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Relativistic Harmonic

Generation by Intense Lasers in Plasmas

E. Esarey, A. Ting, P. Sprangle, D. Umstadter, and X. Liu

Abstract— A linearly polarized, ultra-intense laser field in-
duces transverse plasma currents which are highly relativistic
and nonlinear, resulting in the generation of coherent harmonic
radiation in the forward direction (i.e., co-propagating with the
incident laser field). A nonlinear cold fluid model, valid for
ultrahigh intensities, is formulated and used to analyze relativistic
harmonic generation. The plasma density response is included
self-consistently and is shown to significantly reduce the current
driving the harmonic radiation. Phase detuning severely limits
the growth of the harmonic radiation. The effects of diffraction
are considered in the mildly relativistic limit. No third harmonic
signal will emerge from a uniform plasma of near infinite extent.
A finite third harmonic signal requires the use of a semi-infinite
or finite slab plasma. For an initially uniform plasma, no second
harmonic radiation is generated. Generation of even harmonics
requires transverse gradients in the initial plasma density profile.

I. INTRODUCTION

HE interaction of ultra-intense laser pulses in plasmas is

rich in a variety of phenomena [1]-[22]. These phenom-
ena have gained particular relevance due to the development of
compact lasers which produce ultrashort pulses (< 1 ps) at ul-
trahigh powers (> 1 TW) and intensities (> 10'® W/cm?) [2],
[23]. For example, the production of harmonic radiation may
occur by several mechanisms. At modest intensities, lasers
interacting with neutral gases have been observed to produce
coherent harmonic radiation at well past the 53%* harmonic due
to atomic effects [13]. At ultrahigh intensities, a gas is readily
ionized and the effects of the free plasma electrons become
exceedingly important. The ionization process itself results in
electron currents which can produce harmonic radiation [14],
[15]. In a fully ionized plasma, harmonics can be produced by
i) relativistic harmonic generation in the forward direction (the
propagation direction of the incident laser) [1], [8], [17]{20],
ii) stimulated backscattered harmonic generation [1], [21],
and iii) incoherently, by nonlinear Thomson scattering [1],
[22]. Recent experiments on these processes have also been
performed [2], [15]-[18]. This paper discusses the details
of process i), relativistic harmonic generation in fully ion-
ized plasmas. The growth, dephasing, and saturation of the
harmonics will be analyzed.
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Fig. 1. Schematic of an intense laser interacting with a plasma to produce
coherent relativistic harmonic radiation in the forward direction.

An intense laser field interacting with a plasma induces
transverse currents associated with the quiver motion of the
electrons. For ultrahigh intensities and linear polarizations,
the induced plasma current becomes highly relativistic and
nonlinear, resulting in the generation of coherent harmonic
radiation in the forward direction (see Fig. 1). The trans-
verse quiver momentum, p,, of an electron in a 1-D laser
field is given by p, = mgcag, where ag = eAg/moc? is
the normalized vector potential of the incident laser field.
The quiver velocity, vg, is given by v, = cag /7L, where
v1 ~ (14 a@)"/? is the relativistic factor associated with
the transverse electron motion. Consider a linearly polarized
incident laser field of the form ag(z,t) = ag cos fpe,, where
6o = koz — wpt and k¢ and wy are the wavenumber and
frequency of the incident laser field, respectively. In the mildly
relativistic limit, a5 < 1, the quiver velocity is sinusoidal.
At ultrahigh intensities, 4% > 1, the quiver velocity contains
a spectrum of harmonic components. This nonlinear electron
quiver motion leads to the generation of relativistic harmonic
radiation [1], [8], [17]-[20]. The laser strength parameter, ao,
is related to the intensity, Iy, of the incident laser field by

it ~ 8.5 x 10719 X0 [um] I3 *[W /em?] (1)
and to the laser power, Py, by Po[GW] =~ 21.5(Gor0/A0)?,
where rq is the spot size of the Gaussian transverse profile
and Ao = 27/ko is the incident laser wavelength. For Ao =~
1 pum, ultrahigh intensities Ip 2 10'® W/cm? imply 43 > 1 and,
hence, highly nonlinear and relativistic electron motion. Such
intensities are currently available from compact laser systems
based on the method of chirped-pulse amplification [2], [23].

Relativistic harmonic generation was first described and
analyzed by Sprangle, et al. [8]. In [8], the independent
variables z —ct and T t were used along with
a quasistatic plasma response. Expressions were derived for
the growth of the harmonic radiation in the linear regime
in which the harmonic field amplitude is proportional to the
laser-plasma interaction distance, L. These expressions are
qualitatively valid for interaction distances less than the phase
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detuning length, c¢ry. Use of the variables (,7 along with
the quasistatic approximation is not adequate to accurately
describe saturation of the relativistic harmonics by phase
detuning. More recently, by using the variables { = z — vpit
and 7 = t, where vy, is the phase velocity of the incident laser
field, along with the quasistatic plasma response, the authors
accurately analyzed the saturation of the relativistic harmonics
by phase detuning [1]. Independent analyses of saturation of
the third harmonic by phase detuning have also been recently
performed [19], [20].

