第十四届郭可信电子显微学与 晶体学暑期学习班 暨纪念郭可信先生诞辰100周年学术研讨会

LANDYNE Software Suite

Xing-Zhong Li

Nebraska Center for Materials and Nanoscience, University of Nebraska

Outline

- Software development
- Online resource
- Software components
- Application examples
- Installation with licenses

Website, installation and licenses

Landyne (computer software) was registered in 2010 by XingZhong Li and Jane Li in Lincoln, NE 68521, USA. We made computer software for electron diffraction simulation and crystallographic analysis. There are fourteen software modules in this suite so far. The current version is 5.0.

The Landyne software suite is designed for TEM characteristics of material structure and crystallography.

As a research tool for analyzing experimental results.
 As a tool for teaching electron microscopy.

Online resource

https://www.unl.edu/ncmn-enif/xzli/ https://landyne.com Including software package, user manual and related papers.

Installation and licenses

PC, Java JRE and JAI.YouTube demo videos.Multiple types of licenses.

The 14th KH Kuo Summer School on Electron Microscopy and Crystallography

4

Java and JDK

The program package was complied with Java development kit (JDK) 1.8.0 and above. Java runtime environment (JRE) is needed to run the programs. Java advanced image (JAI) package is needed for ESPOT, SVAT, SAED, PCED, SAKI, QSAED and QPCED for read from and write to files in .tif format.

Get JAI1.1.3 from Java official webpage or <u>http://www.unl.edu/ncmn-cfem/xzli/download</u>

Copy jai_core.jar and jai_codec.jar to e.g. c:\program files\java\jre1.8.0_31\lib\ext\

Landyne launcher

The launcher is a desktop dock for user to run all standalone software in this package conveniently. User can choose the modules from the suite to build a short form or a long form of the launcher.

O Preference	е	×						
Always on top								
🔾 Large 🔘 Small								
PTELS	SVAT	SAED						
PCED	SPICA	SAKI						
✓ TEMUC	✓ QSAED	✓ QPCED						
HOLZ	SMART	CTFscope						
ESPOT	✓ EMIPA							
5	Save D	one						

PTELS

Periodic Table of Elements for Landyne Suite

1 H 1.008	8 Molecular Mass Calculator																	
3 6.941 11 Na 22.99	4 E 9.1 1 24	3e 012 2 VI g	1. Calculated Atomic Radius (pm) 5 6 7 8 9 10 2. Experimental Atomic Radius (pm) 13 14 15 16 17 18 3. Second Structure 13 14 15 16 17 18 4. Second Structure 13 14 15 16 17 18 5. Second Structure 13 14 15 16 17 18 5. Second Structure 16 17 18 16 17 18 5. Second Structure 14 15 16 17 18 5. Second Structure 16 17 18 16 17 18 5. Second Structure 16 17 18 16 17 18 16 16 17 18 16 17 18 16 16 17 18 16 17 18 16 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17															
19 K	2	0 Ca	21 Sc 44,956	22 Ti 47,867	23 V 50,942	24 Cr 51,996	25 Mn 54,938	26 Fe	27 Co 58,933	28 Ni 58,693	29 Cu 63,546	30 Zn 65,38	31 Ga 69.723	32 Ge 72.631	33 As 74,922	34 Se 78.972	35 Br 79,904	36 Kr 84,798
37 Rt 85.46	3	18 Sr 7.62	39 Y 88,906	40 Zr 91,224	41 Nb 92,906	42 Mo 95,95	43 Tc 98,907	44 Ru 101.07	45 Rh	46 Pd	47 Ag	48 Cd	49 In 114,81	50 Sn 118,71	51 Sb 121.76	52 Te 127.6	53 126,90	54 Xe 131,29
55 Cs	5 E	6 3a	57 La	72 Hf 178,49	73 Ta 180,94	74 W	75 Re 186.20	76 Os 190.23	77 Ir 192.21	78 Pt 195.08	79 Au 196,96	80 Hg	81 TI 204,38	82 Pb 207.2	83 Bi 208,98	84 Po 208.98	85 At 209.98	86 Rn 2222.01
87 Fr 223.0	8 F 2 22	18 Ra 26.02	89 Ac 227.02	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
140.11 140.90 144.24 144.91 150.36 151.96 157.25 158.92 152.5 164.93 167.25 158.93 173.05 174.96 90 91 92 93 94 95 96 97 98 99 100 101 102 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr																		
Z 1 Symbol H Name Hydrogen Radius (1) 53 Radius (2) 25																		

