Control and optimization of a staged laser-wakefield accelerator

G. Golovin, S. Banerjee, S. Chen, N. Powers, C. Liu, W. Yan, J. Zhang, P. Zhang, B. Zhao, D. Umstadter

Physics and Astronomy Department, University of Nebraska-Lincoln, Lincoln, NE 68508, USA

Article history:
Received 3 May 2016
Accepted 6 June 2016
Available online 7 June 2016

Keywords:
Laser wakefield acceleration
Ionization-assisted injection

1. Introduction

Laser wakefield acceleration (LWFA) has been developing dramatically over the past decades, from a conceptual notion [1] into a rapidly maturing field [2–4]. The motivation for using LWFA electron sources is that the acceleration gradient is two to three orders of magnitude higher than conventional radio frequency linear accelerators; therefore, high-energy electrons can be accelerated with a much smaller footprint. Other useful characteristics of laser-accelerated electrons include extremely short fs-level duration [5], and ultra-small bunch emittance [6,7].

Numerous applications require stable, energetic e-beams exhibiting high charge, low energy spread, and broad energy tunability. Those characteristics have been difficult to achieve simultaneously in single-stage LWFA with self-trapping because of the differing requirements for the injection and acceleration processes. For example, acceleration of high energy electrons requires a low-density plasma because of its longer dephasing length ($L_{\text{deph}} \propto n^{-3/2}$, where n is the plasma density) and depletion length ($L_{\text{depl}} \propto n^{-1}$) [8]. At the same time, self-trapping in a low-density plasma is ineffective in terms of injected charge and provides little control over generated electron beams. To overcome this issue, various approaches have been introduced, in order to achieve controlled injection [9]. These methods do not rely on self-trapping, but instead involve deterministically forcing background plasma electrons to become locally dephased with respect to the wavefront and thus get trapped, and eventually accelerated by the plasma wave. One implementation of this general concept involves the use of additional laser pulses [10–13]; while another involves the use of a density ramp [14–20]. Although the injector and accelerator stages were physically separated in some of these experiments [21–27], in the majority of cases, the injection and acceleration processes were not independently controlled, and consequently, neither were the electron beam parameters.

We have recently proposed an alternative design of a staged LWFA target, consisting of two overlapped gas jets: the “injector”, operated with mixed gas (helium with a small percentage of nitrogen); and the “accelerator”, operated with pure helium [28]. The two jets form a plasma density profile with three regions (see Fig. 1). Region I is a density up-ramp, comprised of mixed gas. While propagating through this region, a laser pulse experiences self-focusing and self-steepening, forming a bubble in the plasma. Since on a density up-ramp the bubble shrinks, the injection process is prohibited [29]. Region II is a density down-ramp, also comprised of mixed gas. In this region, ionization-assisted injection, as well as density-down-ramp and self-injection, is possible. Region III is a density down-ramp, composed of pure helium. In this region, ionization-assisted injection cannot happen (since...
there are no nitrogen atoms), but self-injection or down-ramp injection might occur; previously injected electrons are also accelerated in this region. The idea of the double-jet target design is to restrict injection in the short region II and acceleration in the long region III, which allows for independent control over both processes. As we have experimentally shown [28,30], this design indeed leads to generation of stable, quasi-monoenergetic e-beams with a very high degree of control (Fig. 1).

In this paper, we examine the significant capabilities of this novel design. We show that there are five essential parameters associated with the staged acceleration device that can be used to precisely determine the electron beam characteristics. Three parameters (injector jet density, atomic composition, and laser pulse power) control the amount of trapped charge, while two other parameters (accelerator jet density and length) control its subsequent acceleration (acceleration gradient and length, respectively). Each of these parameters are independently controllable and highly reproducible leading to clear demonstration of a system that can be tuned and optimized in a straightforward way. We have studied in detail the dependence of the electron beam characteristics on each of these parameters and have quantified the extent of control that is thereby provided in our acceleration system.

2. Experimental setup

For the experiments reported here, we used the DIOCES laser system (805 nm central wavelength, 10 Hz repetition rate) that delivered 34 fs pulses with up to 1.7 J of laser energy per pulse on target, which corresponds to a peak power of 50 TW [31]. A closed-loop technique for temporal phase correction [32] was used to achieve a Fourier-limited pulse duration. Laser pulses were focused by an f/14 off-axis parabola (1 m focal length) to a 20-um diameter focal spot (FWHM) with 30% of the energy contained within the FWHM contour. A deformable mirror compensated the optical aberrations of the laser wavefront and a near diffraction limited spot is obtained [33].