This paper is organized as follows. The remainder of
the introduction describes the basic physics of third har-
monic generation using a simplified 1-D model in the mildly
relativistic limit, d% < 1. The importance of collective,
space-charge, and detuning effects are discussed. It is shown
that the self-consistent plasma density response significantly
reduces the source current driving the harmonic radiation.
Phase detuning places a severe limit on the growth of the
harmonic radiation. In Section II, a 1-D nonlinear model valid
for ultrahigh intensities, d% > 1, is formulated and used to
study the generation of coherent radiation at odd harmonics.
A general expression for the nonlinear index of refraction and
the dispersion relation for a laser field in the limit a3 > 1
are presented. The collective plasma response is included self-
consistently and the saturation amplitude of the harmonics by
phase detuning is calculated. This is done in the long pulse
limit, et >> A, where 7y, is the incident laser pulse duration
and A\, = 2mwc/w,, Where w, is the electron plasma frequency.
For a 77, = 1 psec laser pulse, ¢z, > A, implies ng > 10%6
cm~2, where ng is the ambient plasma density. In Section
111, the effects of diffractive spreading of the radiation fields
are determined using a 3-D model in the mildly relativistic
limit, 42 < 1. Third harmonic generation from semi-infinite
and finite slab plasmas are analyzed. The effects of transverse
gradients in the initial plasma density are discussed, which lead
to the generation of radiation at even harmonics. A conclusion
is presented in Section IV.

A. Quiver Model, Collective Effects and Detuning

The process by which relativistic effects produce coherent
harmonic radiation may be understood by considering a sim-
plified “quiver” model, which includes only the effects of the
relativistic electron quiver motion. Other effects, such as the
plasma density response, will be discussed below. A linearly
polarized laser field will be assumed, ao(z,t) = docosbo.
In the quiver model, the transverse plasma current is J, =
—engu,, Where v, is the relativistic electron quiver velocity
(discussed above) and ng is the ambient plasma density. The
quiver current J,, acts as the source term in the wave equation
which drives the harmonic radiation, (V2 — 82 /c?8t*)a = S,,
where

e @)

Sq =~ kﬁ&o cosfo(1+ a3 cos? 8p)
and w, = ck, = (4me?ng/m)'/? is the plasma frequency.
In the limit (2) < 1, the denominator in (2) may be ex-
panded and the component driving the N th odd harmonic
(wy = Nuwg) may be determined. For example, the ratio
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of the third harmonic power to the fundamental is P3/Py =~
(agk2L/ 16ko)? = R,, where L is the laser—plasma interaction
length and L < Ld has been assumed, where Lg is the
detuning distance (discussed below). Hence, in the quiver
limit, Py ~ L2n2I3

The quiver model assumed that the plasma response is
dominated by the electron quiver motion. This is an over-
simplification and collective plasma effects, i.e., the plasma
density response, cannot be neglected. Including the density
response, on(z,t), in the transverse current gives J, =
—e(no + Sn)uy. Letting v, = v, gives S = k2ao(1l +
én/ng — at/2), where the term a/2 arises from expandmg
the relativistic factor, assuming a2 < 1. Using 1-D cold fluid
theory, the density response én may be calculated, giving

25 a3 3wy,
S~ kjapcosfo| 1 - i E?ao cos26p ). 3)
0

Hence, the effect of including the density response is to reduce
[7], [8] the source term for the third harmonic, ~ exp(£3if),
by the factor 3w? /4w0 < 1 as compared to the quiver
model. The power in the third harmonic w111 be reduced
by the square of this factor, P3/Py = Rg(3w2/4wo?)?.
Hence, in the 1-D limit, P3 ~ L2ndI3. Physically, this
reduction arises from the longitudinal ponderomotive force,
F, ~ —V,a} ~ koa2sin26,. This modulates the density,
bnfng ~ exp(:i:2i00) in such a way that it nearly cancels
(to order w2/ w?) the contribution from the relativistic factor,
a2/2. In the absence of the space charge potential, w — 0,
this cancellation is exact and no third harmonics are generated
in the 1-D limit.

The harmonic radiation will reach a maximum amplitude
after a detuning distance [1], [19], [20], L = Lg4. The phase
velocity v, of an electromagnetic wave of frequency w ina
plasma is given by vp/c ~ 1+w?/2w?, where wz/w < 1and
a% < 1 have been assumed. The phase velocity of the incident
laser, w wo, is greater than that of the third harmonic,
w = 3wq. Hence, the third harmonic, which is being driven by
the incident laser, eventually becomes out of phase with the
incident laser. The maximum amplitude of the third harmonic
occurs after the detuning distance defined by LgAwv,/c
A3/2, where Av, = 4dcw? = 9w3 is the difference in the phase
velocities of the incident and third harmonic fields and A3 ~
Ao/3 is the wavelength of the third harmonic. Hence, Lq
3)2/8Xg, where A, = 2/k, is the plasma wavelength. The
maximum amphtude of the third harmonic power at saturation
may be estimated by setting L Ly, giving P3/Py
(@oAo/Ap)*%. As an example consider a Ag = 1 pm laser with
Iy = 5><1017 W/cm (39 = 0.6)and a plasma of density ng =
10*%ecm=3(\, ~ 11 pm ). The third harmonic power is given
by P3/Py =~ 9 x 107%. The detuning length is prohibitively
short, Ly 45 pm. The third harmonic pulse length is
approximately equal to that of the incident laser pulse.

~

~

~

II. NONLINEAR FORMULATION

The 1-D fields associated with the laser—plasma interaction
can be described by the normalized transverse vector potential,
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a(z,t) = eA(z,t)/moc?, and the normalized scaler poten-
tial, ¢(z,t) = e®d(z,t)/moc?. Coulomb gauge will be used,
V-A = 0, which implies A, = 0. It is convenient to introduce
the independent variables £ = z — ¢f;t and T = ¢, where f;
is the normalized transform velocity which will be specified
below. Using the &, 7 variables, the normalized potentials a
and ¢ satisfy the 1-D wave equation and Poisson’s equation,
which are given by
182 28, & 182\
(736_52 e B - —a—) -

2

6_¢ — k2 (.". _ 1)

o¢? ?\ 1o
where 7,2 = 1 — 2, wp, = ck, = (dwe?ng/mo)'/? is
the ambient plasma frequency, n(§,7) is the plasma electron
density, ng is the ambient density, v(¢,7) = (1 — §2)~1/2
is the relativistic factor associated with the plasma electrons
and B(¢,7) = v/c is the normalized electron fluid velocity. In
deriving the right side of (4), use was made of the fact that
the transverse canonical momentum is invariant and that prior
to the laser interaction the plasma is assumed to be stationary,
ie., 81 = a/~. Also, the ions are assumed to be stationary.

