the nonlinear predator is excluded.

Many of these features of the responses of densities to
mortality rates can be understood heuristically by
considering the consequences of altered mortality for
the amplitude of predator–prey cycles. Higher predator
mortality decreases the amplitude of limit cycles in the
nonlinear subsystem composed of the predator and
prey. Higher mortality also results in a relatively slow
increase in the predator’s mean density in this subsystem
(Abrams and Roth, 1994a; Abrams et al., 1997). The
latter effect arises from the fact that mortality actually
increases the predator’s density at the equilibrium point,

but the large amplitude cycles reduce the mean growth
rate, and therefore density, of the predator. The
presence of the linear predator dampens these oscilla-
tions, and this effect alone would increase the mean
density of the nonlinear predator above its mean density
in isolation. This is why all of the cases where predator 2
is present in Fig. 6 have a higher mean density of
predator 1 than when predator 2 is absent (i.e. at
d2 ¼ 3:2). The increase in the mean densities of both
predators with increased mortality of predator 1 (true of
most of the range of d1 shown in Fig. 7) is a consequence
of smaller amplitude cycles. Similarly, the decrease in
the density of the nonlinear predator (species 1) with
increasing d2 in Fig. 6 is a consequence of the weakening
effect of the linear species in damping the prey
oscillations driven by the nonlinear predator.

The discontinuities in mean predator density that
occur (e.g., just beyond the left-hand side of Fig. 6, and
at the right-hand side of Fig. 7) result from major
changes in the amplitude of cycles at those points, with
concomitant change in mean resource density. In Fig. 7,
species 2 is excluded when d1 reaches its stability
threshold. Which species is excluded when d1 is
increased above the stability threshold given by Eq. (3)
depends on the prey requirement for zero growth in the
linear species. Exclusion of the linear species 2 is more
likely if its own prey requirement is relatively high. The
exact requirement for exclusion of species 2 at high d1 as
the result of stabilization of the system from inequality
(3) is d2=a24ðb � 1Þ=ð2bÞ:

If the per capita mortality rate of species 1 is
sufficiently low relative to the stability threshold,
complicated and/or chaotic dynamics are typically
replaced by simple synchronous cycles; changes in mean
densities with altered death rates are in the direction
expected based on the intuitive notion that negative
effects (i.e., higher mortality) inflicted on one competitor
increase the mean density of its competitors.

Other parameters that could change in this system
include immigration rates and prey carrying capacity.
Prey immigration tends to be stabilizing, and so
generally increases dominance of the nonlinear preda-
tor. Increasing K is equivalent to proportional increases
in both ai and in b; this environmental change increases
the amplitude of cycles, and generally increases the
abundance of the species with the linear functional
response, which benefits more from periods of high prey
density.

3. Dynamics and responses to mortality rates in related

models

The specific system illustrated in Armstrong and
McGehee (1980) (Eq. (1) above) is only one exemplar of
a mechanism that arises in a broad range of models. It is
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important to gain insight into how the above results
change when model components are changed, particu-
larly with respect to changes that increase the prob-
ability of coexistence of predator species. There are too
many different conceivable modifications of Eq. (1) to
permit as thorough an exploration as has been carried
out above. In this section we present preliminary results
regarding the following modifications: (1) different prey
growth functions; (2) an accelerating rather than a linear
functional response for the stable predator; (3) immi-
gration of one or both predators; (4) a type-2 functional
response for both predators; (5) more than one resource.
Many other mechanisms producing temporal variation
in densities may also alter the responses of competing
species to environmental change (e.g., Chesson, 1986,
1994, 2000), but these will not be discussed here.

A flexible description of prey density-dependence is
provided by the ‘theta-logistic’ (Gilpin and Ayala, 1973)
model, where dN=dt ¼ rN½1 � ðN=KÞy	: We have car-
ried out a number of simulations where y is either
significantly larger or smaller than 1. Moderate changes
in y do not change the general conclusions reached
above. Larger values of y increase the range of relative
mortalities that allow coexistence (Abrams and Holt,
2002). The dynamics observed across a range of death
rates resemble the case of y ¼ 1; with the same three
general classes of dynamics identified above. Synchro-
nous cycles were observed in all systems when d1 is
sufficiently lower than its threshold value for stability,
regardless of d2: The responses of mean densities to
altered per capita mortality rates were, however,
affected by the form of density dependence. Fig. 8
shows the responses of the mean predator densities to
altered per capita mortality rates of the linear predator
for two systems that differ only in their density
dependent exponent, y: The major difference between
these and comparable models with y ¼ 1 (logistic
growth), is that the abrupt jump in mean density when
d2 is just large enough to allow the nonlinear predator to
exist does not occur at large values of y: This jump is
more pronounced for small values of y than for the
logistic model.