😫 Mo	lecula	r Mass	Calcula	ator 📃	X
Cr	3	Ge	1	E	0
E	0	E	0	E	0
Cl	ear	Calc	ulate	228.6	5190

Interactive periodic table of the elements

- English label
- Atomic radius
- Molecular mass

Format of crystalline structure file

Keyword	Explanation					
[titl]	Description of the structure.					
[cell]	Type and parameters of unit cell.					
[spgr]	Space group number and symbol.					
[natm]	Number of independent atom. Atom label element number x y z occ.					
[biso]	Global isotropic temperature factor.					
[note]	references and remarks for the data.					

Example

[titl]	Alumi	num					
[cell]	F	4.0495	5 4.0495	4.0495	90	90	90
[spgr]	225	(Fm-3	m)				
[natm]	1						
	Al	13	0.0	0.0	0.0	1.0)
[biso]	0						
[note]	created	l for tutor	ial course	e, 05, 30	, 2017	'	

Selected Set of Crystalline Structure Files Related to X.Z. Li's research work http://www.unl.edu/ncmn-cfem/xzli/download

The Structure of Materials (Structure Appendix) By Marc De Graef http://som.web.cmu.edu/frames.html

Pearson's Handbook: Desk Edition : Crystallographic Data for Intermetallic Phases Edition by P. Villars

Crystallography Open Database http://www.crystallography.net/cod/

ICDD The International Centre for Diffraction Data http://www.icdd.com/

9

SVAT

🛄 Structural Viewer and Analytical Tool	_	\times
File Table Component Display Output Tools Option Help		
🖸 🗗 🚰 🖬 🖬 🖸 🕼 📾	9 🚳 [

Structural Viewer and Analytical Tool

Highlight

- Display of crystal structure in a unit-cell wi/wo chemical bonds and magnetic moments.
- Projection in a selected [uvw] or layer by layer.
- Local structure (or polyhedral clusters).
- Calculation of the chemical composition and the bond length/angle.
- The work on the structure can be saved to a file and reload back.
- Animation including rotation or wobble.
- Image can be saved in GIF, PNG, JPG and TIF formats.

X.-Z. Li, SVAT4 – a computer program for crystal structure visualization and analysis, J. Appl. Cryst. 53 (2020) 848-853. https://landyne.com/gallery1.php

10

Viewer and Analytical Too		- 🗆 X	
nponent Display Output To	ols Option Help		
5 🖻 🖷 🔁 •	🐔 🌢 🖸 🗐 🥌		
			_
out Tools Option Help			
* 🍦 🗗 🛱	5 🕸 🖪	🔗 🥠 🔄 📰	🕑
<u> </u>	<u>4 4 i - i - i - i - i - i - i - i - i - </u>	<u> </u>	
	Viewer and Analytical Tool ponent Display Output To Description Help Contemporary Output Tools Description Help Contemporary Output Tools Description Help Description Help Description Help	Viewer and Analytical Tool ponent Display Output Tools Option Help Tools Option Help tot Tools Option Help Tools Option Help Tools Option Help	Viewer and Analytical Tool – C × nponent Display Output Tools Option Help P P P P P P P P P P P P P P P P P P P