The electron fluid quantities n, 3, and -y are assumed to

satisfy the cold, relativistic fluid equations. Using the &, 7
variables, the continuity equation and the axial momentum
equation may be written as

®)

0 0

S8~ 8] = L ©
0
2h-p)-d=t50B) O

respectively. Equations (4)—(7), together with v = (1 +
a?)/2/(1 — B2)'/2, form a complete set of fully nonlin-
ear, relativistic cold fluid equations which describe the 1-D
laser—plasma interaction. The 1-D assumption is valid provided
that the radiation spot size r; is large compared to the plasma
wavelength A, = 2w /kp, ie, 75 > A, The cold fluid
assumption is valid provided that i) the electron quiver velocity
is much greater than the transverse thermal velocity and ii) the
phase velocity of the driven plasma oscillations is much greater
than the axial thermal velocity, as is the case in the following.

The primary focus of this section is to determine the
coherent harmonic radiation excited by a long pulse incident
laser field, etz > Ap. To study coherent harmonic radiation,
it is convenient to set the transform velocity, (:, equal to the
phase velocity, Bpn, of the incident laser field, 8; = Opn.
The incident laser field is of the form ag = dg cos ko&, where
ko& = ko(z — cBpnt), Bpn = wo/cko is the normalized phase
velocity, wy is the frequency, and & is the wavenumber of the
pump laser field. The pump laser amplitude is slowly varying,
|§do/BE| ~ Go/cTr, and is assumed to be independent of
7, i.e.,, pump depletion effects are neglected. The effects
of diffraction are consider in Section III. In determining
the plasma response to an incident laser field of the form
ag = ag(€), the 7 derivatives are dropped in (6)—(7). Strictly
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speaking, for a general laser field of the form ag = ao(§,7),
the 7 derivatives may be neglected provided that the transit
time of the electrons through the laser pulse, 77, (= laser pulse
duration), is small compared to the evolution time, 7g, of the
laser envelope, 71 < Tg, i.e., the quasistatic approximation
[8]. Assuming a quasistatic plasma response, (6)—(7) imply the
existence of two constants of the motion,

n(ﬁt - ﬂz) = ﬂtn()y
Y(1-BeB:) — =1

Equations (8a)—(b) may be solved to give expressions for the
fluid quantities n, 3, and ~ in terms of the fields a and &,

nfno =3 (1- 19222 -], O

(82)
(8b)

_ B (L= L)
T 1= B = R

v =R+ @)1= 81 - 1D, o)
n/ymo = Bu(1+ ) (1 = 1/9*47) M7 (9d)

where 2 = (1 4 ¢)?/(1 + a?). Notice that for the case
Br = B> V5 z = 'yp_hz < 0, since ﬂzh > 1 for a radiation
field in a plasma.

Using the above expressions for the fluid quantities, expres-
sions for the normalized transverse plasma current, kgna /107,
and the normalized charge perturbation, k2(n/nq — 1), can be
found and inserted into the wave equation and Poisson’s equa-
tion (4)~(5). This results in two coupled nonlinear equations
for the potentials a and ¢,

10 25 08 18N
y2 062 T ¢ 88or 2 Or?

B

(9b)

k2 1 8%
“ 0 )(“*E%?E?)a (10
? 2.2 2,.2\—1/2
s@t = k(A -1t -] an

Equations (10)~(11) completely describe the nonlinear gen-
eration of relativistic harmonic radiation in 1-D within the
quasistatic approximation, i.e., 77 < Tg. For the case where
the transform velocity, 3;, is set equal to the phase velocity,
Bph, of the incident laser, (10)+(11) may be used to analyze
relativistic harmonic generation, as is done in detail in the
following. For the case where f; is set equal to the group
velocity, 34, of a laser pulse with a pulse length ~ X, (11)
may be used to analyze laser wakefield generation [5]-[9]. The
limiting case of B; = 1 has been analyzed in detail in [8].

It is of interest to define the nonlinear index of refraction
ng by setting the right side of the wave equation (10) equal
to (w?/c?)(1 — n%)a, which gives

(12)

2 _
np =

w2 1 82

1- ——P—(1+ Q—Lf .
Ww2(1+¢) k2vi 9¢

In particular, the slow part of np determines the dispersion

relation for the radiation field a, whereas the fast part of
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ng determines the generation of harmonic radiation, as is
discussed below.

A. Dispersion Relation

To describe the generation of relativistic harmonics, the
electrostatic potential ¢ is separated into slow and fast com-
ponents, ¢ = ¢, + ¢¢, where ¢, is approximately constant,
|0¢s/0€| < |ko|, and |8¢s/0¢| ~ |kod). The fast com-
ponent ¢y contains the harmonic content and is important in
determining the source current which drives the N** harmonic
radiation. The slow component ¢, is important in determining
the dispersive characteristics of the harmonic radiation as well
as of the pump laser field. In the following, it is assumed
that ¢2 3/(1 + ¢5)* < 1. Furthermore, it is assumed that the
vector potential of the harmonic radiation ap, where N is the
harmonic number, is much less than that of the pump laser,

e, lan|/laol < 1.