The target consisted of two slit nozzles separated by 0.5 mm gap. The first jet (injector, 0.5-mm-long nozzle) utilized He/N2 gas mixture with 99/1 or 95/5 relative densities. The second one (accelerator, 0.5, 2, or 4-mm-long nozzles) utilized pure helium. While using the 2-mm-long accelerator nozzle, we covered its exit side with a razor blade. By tuning the blade position, we controlled the length of the accelerator stage. Laser pulses were focused on the rising edge of the injector jet at a height of 2 mm above the nozzle orifices. Neutral gas 3D density profiles of both individual jets and the double-jets were measured by a Mach-Zehnder interferometer and reconstructed using the SIRT tomography method [34]. Some profiles relevant to the work presented in this paper are shown in Fig. 1. A magnetic spectrometer (a 7.5 in. 0.8 T magnet and a Lanex screen, imaged by a 12 bit camera), was used to analyze e-beam spectra. To characterize higher energy (200–400 MeV) e-beams, we added a second magnet (6 in. 0.7 T). The magnetic spectrometer had an energy resolution of 2% at 60 MeV, and 4% at 400 MeV.

![Fig. 1. Density profiles of the double-jet gas target. The 1st jet (0.5-mm-long nozzle) density is fixed (n₁ = 3.4 x 10¹⁸ cm⁻³), the 2nd jet (2-mm-long nozzle) density is varied (n₂ = 1.3–2.6 x 10¹⁸ cm⁻³). Dotted lines show the 1st (at the left) and the 2nd (at the right) individual jet density profiles. The dashed lines separate the double-jet profile into three regions. Region I: up-ramp (mixed gas); region II: down-ramp (mixed gas); region III: down-ramp (pure helium). Green shaded area (regions I and II) corresponds to the area where nitrogen is presented. Blue shaded area (region III) corresponds to the area with pure helium. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.]

![Fig. 2. Lanex images (a–e) and corresponding electron beam spectra (f) for different working regimes of the double-jet. The nozzles are 0.5 and 2 mm long. The 1st jet utilizes 1% mixed gas (if not specified), the 2nd jet – pure helium. a) 1st jet only, n₁ = 3.4 x 10¹⁸ cm⁻³; b) 2nd jet only, n₂ = 1.7 x 10¹⁸ cm⁻³; c) both jets operated with helium, n₁ = 3.4 x 10¹⁸ cm⁻³, n₂ = 1.7 x 10¹⁸ cm⁻³; d) the same as (c), but the 1st jet operated with 1% mixed gas; e) 1st jet operated with 1% mixed gas, n₁ = 3.4 x 10¹⁸ cm⁻³, 2nd jet operated with helium, n₂ = 2.6 x 10¹⁸ cm⁻³.]

For the experiments reported here, we used the DIOCES laser system (805 nm central wavelength, 10 Hz repetition rate) that delivered 34 fs pulses with up to 1.7 J of laser energy per pulse on target, which corresponds to a peak power of 50 TW [31]. A closed-loop technique for temporal phase correction [32] was used to achieve a Fourier-limited pulse duration.
3. Quasi-monoenergetic beams from staged accelerator

The staging concept permits operation of our device with a range of parameters that permits access to different regimes of acceleration. In the simplest possible case, we fired the first (injector) jet only (with mixed gas), keeping the accelerator jet turned off and we observed electron beams with continuous spectra, as shown in Fig. 2a. The broadband energy spectrum is due to continuous ionization-assisted injection. The second (accelerator) jet, fired with pure helium alone, did not produce any significant amount of charge (see Fig. 2b) because it was operated such that the plasma density is below the threshold for self-injection. When both jets were fired with pure helium, we again did not observe any accelerated charge (see Fig. 2c), which means that no down-ramp or self-injection occurred. The situation changed dramatically when we fired the first jet with mixed gas, and the second with pure helium (see Fig. 2d), which resulted in generation of quasi-monoenergetic electron bunches.

When we further increased the density of the accelerator jet, we observed electron beams with two features in the spectra: quasi-monoenergetic component, and polychromatic tail (see Fig. 2e). This polychromatic tail appeared when the 2nd jet density was more than $2.6 \times 10^{18} \text{ cm}^{-3}$ (at $3.4 \times 10^{18} \text{ cm}^{-3}$ for the 1st jet density). For overall density profile, it corresponds to $5.5 \times 10^{18} \text{ cm}^{-3}$ threshold value (see Fig. 1, purple curve). The polychromatic feature can be attributed to self-injection in region III of the double-jet, which happened in addition to ionization-assisted injection in region II. According to Mangles et al. [35], self-injection happens when

$$aE > \frac{\alpha q_em_e^2c^4}{\varepsilon_0^2} \left[\log \left(\frac{2n}{3n_c} \right) - 1 \right]^3 \frac{n}{n_c} \tau(l),$$

where α is the fraction of laser energy E within FWHM of focal spot, ε_0 is free space permittivity, q_e and m_e are electron charge and mass, n_c is plasma critical density, and n is plasma density. Laser pulse duration $\tau(l)$ after propagation of distance l can be estimated as $\tau(l) = \tau_0 - nl/2c\tau_0$, where τ_0 is initial pulse duration [36]. For $\alpha=0.3$, $E=1.7$ J, and $l=3$ mm this estimate gives $6 \times 10^{18} \text{ cm}^{-3}$ electron density as a threshold, which matches the experimentally measured value.

