Purpose
Subduction of oceanic crust has destroyed a large portion of accessible Late Triassic (200-228 Mya) sea floor sediments. This study analyzes rare Late Triassic sediment samples to better understand the earliest known nannofossil assemblages.

Biostratigraphy
- Assigning relative ages of rocks based on fossil assemblage.

Dissolution Experiment
- The addition of hydrochloric acid has rounded the edges of E. zlambachensis through dissolution.
- The apparent diversity of short squat forms and elongate forms is not the result of dissolution.

Conclusions
- Biostratigraphy
 - Fossil assemblage is dominated by the presence of E. zlambachensis and P. triassica.
 - Average length of E. zlambachensis increases up the drilling section.
 - Average diameter of P. triassica decreases up the drilling section.
- Dissolution Experiment
 - The addition of hydrochloric acid has rounded the edges of E. zlambachensis through dissolution.
 - The apparent diversity of short squat forms and elongate forms is not the result of dissolution.
- Limitations
 - Dissolution differs at depth under increased temperature and pressure than the atmospheric pressure and temperatures used in the experiment.
 - Overall knowledge of Upper Triassic Nannofossil assemblages is still lacking due to the rarity of publicly available samples and well logs.