Abrams and Holt (2002) showed that, if the species
with a linear functional response was replaced by one
with an accelerating functional response, the range of
mortality rates or other parameters allowing coexistence
(the ‘coexistence bandwidth’; Armstrong, 1976) was
expanded. We carried out some numerical analyses of
such a model to determine the range of dynamics and
responses to mortality rates. The accelerating functional
response strengthens the stabilizing impact of the stable
predator species on the 3-species system. As a result,
there was an increase in the range of parameter space
within which the stable predator could control the prey
fluctuations and produce asynchronous cycles, particu-
larly when the death rate of the unstable predator was

relatively close to its stability threshold value. Chaotic
dynamics, when they occurred, were generally shifted to
relatively low values of the death rate of the stable
predator, within the range allowing coexistence.

Predator immigration may permit the local coex-
istence of two or more predator species at significant
densities over a broader range of parameters than for
the models described above, with their closed predator
populations. We have explored the dynamics of a model
consisting of Eq. (1) with constant immigration of all
species. Low levels of predator immigration do not alter
the general features reported above: the same three
categories of dynamics were observed for approximately
the same ranges of parameter values. Immigration of
predator 2 does eliminate some cases of extremely low
densities of that predator. High immigration of the
nonlinear predator reduces the amplitude of its cycles

ARTICLE IN PRESS

 (A) θ = 0.5 

Mean P1 (solid), P2 (dashed) 

0.15 0.2 0.25 0.3 0.35

0.2

0.4

0.6

0.8

1

1.2

(B) θ = 4 
Mean P1 (solid), P2 (dashed) 

0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.5

1

1.5

2

2.5

Per capita death rate, predator 2 

Per capita death rate, predator 2

Fig. 8. The mean densities of the two predators as functions of the per

capita mortality rate of the linear predator species for two models in

which the prey has y-logistic growth, with y ¼ 0:5 in the top panel and

y ¼ 4 in the bottom panel. Otherwise the model is identical to Eq. (2)

with the following common parameters for both panels: b ¼ 10; a1 ¼
a2 ¼ 1; d1 ¼ 0:05: There is no prey immigration.

P.A. Abrams et al. / Theoretical Population Biology 64 (2003) 163–176 173



with the prey, and therefore reduces the range of
parameters over which there can be persistence of a
linear predator that does not also have immigration.
The responses of mean population densities of both
predators to an altered immigration rate of one of the
predators is typically very nonlinear. For example,
increased immigration of predator 1 in a system whose
other parameters are those given in Fig. 7, often causes a
decrease in the mean density of predator 1, until
immigration is nearly sufficient to cause extinction of
predator 2. The mean density of predator 2 changes in a
highly nonlinear manner with increasing immigration of
predator 1 as a consequence of the nonlinear effect of
immigration on cycle amplitude. Moreover, relatively
small immigration rates can allow coexistence of three of
more predator species at significant densities, something
which requires very delicate balancing of parameters
when there is no immigration (Chesson, 1994; Abrams
and Holt, 2002). Thus, in a metapopulation context,
there may be local diversities much greater than two
predator species, given predator–prey cycles and differ-
ences in the linearity of predator responses to prey
density.

We have also examined models in which each of the
two predators has a saturating functional response, but
differ in the half-saturation constant (b in Eq. (2)). This
system has previously been studied numerically by Hsu
and Hubbell (1978) and Abrams and Holt (2002). As
pointed out in Abrams and Holt (2002), coexistence
requires very precise balancing of parameters when both
species have substantial half-saturation constants. Thus,
coexistence in this more general model is likely to
involve significant differences in handling time, such
that the functional response of one predator is close to
linearity, while the other has a half-saturation constant
(b) much greater than unity. These conditions lead to
dynamics very similar to those that characterize Eq. (1).

There are many other possible models of competing
predators that differ in the linearity of their responses,
and undergo predator–prey cycles. For example,
Abrams and Holt (2002) consider a case with two prey
species, and two predators that differ in their relative
consumption rates of the different prey. Such models
can exhibit an even wider range of dynamics than do the
systems considered here, but our simulations of cases in
which there is high similarity between the two predators
in their relative prey capture rates displayed a range of
dynamics similar to those described for the comparable
single-resource Armstrong–McGehee system. Their re-
sponses to changes in predator parameter values are also
similar to the figures presented here.