The dispersion relation is determined by examining the slow
part of the n}, (12). Assuming |(kpypr) 20%¢./0€%| < 1, the
dispersion relation for the radiation field, a, to leading order
(i.e., neglecting ¢y), is given by

Wi/ =k2 +K2/(1 + ¢,) 13)

where a = aexp(ik,z — iw,t) has been assumed with &
slowly varying compared to the phase factor exp(ik,z —
w t) Equation (13) holds for the pump laser field (w,,
wo, k, = ko) as well as for the various harmonics. Notice that
the transform velocity is the phase veloc1ty of the mmdent
laser field, 8,, = wo/cky, and, hence, Vi h =1- ph =
—k2/k3(1 + ¢5) < 0. Furthermore, for a nonevolvmg, long
1nc1dent laser pulse of the form ag = dg exp(ikoz — iwg t), the
quantity (1 + ¢,) is approximately constant, as is discussed
in the following.

Consider a long pump laser pulse with a slowly varying
envelope, |0do/0¢| ~ |ao/cTr|, where 77 is the laser pulse
duration, propagating in a plasma with ¢tz > A,, Ap. The
slow part of the potential ¢, may be determined from examin-
ing the slow part of Poisson’s equation (11). In the long pulse
limit, 32¢,/8¢% may be neglected and (11) implies that, to
leading order (i.e., neglecting ¢) [8], [21],

(1+¢s) = (1 +d5/2)"2, (14)

In particular, notice that in the long pulse limit, cr7 > Ap; Ao,
propagation (i.e., real k) requires w?2/w?(1 + ¢,) < 1. This
implies that for intense pump laser fields with aq > 1,
propagation in an overdense plasma in which wz Jw? > 1 may
be possible. Physically, vs = 1+ ¢, = (14 42/2)/2, and the
reduction in the effective plasma frequency, w, /'y; / 2, is due
to the relativistic quiver motion of the electrons.

It should be emphasized that (14) only applies to the long
pulse limit ¢ty >> Ay, Ap. For 7, = 1 psec, 77, > Ap implies
plasma densities no 3> 10'® cm™3. In the short pulse limit,
Ap > crr, > Ao, it can be shown [8], [21] that |¢,| < 1
provided ¢t < A,/(1 + @3/2)'/2. Physically, |¢,] < 1
holds for pulses sufficiently shorter than Ap, since A, is
the characteristic length scale (in the ¢ frame) for collective
electron motion (i.e., collective electron motion leading to
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charge separation and significant values of ¢, does not occur
on time scales sufficiently shorter than 1/w,).

B. Plasma Response

The source current driving the harmonic radiation is de-
termined by the harmonic content of ng. As indicated by
(12), nr may be specified entirely in terms of ¢. Hence, it
is necessary to determine the various harmonic components
of ¢. This is done by analyzing the plasma response to the
pump laser field, ag = dg cos ko€, via Poisson’s equation (11).
The various harmonic components of ¢ = 5, ¢os, Where
$2e ~ cos(2€ko€) with £ = 1,2,3..., may be determined
analytically in the limit ¢ = k2/k3(1 + ¢,) < 1. In this limit
[p2e/(1+ ¢s)| ~ €%, and the various harmonic components of
¢¢ may be solved order by order in €.

To solve for ¢5 via (11), two expansions will be used.
Assuming |(¥vpn) 72| < €, gives

-1/2 o ¢
1 £~l l
where (26— 1)1 = 1.3, (23—1) and (20)!1 = 2-4....-(24).
Assuming |¢5/(1 + ¢s)| < ¢, gives
1\ [ a+a)
en) | a1+ s)?
o= 26(26+1)...(20+m —1)
. Z m!
m=0
—¢; 1™
l:(l +¢S)] . (15b)

Letting ¢y = Y, ¢os, where oy ~ €f cos(2€ko¢) for £ =
1,2,3..., and using the expansions in (15a) and (15b), allows
¢2¢ to be solved order by order in e. For example, ¢ (order
€), ¢4 (order €2) and ¢g (order €%) are given by

kp(ad)2
8—§2¢2 = m, (162)
& 12 $a(ag)2 3(ag)a
9 = | T4 4,3 87§h<1+¢s)4J’ (o)
9 T (14, |7 2T+ )
3(a3), s@, \],
G W7 R 7 R 6
292,(1+ ¢,)° & 2472, (1 + ¢5)° (169

where the subscript (@), refers to the £ harmonic component

of Q, i.e., (Q)e ~ exp(£kof). These equations can be solved

iteratively to yield

4 k24 cos 2koé
27 16k (1 + ,)%

khag cos 4koé

PR+ )

(17a)

by = (17b)
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1714:26,8 cos 6koé

bo= -

(17c)

For order of magnitude scaling purposes, (17a){17c) imply
that the 2¢** harmonic component of ¢ scales as

W—1) [k, \ %

a2t cos 28kt
2[2(1 + 4,8)32—1 :

Knowing the harmonic components of ¢y, it is possible to
determine the harmonic components of the source current S
which drives the harmonic radiation. The source current S is
given by the right side of (10),

(18)

_ _Ka 1o
S= 0+9) (1+k§7§h8_£2)' (19)
Using the expansion
L+ =1 +4)7" Y [~er1+00)71]"  (20)
m=0

allows the harmonic components of S to be solved order by
order in e. For example, the third, Ss, fifth, Ss, and seventh,
S7, harmonic components are given by (21) at the bottom of
this page. Using (17a)~(17c) gives

3kzay cos 3ko

S3= - 22
3T TR+ 60)F (222)
3k8a3 cos 5koé
Sg=—E0_ "
5 28k8(1+¢s)7, (22b)
5k8a7 cos Tk
Sp= -2 oé (22¢)

