Materials Engineering

Graduate Degree Program Summary

Graduate programs offered

Earn a Graduate Degree

  • PhD in Engineering (90 cr) with a specialization in Materials Engineering
Areas of Study

These informal areas of focus may help to shape your course of study but they will not appear on transcripts.

  • Experimental and Computational Aspects of Materials Synthesis, Processing, Characterization, and Simulation
  • Nanomaterials, Coatings, Fibers, and Novel Materials

Online and Distance Opportunities

Some online coursework may be available for your program; contact dept. for details.

Contacts for Materials Engineering

Ask a question

Other Ways to Connect

On the Web
Materials Engineering

Interim Graduate Chair
Dr. Jian Wang

Campus Address
W342 Nebraska Hall
Lincoln NE 68588-0526

Promo image for Materials Engineering

Application checklist and deadlines

1. Required by Graduate Studies

2. Required by Materials Engineering

  • Entrance exam(s): GRE (International applicants only)
  • Minimum English proficiency: Paper TOEFL 550, Internet TOEFL 79, IELTS 6.5
  • Curriculum vitae or resume
  • Statement of goals and objectives
  • Three recommendation letters

When sending GRE or TOEFL scores, our institution code is 6877 and a department code is not needed.

Application Deadlines for Materials Engineering
  • For Financial Consideration: January 15 for Fall. October 15 for Spring. January 15 for Summer.
  • Otherwise: Rolling admissions, contact the department for more information.

Application/admission is for entry in a specific term and year. Our academic year is divided into 3 terms: Fall (August-December), Spring (January-May), and Summer (multiple sessions May-August). Some programs accept new students only in certain terms and/or years.


Materials engineering involves the investigation and application of the fundamental physics, chemistry, and engineering of materials in order to create, develop, and use materials with superior and new properties for manufacturing processes and engineering design. The discovery, research, development, and applications of materials are major reasons behind the adoption, widespread availability, cost reduction, innovations, and improvements in medical, transportation, communications, security, home, and entertainment technologies. At the University of Nebraska-Lincoln, students and faculty from four departments (Chemical and Biomolecular Engineering, Electrical Engineering, Engineering Mechanics, and Mechanical Engineering) work individually and in collaboration in the field of materials engineering.

The objectives in materials engineering are (1) to involve students in research and creative activity in new aspects and applications of materials engineering, (2) to prepare students for careers in the research, development, and applications of new and advanced materials, and (3) to provide students with a foundation for work in industry, commerce, national and corporate laboratories, and academia.

Students have access to many experimental and computational research laboratories and facilities in the four departments and in the Nebraska Center for Materials and Nanoscience.

Courses and More

Faculty and research

Where available, names link to bios or homepages and contact card icons () link to directory listings with address, phone, and email.

Jennifer Brand

Supercritical Processing; Boron Carbide Devices; Polymers for Harsh Environments

Yuris Dzenis

Multi-Domain Networks; Structural and Algorithmic Graph Theory; Design and Analysis of Algorithms; Bioinformatics; Data Mining Models

Ruqiang Feng

Experimental and Computational Mechanics of Materials

Natale Ianno

Thin Film Deposition; Plasma Processing; Nanoscale Processing; Optical Process Monitoring

Mehrdad Negahban

Large Deformation Thermo-Mechanical Response of Materials

Kamlakar Rajurkar

Advanced Machining of Materials Used in Aerospace, Automotive and Medical Device Industries

Ravi Saraf

Reconstruction and Analysis of Genome-Scale and Community Models; Systems-Level Analysis of 'Omics' Data; Development of Genetic Toolkit and Engineering Metabolic Pathways; Redesign Photosynthetic Apparatus and Carbon Fixing Mechanism

Jeffrey Shield

Microstructural Development; Nanoscale Materials; Magnetic Materials; Electron Microscopy; X-ray Diffraction

Anuradha Subramanian

Biomaterials; Ultrasound Medicine and Biology; Protein Engineering and Design

Li Tan

Nanofabrication; Monolayers for Virus Detection; Patterned Metallic Alloys; Patterned Metallic Alloys; Polymer Thin Films

Joseph Turner

Multiscale Characterization; Elastic and Stochastic Wave Propagation; Experimental Ultrasonics; Linear and Nonlinear Vibrations; Structural Acoustics

Robert Williams

Abrasive Flow Machining; Nontraditional Finishing Processes; Rapid Prototyping; Tooling

This summary page is maintained by Graduate Studies.
For additional details check out the dept./program website: Materials Engineering.

Departments: Have an update for this summary? Contact Kurt Mueller.