Models that add random or seasonal variation in one
or more parameters to the basic structure of Eq. (2) have
also been studied. These results will be reported in more
detail elsewhere (Abrams, under review). In most cases,
small levels of variation have relatively small effects on

the qualitative form of the dynamics or the responses to
parameter values. However, larger amounts of variation
can cause major changes in the parameter ranges
allowing coexistence as well as in the dynamics of
species when they do coexist (Abrams, unpublished
manuscript). This is not surprising, given that seasonal
variation in prey growth is capable of producing a wide
range of complicated dynamics even in predator–prey
models otherwise characterized by a stable equilibrium
point (Rinaldi and Muratori, 1993; Abrams, 1997b).

4. Discussion

The models explored here show that competition
between cycling species that differ in the linearity of
their responses differs in many ways from the expecta-
tion of stable, Lotka–Volterra systems. Smooth changes
in parameter values can cause abrupt transitions in the
stability of particular attractors of this dynamical
system. One can thus see discontinuous changes in
mean population densities with continuous changes in
mortality. The phenomenon of abrupt changes in
dynamical systems with continuous parameter change
is common, and has been reviewed for other ecological
systems elsewhere (e.g. May, 1977; Scheffer et al., 2001).
However, these sorts of abrupt jumps are not a property
of familiar two-species models of competition without
cycles. Changes in the quantitative or qualitative aspects
of population cycling explain the counter-intuitive
responses of mean densities to changes in mortality.
These include the fact that mortality applied to one
predator species can decrease the mean density of its
competitor, or even lead to its extinction. Other counter-
intuitive responses of mean densities to parameter shifts
have been noted in other models of interacting popula-
tions (Armstrong and McGehee, 1980; Holt, 1983;
Abrams and Roth, 1994a, b; Abrams, 1997a, b; Abrams
et al., 1997, 1998; Rinaldi and DeFeo, 1999) when there
are sustained fluctuations and when per capita growth
rates are nonlinear functions of densities. The current
model actually presents a methodological problem for
some population definitions of competition, because
addition of the linear predator often increases the mean
density of the nonlinear predator.

Several of the dynamical transitions we have here
documented should be useful in identifying cases where
the coexistence-promoting mechanism described here
may be operating. Bifurcations in dynamics have been
useful in identifying the mechanism of population
regulation in flour beetles (Dennis et al., 2001) and the
mechanism driving predator–prey cycles in a rotifer-alga
system (Fussmann et al., 2000). Altering the per capita
mortality of a species is often possible in both field and
lab settings. If the Armstrong–McGehee mechanism
promotes coexistence in a system, our analysis has
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identified some characteristic transitions in the dynamics
that occur, particularly when the mortality rate of the
stable species is increased. It may also be possible to
slow the population dynamics or reduce the prey-
capture rates of one or both predators in some
experimental setting (e.g. Luckinbill, 1973); these
manipulations are also expected to lead to characteristic
transitions between different types of dynamics.

The three broad classes of dynamics observed for the
simple Armstrong–McGehee (1980) model also arise in
a variety of related models that share the same basic
mechanism of coexistence. The asynchronous type of
cycles are particularly significant, because they suggest
that short-term observations may often give a highly
misleading picture of the long-term behavior of systems
of cycling competitors. The period of gradual replace-
ment of the stable predator by the unstable one may last
many generations, and give an impression of ultimate
competitive exclusion. However, the relative abundances
of the two species can eventually be reversed in a very
short time span. Although simple limit cycles with
positively correlated predator populations occur over
the largest area of parameter space, this does not mean
that such cycles in fact represent the most common
dynamic pattern in natural systems exhibiting this
mechanism of coexistence. Systems in which the
unstable predator has a death rate close to the stability
threshold are more likely to avoid stochastic extinctions
than are systems with lower predator mortality rates.
Mortality rates near the threshold are in turn associated
with a high probability of chaotic dynamics, complex
limit cycles, or alternative attractors. Although complex
dynamics have been described for nonlinear consumer–
resource models of competition (Vandermeer, 1993),
very little modeling of competition considers the
possibility of cycling, let alone the consequences of the
changes in cycling that are caused by changes in a
parameter of the competing species.

Finally, it should be noted that many natural
populations that are harvested are themselves predators
in food webs, which are likely to display unstable
dynamics. The changes in death rates explored above
can be broadly interpreted as changes in harvesting
rates. Our results suggest that one could be lulled into a
false sense of security because a focal species maintains
high average abundance (or even increases) as its harvest
increases (see also Abrams, 2002).
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