3 20K(1 + 3,0

For order of magnitude scaling purposes, (22a)~(22c) imply
that the (2¢ 4+ 1)** harmonic component of S scales as

s L2 (26— DU ( Ky \* a5t cos(2t + kot
2041 ~ (—1) P20 \ 2k £(1 + ¢,)3¢+1
23

C. Harmonic Radiation

The above expressions for the harmonic components of the
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harmonic radiation. It is convenient to represent the N**
harmonic radiation field, ay, by the form

ay =Gy (T)exp (tky§ — 1Aw,T) 24)
with Awy = wy — Gprcky and k& — Aw, T =k 2z —w,t,
where k, and w, are the wavenumber and frequency of the
N*™ harmonic radiation field. Inserting this into (10) gives a
reduced wave equation for the harmonic amplitude 4,

(i _ 2in) E@N = 2§, exp(ibw,T) (25)

or or
where w, and k, satisfy the dispersion relation, (13), with
k, = Nko and N = 2{ + 1. The amplitude of the source
current for the N®* harmonic, §,, is given by S, =
S, exp(iNkot), where S, is given in (22)~(23).
The reduced wave equation (25) has the solution

[exp(iAw, 1) — 1]

i o~ 28 26
R o e TN @)
where
c2k?
w? — Bk = a3 ;;E)(N2 -1). @7

For small times |Aw, 7| <« 1, the harmonics grow linearly
in time [8],
4 CT

Gy ~ —15 —2Nk0' (28)

The N** harmonic reaches its maximum amplitude [1],
[19], [20] after a dephasing length cr4, = mc/|Aw, |, where
Aw, = cky(By — Bpr) and B, = w, [cky, ie.,

2 1/2
_ P
Awy = Neko [(1 TR m))

12 1/2

-1+ 57— . (29

( k3(1+ ¢s) @)

For k2/k3(1 + ¢,) < 1, (29) may be expanded giving
NAZ(L + )

source current, Sg¢+1, may be used in the wave equation CTay & 30
(10), to determine the growth and saturation of the relativistic (N2=1)Xo
kpa $2 1 9%¢
Sy =—2 |- , 21
=0 | U+ ' B 0 @
—kaa b4 93 1 (62¢4 b2 32(152)
— P _ 2 _ - 21b
S = Trg T ) A+ d) BG\0  (1+6) 08 )| @)
oo ke | g6 9 2620
T |16 T (16 (T 6]
o1 [32456 _ ba 0%y ( bs  # >3Z¢2] @10)
R 08 [+ 02 \+ds) (+ea2) o€ [



100
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lay]

6
et/Ag

Fig. 2. The amplitude of the normalized vector potential of the harmonic
radiation, |a, |, for the first three harmonics, N = 3, 5, and 7, versus the
normalized propagation distance, c7/Xo, for a Ag = 1um wavelength laser
of intensity I = 6.7 x 10'® W/cm? (4o = 2.2) interacting with a plasma
of density no = 102% cm™2 (A, = 3.4um).

The maximum amplitude of the N** harmonic at ¢t = c7y,,
is given by

_ 208,001+ ¢s)

léy lmae = RONT-D) (3D
In particular, for the third, fifth, and seventh harmonics,
3k2a3
~ _ 0
|a31ma1 = 27’98(1 +¢8)37 (328)
ka3
~ p“0
5 ar = TI07 A1 T R 32b
|a 'm 210k8(1+¢s)6’ ( )
5k8a7
'&7Imaz = p 0 (32C)

02K (1+ 4.

An order of magnitude expression for the maximum amplitude
of the (2¢ 4+ 1) harmonic is given by

2(2¢ — 1)1k, /2ko)?t a2t !
12020 1 12 — 11 + g2)E

Equations (32)~(33) are valid for all a, including ag > 1. It
is easily verified that |G, |mes < @o. A plot of the harmonic
radiation amplitude |, | verses the normalized propagation
distance ¢7/Ag is shown in Fig. 2 for the first three harmonics
for the parameters A\g = 1 pm, A\, = 3.4 um (ng = 102
cm~2) and a0 = 2.2 (I = 6.7 x 10'® W/cm?).

At saturation for the Nt harmonic, i.e., cT = ¢4y, the ratio
of the power in the N** harmonic, P,, to the power in the
pump radiation field, Py, is given by P, /Py = N2|a,|?/a3.
Using (32)~(33), this can be written as

2(N=-1) 42\ “3(N-1)/2
(5 (+3)

where C'y are constants which decrease rapidly with increas-
ing harmonic number, i.e., C3 = 4.9 x 1073, C5 = 2.4 x

|&2£+1|1naz ~ (33)

Aodg
/\P

(34
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1075 and C7 = 2.3 x 10~7. Furthermore, driven relativistic
harmonic generation is a nonresonant interaction; hence, the
process is not sensitive to thermal plasma effects.

As an example, consider an incident laser with Py = 10 TW,
Ao =1 pum and spot size 7o = 10 um (49 = 2.2), interacting
with a plasma of density np = 10%*° cm=2 (A, = 3.4 um).
For the third (and fifth) harmonic, Pn/Py = 2.2 x 1075
(4.6 x 1071% and Ly = 8.0 pum (4.3 xm). Hence, 220 MW
(4.6 kW) should be observed at a wavelength of A = 3300 A
(2000 A). Clearly, the limitations due to phase detuning are
restrictive. If a scheme for phase matching could be conceived,
the interaction distance, L, and thus the harmonic power,
Py ~ L2, could be increased.