Electron beams with narrow energy spreads require careful processing, since energy spread and beam divergence are convolved on
the detector after dispersion in the magnetic spectrometer. Deconvolution was necessary when angular sizes of an electron beam along the dispersion axis and perpendicular to it were comparable. Fig. 3 illustrates the way it was accomplished. We started with a dispered Lanex image (Fig. 3a) and calculated angular size of the e-beam perpendicular to the dispersion axis (divergence). We plotted the beam intensity profile along the dispersion axis (Fig. 3b, points). We then simulated propagation of an electron beam through the magnetic spectrometer for constant divergence and different energy widths (Fig. 3c) and found energy spread, which resulted in optimal fit of the experimentally measured intensity profile. For the particular shot shown in Fig. 3, straightforward energy spread determination (without deconvolution) yielded 10% (FWHM), while deconvolution was 5% (upper limit).

4. Multi-parameter control of electron beam characteristics

In this section, we discuss the five parameters that can be varied for our device and show their role in the control of electron beam characteristics.

The first two parameters are the densities of the 1st and 2nd gas jets. Electron beam central energy, charge, and energy spread are shown in Fig. 4 as a function of these parameters. As one can see in Fig. 4a, central energy of the generated electron beams depends on the 2nd jet density, and does not depend on the 1st jet density. It shows that the acceleration process happens primarily in region II of the double-jet density profile, which is controlled by the 2nd jet only. Central energy of the electron beams grows with the density of this region since the accelerating field \(E_{acc} = \frac{Me^2}{2C^2}\) grows with plasma density \[37\]: \(E_{acc} \propto \sqrt{n_e}\). It also indicates that the acceleration length does not reach dephasing length, otherwise we would observe the opposite dependence: \(E_{max} \propto n_e^{-2/3}\), where \(E_{max}\) is the maximal energy reached by the electron bunch, accelerated over full dephasing length \[8\].

At the same time, electron beam charge depends on the 1st jet density, and does not depend on the 2nd jet density (see Fig. 4b). Since trapping happens in region II and is due to ionization-assisted injection process \[28\], this dependence can be explained simply by the fact that trapped charge depends on the amount of nitrogen in this region. Indeed, the amount of nitrogen depends linearly on the 1st jet density (operated with mixed gas), and does not depend on the 2nd jet density (operated with helium). It is important to note that even though region II is actually an overlap of the 1st and 2nd jets (see Fig. 1), it is only the 1st jet which controls the amount of injected charge, since nitrogen is presented only in that jet.

Energy spread of the electron beams depends on both 1st and 2nd jet densities (see Fig. 4c); its behavior is a complicated interplay of multiple effects. First, the length of the region II (injection region) slightly depends on both jet densities, and the energy spread is proportional to this length. Second, accelerating field in that region \(E_{acc} \propto \sqrt{n_e}\) depends on total density, which is again a function of both jet densities. Third, final energy spread is strongly affected by subsequent acceleration in region III (so called “phase-space rotation”), so it is sensitive to the 2nd jet density.

The fourth parameter of the double-jet target design is the nitrogen percentage in the 1st jet. Since trapping happens via ionization-assisted injection mechanism, one should expect an increase of injected charge when nitrogen concentration goes up. To prove that, we performed the following experiment. We fixed the 1st jet density at \(n_{1e} = 3.4 \times 10^{18} \text{cm}^{-3}\), and 2nd jet density at

\[n_{2e} = 2.4 \times 10^{18} \text{cm}^{-3}\].

![Fig. 5. Central energy of the electron beams, accelerated with different lengths of the 2nd jet. The 1st jet utilizes 1% mixed gas \(n_{1e} = 2.0 \times 10^{18} \text{cm}^{-3}\) for 0.5 mm 2nd nozzle, \(n_{1e} = 3.4 \times 10^{18} \text{cm}^{-3}\) for 1–4 mm 2nd nozzles, the 2nd jet uses pure helium. The error bars here and on the subsequent figures represent standard deviation calculated from sets of shots.]

![Fig. 6. Electron beams charge tuning with laser power. 1st jet (5% mixed gas) density \(n_{1e} = 3.4 \times 10^{18} \text{cm}^{-3}\), 2nd jet (2 mm long) density \(n_{2e} = 2.4 \times 10^{18} \text{cm}^{-3}\).]

References

1. [Golovin et al.](https://doi.org/10.1016/j.nima.2016.03.025)

For more detailed information and figures, please refer to the original publication.
the part of the Government.

References