III. DIFFRACTIVE EFFECTS

The above nonlinear theory indicates that the N** harmonic
saturates (i.e., reaches maximum amplitude) after a detuning
distance c7q, = Tc/|Aw, |, where Aw, = ck, (By — Bpn)-
In particular, for the third harmonic, c7q, ~ 3A2(1+ ¢,)/8).
Physically, saturation by detuning arises due to the fact that
the phase velocity of the fundamental pump radiation is
greater that than the phase velocity of the harmonic radiation,
i€, Bpn > By. In a realistic 3-D configuration, however,
diffractive effects will limit the effective radiation-plasma
interaction length to a few vacuum Rayleigh lengths, Zg,
where Zg korZ/2 and 7o is the minimum spot size of
the radiation field (assumed to be Gaussian). For interaction
distances L <« wZp, diffraction effects are unimportant
and the 1-D theory is an adequate description. In the limit
nZr < L, however, and in particular 7Zp < c74,,, diffractive
effects are important and must be included in the analysis.

In the following, the generation of second and third har-
monic radiation is analyzed using 3-D relativistic fluid equa-
tions in the limit a3 < 1. Higher order harmonic generation
can be consider by solving the fluid equations to higher
order in a?. Furthermore, the radiation fields are assumed
to undergo vacuum diffraction. Notice that in the regime
in which 3-D effects are important, the condition 7Zr <
T4, implies & 2k2r§/3 < 1. Hence, the effects of
relativistic optical guiding [3]-{10], which become important
when P/P. = k2r§ag/32 2 1, may be neglected in the 3-D
regime when a2 < 1. Assuming vacuum diffraction, a long
pulse, Gaussian, incident radiation field evolves according to
a(r,z,t) = a, exp iy, where 8y = koz —wgt and the radiation
envelope a, is given by [24]

. 2
ay(r,z) = 1170‘7‘0 exp |—(1 — z'oz)::—Z —itan"! o (33)
8 8

where 7, = 7o(1+a?)'/2 is the radiation spot size, & = z/Zg
and z = 0 is the location of the laser focus at which r, = rq.

A. 3-D Formulation

The 3-D pump laser interaction with the plasma electrons
will be modeled using the cold, relativistic fluid equations. In
particular, the momentum equation and the continuity equation

may be written as
1d 10 1
T u= ——a-—- - 36
e V¢+c6ta 7u><(V><a) (36)
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~5 PNV (pa) =0 0]
respectively, where u = p/mc is the normalized momentum,
4 = (1+u?)'/? is the relativistic factor, and p = n/(n¢7). The
evolution of the normalized potentials are determined from the
wave equation and Poisson’s equation, which may be written
as

182 19
(v2 - c_ZW)a =k2pu + ~5 V¢ (38)

V3¢ =k (py - 1)

respectively, where Coulomb gauge, V - a = 0, has been
assumed.

To study the generation of the third harmonic, the above
equations will be solved perturbatively, i.e., order by order in
the pump laser amplitude ag, assuming @3 < 1. The various
plasma quantities, denoted by Q, will be represented by an
expansion Q@ = Qo + Q1 + @2 + ..., where Q, ~ ag. The
pump laser vector potential is assumed to be known and given
by ag), = a, exp iflpe,, where a,(r, z) is the vacuum solution
given by (35). The effects of pump depletion and of various
laser-plasma instabilities will be neglected. The zeroth order
plasma quantities (in the absence of the pump laser) are given
by up =0, v% =1, pp = 1 and ¢ = O, i.e., the plasma
is assumed to be initially uniform, stationary, and neutral. To
first order in the normalized vector potential, (36) implies that
u; = ag, which is simply the quiver motion of the electrons.
Furthermore, (36)~39) imply p1 = 71 = ¢1 = 0. The first
order form of the wave equation (38) implies that the pump
laser field obeys the dispersion relation wf/c® = k§ + k2.

To second order, (36)—(39) imply that quantities ¢z, uz and
po are related to a3 by

(39

1 62 a?

(EEW " kﬁ)” by @0
18 |, 19 _a2

(C_2_~8t2 +kp)ll2 = —E—atv—2 s (40]3)
162 2 ., 1 0° 5\ a2

(?aﬂ+h)m=(v'_§m2—%)2‘“%)

Furthermore, (40a) and (40c) imply that the second-order wave
equation describing the generation of the second harmonic may
be written as

Q)

Hence, no second harmonic radiation will be generated.
To third order, (36)~(39) imply that quantities ¢3 and ug
are related to aj by

1 82 2\ o2 2| w2 190 v
?@+k? \vj ¢3=kp \v4 (ao'llz)—za '(30p2) s
(42a)

19 (42b)

pvl B Vs — V(ag - uz)
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Furthermore, the third-order transverse wave equation, de-
scribing the generation of third harmonic radiation, is given
by

1 8%
2 2
(v _Ei?_kp)aa

10
= (kf,pzam_ + k12,113_l_ + ——-VJ_¢3) . 43)
c ot 3

where (...), signifies the n*® harmonic component.

In particular, to determine the source term driving the
third harmonic radiation, it is necessary to determine the fast
(i.e., third harmonic) components of ¢3 and uz. Assuming
¢3,u3 ~ exp 3ify, (42a) and (42b) imply

2

w,

¢3 =~ __9‘;3 (ap  ug)s, (442)
ic

uz ~ 3o V(ap - uz)3 (44b)
wo

where terms of order kZ/k} < 1 and 1/73k3 < 1 have been
neglected. It can be shown that the leading order contributions
of each of the three terms on the right side of (43) are
of the same order. However, to leading order, kgllg 1+
V19¢3/0ct = 0, and, hence, the wave equation describing
third harmonic generation is given by

1 62

(v2 -3 kﬁ)aﬂ = k2(p2a0L)3 (45)

where higher order terms (of order k2/k§ and 1/r3k3) have
been neglected. The transverse wave equation (45) along with
the second harmonic component of po,

18 2 2 18 2 (ad)2
(2@*’%)”2: (V 7@"%)7

completely determine the generation of third harmonic radia-
tion in 3-D in the limit o} < 1.

(46)

B. Third Harmonic Generation

The pump laser is assumed to be a long pulse, Gaussian
laser beam which is diffracting according to the relation
ao(r, 2,t) = a, expiby, where a,(r, z) is the envelope given
by (35) and w}/c? = k2 + k3. Using this form in (46) gives

! [grgkf, + —1—] aZexp2ify.  (47)

2= "ok 1 + i)

Hence, the source term driving the third harmonic radiation
is given by

2 kﬁ 3 9,2 1 3 .
k'p(pzao)g ~ Tokp + 77— |ay exp 3ify. (48)

_4r%lcg 8 (1+ia)

It is convenient to denote the third harmonic radiation field,
as(r, 2,t), by the following form,

a3(7‘~ Zzt) = f(z)av3(r$z)exp i03y (498)
2

ay3(z,7) = ..Tiexp [—(1 - iag)TT —itan™! ag] (49b)
T's3 7'33
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where 63 = kizz — wst, w3 and ks are the third harmonic
frequency and wavenumber, r;3 = 7r3(1 + af)V/? is the
third harmonic spot size, as 2/ZR3, Zrs = kars/2 is
the Rayleigh length associated with the third harmonic, and
wi/c® = k3 + k2. Inserting this into the wave equation (45)
gives

. .0
22163&1,3 exp(zﬁg)ézf ~ kl23 (p2a0)3 (50)

where the right side is given by (48). Letting w3 = 3wg and
2

r3 = r%/3 implies Zg3 ~ Zp and
] ik2a3 3 1 iAk
o O S exp(ilkz) oy
0z 24r§kg | 8 (1+4ia)| (1+ia)?

where Ak = 3ko — k3 = —4k?2/3ko.

For a pump laser pulse which interacts with a uniform
plasma extending from 2p,in < 2 < Zmaz, (51) can be
integrated giving

f = f1-p|[h(6, amaz) — ~(8, amin)],
af(s 1 ~iba
o =3{ (5 )

9
—-%ie‘sEl[é(l + ia)]}

(52a)

(1+i0)
(52b)

where |f;_p| = [3a3k2/27k3| is the maximum amplitude of

the third harmonic in the 1-D limit, § = |Ak|Zp = 2k2r3/3
(5 = WZR/CTda), Qmin = zmin/ZR’ Qmaez = zma:z/ZR and
E, is the exponential integral.

In particular, consider a finite slab plasma centered about
the focal point of the pump laser (chosen to be z = 0) which
extends from zm,, = —2p t0 Zmexr = 2zp. The amplitude
function f of the third harmonic signal emerging from the
slab plasma at z = 2 is given by

f = 2lf1-p|Im[h(6, ao)]

where Im[h(8, ap)] is the imaginary part of h(§,ap) and
a9 = z9/Zp. The ratio of the third harmonic power to the
pump laser power is given by

P3Py = wiri|f|*fwirdad = 3|17 /a5.

(53)

54

Hence, for a slab plasma centered about the laser focus,
P; ~ 4|Im[h(8, ap)}|?. A plot of the function H (6, ap) =
4|Im[h(8, ap)]|? verses the normalized plasma slab width, o,
is shown in Fig. 3 for § = 0.1, 1.0, and 10.0. Notice that
for 6 = 10.0 (crq, € 7Zg) and ag < 1, the first peak,
which occurs when the slab width is equal to the detuning
length, 2z = cry,, is close to the 1-D value of H (6, ag) = 1.
For 6 = 0.1 (crq, > wZg), the maximum amplitude of
the third harmonic occurs for a plasma length of ~ Zp, at
which H(8, ap) ~ 1/3. In the limit of a slab plasma with a
spatial extent large compared to Zpg, i.e., 20 > Zg (oo > 1),
f — fr, where f; = |f1_.D|on_2 sin(éap). Hence, fr — 0
as ag — 00, i.e., the third harmonic radiation emerging from
a plasma centered about the laser focus vanishes for plasma
dimensions large compared to Zg. The conclusion that no
third harmonic is generated by an infinite medium is also
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Fig. 3. The function H (6, ap), proportional to the third harmonic power
emerging from a plasma of width 2zp centered about the laser focus, verses.
ao = 20/ZR, for & = 2kZrZ /3 = 10.0 (solid curve), 1.0 (dashed curve) and
0.1 (dotted curve), where Zp = kqrZ /2 is the Rayleigh length.

the case for third harmonic generation due to the nonlinear
susceptibility associated with bound electrons [25].

A finite third harmonic signal, however, may be detected
by focusing the pump laser on the trailing edge (2 0)
of a plasma slab extending from zm,in < 2 < Zmar = 0,
with dimensions large compared to Zg, i.e., znin € —ZR.
In practice, this may be achieved by focusing the pump
laser pulse on the trailing edge of a pre-ionized gas get.

Approximating Gpmin = —0o0 and @me, = 0 gives f = fs,
where
2&8
=--220 § 55
fs = = gL+ (0 (554)

9(6) = (6/8)[1 ~ 8¢ Ex (6)].

Furthermore, it can be shown that 0 < 1 — §e8E;(8) <
(1 + 6)~1. Hence, g> < 1 and may be neglected. The
amplitude of the third harmonic emerging from the plasma
is given by |as| = | fs||avs|- At the laser focus, this is a factor
of 4/9 smaller than that obtained from the 1-D theory in the
limit 43 < 1. Hence, for a semi-infinite plasma including the
effects of diffraction in the limit 4§ < 1, the ratio of third
harmonic power to the pump laser power, P3/Pp = 3|f2|/a2,
is given by

(55b)

P3/Py ~ 3 x 107%(Xodo/Ap)* (56)

which is a factor of (4/9)%/3 1/15 smaller than the
corresponding 1-D expression for the maximum power.

~

C. Second Harmonic Generation

The above results indicate that for an initially uniform
plasma density, no second harmonics are excited. This is true
even when the effects of a finite incident laser spot size, 7o,
and the transverse gradients associated with self-consistent 3-
D density perturbation are included, i.e., (41). Generation of
even harmonics requires that the plasma have initial transverse
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density gradients prior to the arrival of the incident laser,
ie., Ving # 0, where ng(r) is the initial plasma density
profile. Electrons undergoing quiver motion in the presence of
a density gradient produce density oscillations. For a pump
laser of the form ag = g cosfpe,, the continuity equation,
to first order in a9 < 1, implies a density oscillation én; of
the form ény =~ (dosinfp)Vino/ko. This produces a source
current Sy ~ k‘:(rSnl /mo)agcosby ~ sin2f, which drives
the second harmonic radiation. The amplitude of the second
harmonic radiation may be estimated by approximating the
density gradient by Vyno ~ —ng/rp, assuming rlz, > rd
and neglecting the effects of diffraction. At saturation, i.e.,
after a detuning length La, = 2A2/3,, the amplitude of the
second harmonic is given by |&g| ~ a2/3kor,. The ratio of
second harmonic power to pump laser power is Py/Py =~
(GoAo/7p)?% and, hence, P, ~ I3. Not only do initial
density gradients lead to the generation of even harmonics for
linearly polarized incident lasers, it also implies that circularly
polarized incident lasers will generate harmonics, both even
and odd.

Transverse plasma density gradients can occur when a
Gaussian laser pulse produces intensity-dependent ionization
of a neutral gas. For laser pulses with peak intensities Iy > Is
(where Ig is the saturation intensity for which the gas is
fully ionized) ionizing a uniform gas, density gradients will
exist in the “halo” region about the laser focus. This halo
region is the portion of the interaction region in which the
gas is not fully ionized and corresponds approximately to
focal regions in which the laser intensity lies within the band
Inin < I < Ig (where I, is the minimum intensity
required to produce ionization). As the peak intensity, Io,
increases, one can show that the volume of this halo region
increases as 13/ ?, where a Gaussian laser pulse of the form
given by (35) has been assumed (i.e., a spherical lens and a
double cone focal geometry) [26]. Second harmonics will be
produced from the halo region. The intensity scaling of the
second harmonic power with peak intensity will tend to be
dominated by effects associated with the increasing volume of
the halo region. Hence, for Iy > Ig, the volume effect implies
a second harmonic power scaling of P, ~ Ig 2, Furthermore,
in the partially ionized halo region, the production of harmonic
radiation can be significantly enhanced and/or dominated
by atomic [13] and ionization [14] processes [17], [18]. In
long-pulse laser-plasma experiments, filamentation may be
a dominant mechanism in second harmonic generation [15],
[27].

IV. CONCLUSION

A nonlinear cold fluid model valid in the regime d% > 1,
given by (10) and (11), has been formulated and used to
analyze relativistic harmonic generation. The self-consistent
collective plasma response is included and shown to sig-
nificantly reduce the source current driving the harmonic
radiation. A general expression for the nonlinear index of
refraction was derived (12), and is a function of only the
electrostatic (space-charge) potential of the plasma, ¢. The
slow part of the index of refraction determined the dispersion

103

relation (13) and the fast part determined the source current
for the harmonics. Saturation of the N'** harmonic occurs after
a detuning length, Ly, = ¢7q,, given by (30). The harmonic
amplitude is maximum when the laser-plasma interaction
length, L, is an integer multiple of L, . The ratio of saturated
power in the N®" harmonic to that in the incident laser
is given by (34). This expression is valid for long lasers
pulses, et > ), (no > 10'® em™2 for 7, ~ 1 psec),
and for interaction distances short compared to the diffraction
length, L « wZp. Relativistic harmonic generation favors
the use of high densities and intense lasers, ao ~ 1. The
saturated power given by (34), in the limit 4 <« 1, is a
factor of by (Ao/Ap)2¥~1) smaller, where by are constants,
than that predicted by the simplified quiver model, which
neglects the self-consistent plasma response. This reduction in
the harmonic power by collective plasma effects is supported
by recent experiments on harmonic generation in pre-ionized
plasmas [2], [17], [18].

The effects of a diffracting incident laser field with a
finite spot size ro have been analyzed in the limit a2 <
1. Diffraction is important for interaction lengths L 2 mZg
(Lay > wZp implies 6 = 2k2r§/3 < 1 for the third
harmonic). It is shown that no third harmonic signal emerges
from a plasma of near infinite extent. A finite third harmonic
signal requires the use of a semi-infinite or finite slab plasma.
The third harmonic power emerging from the edge of a semi-
infinite plasma, which corresponds to the focal point of the
incident laser, is given by (55) and is a factor of 15 smaller
than the corresponding 1-D saturation power. No second
harmonics are generated from an initially uniform plasma.
The generation of even harmonics requires the existence of
transverse gradients in the initial plasma density. Circularly
polarized light will also generate both even and odd harmonics
when initial transverse density gradients are present.

The most severe constraint on the production of coherent
relativistic harmonic radiation is that of phase detuning. In a
dense plasma with ng = 10% cm™3 (A, = 3.4 um) and a
Xo = 1 pm laser with Iy = 6.7 x 10'® W/em? (a0 = 2.2),
the saturation efficiencies for the third and fifth harmonics are
Py/Py =2.2x 1075 and Ps/Py = 4.6 x 10710, respectively.
At such a high density the detuning lengths are extremely
short, Ly, = 8.0 pm for the third harmonic and Ly, = 4.3 pm
for the fifth harmonic. If a scheme for phase matching could
be conceived, the interaction distance, L, and, hence, the
harmonic power, Py ~ L2, could be dramatically increased.
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