Template for crystalline structure file

	al structure	
Space gro	pup	
	● The standard settings (1~230) ○ The alternative settings (1~74)	
	Number 1~230 Symbol ? Origin	
Lattice pa	Irameters	
a =	$(\mathbf{\ddot{A}}) \mathbf{b} = (\mathbf{\ddot{A}}) \mathbf{c} = (\mathbf{\ddot{A}}) \mathbf{a} = (\mathbf{°}) \mathbf{\beta} = (\mathbf{°}) \mathbf{\gamma} = (\mathbf{°})$	
Coordinat	tes of Atoms	
	atom elem# x y z occ.	
	0.0 0.0 1.0	
	Add Remove Clear View	
	Number of atom in the list: 0 Global isotropic temperature factor 0.0	
Notes		
Deference	s etc.	
Reference		
Velerence		

Template for crystalline structure file

new cryst	Istructure
Triclinic,	nonoclinic and orthorhombic systems
	Space group number 3 Alternative symbols P 1 2 1
Lattice pa	rameters
a =	$(\mathbf{\ddot{A}}) \mathbf{b} =$ $(\mathbf{\ddot{A}}) \mathbf{c} =$ $(\mathbf{\ddot{A}}) \alpha = 90.0$ (°) $\beta =$ (°) $\gamma = 90.0$ (°)
Coordina	es of Atoms
	atom elem# x y z occ.
	0.0 0.0 1.0
	Add Remove Clear View
	Add Remove Clear View Number of atom in the list: 0 Global isotropic temperature factor 0.0
Notes	Add Remove Clear View Number of atom in the list: 0 Global isotropic temperature factor 0.0
Notes Reference	Add Remove Clear View Number of atom in the list: 0 Global isotropic temperature factor 0.0

The 14th KH Kuo Summer School on Electron Microscopy and Crystallography

13

Th₂Zn₁₇ rhombohedral structure

Display of crystal structure in a unit-cell.

Built-in periodic table of elements

Building-in periodic table for color and atomic radius.

15

Atom cluster

Bi2Pt_trigonal.pced.txt

Local structure or polyhedral clusters.

16

(a) Incorrect input with space group I4 and (b) correct input with space group $I\overline{4}$.

18

SAED

Electron Diffraction Patterns

Highlight

- Simulation in kinematical theory and Bloch wave dynamical theory.
- Simulation of composited patterns from multiple phases.
- Simulation of SAED pattern with zero and first order zone.
- Simulation of SAED pattern along/or away from zone axis.
- Simulation of composited patterns of twin crystals.
- Load experimental SAED pattern and for searching the zone axis.
- Save Region of Interest and user-defined TIFF resolution.
- Save electron diffraction data as input data for ESPOT.

X.-Z. Li, SAED3: simulation and analysis of electron diffraction patterns, Microscopy and Analysis, May-June issue (2019) 16-19.

19

SAED simulation of Al₃Mn

SAED3: X.Z. Li, Microscopy and Analysis, May-June issue (2019) 16-19.

21

Flow chart of program design

The flow chart of the SAED design.

22

Time on Blochwave calculation

Let me decide ...

СРШ

Current cycles = 62 Termination = 3.0865943150423357E-23 When Termination <= 1.0E-10, the result is usually acceptable. More cycles will further reduce the termination value. [Continue] on calculation or [Accept] the current result

Continue Accept

Snap-shot of an option for user to terminate or continue the calculation. The calculation in Bloch wave theory may take time for a crystal structure with relative large lattice parameters. In order to save the time, (i) the software provides an option for user to terminate the calculation process when the result is good enough or continue the calculation; (ii) the software will use previous calculated parameters to simulate a diffraction pattern when only the thickness is changed.

 \times

Application on PtBi and γ-PtBi₂

Application on α -PtBi₂ and β -PtBi₂

Application to Cu₂S

TEM image of the Cu₂S nanowire.

X.Z. Li et al. Microscopy and Microanalysis, 18S2, 1470 (2012).

26

Search for zone axis

Search for the zone axis of the experimental SAED pattern, (a) the experimental SAED pattern of the Cu_2S nanowire and (b) the simulated [211] SAED pattern of the Cu_2S phase.

X.Z. Li et al. Microscopy and Microanalysis, 18S2, 1470 (2012).

27

PCED

Simulation of Polycrystalline Electron Diffraction Pattern and Phase Identification

Highlight

- Simulation in kinematical theory and in Blackman theory
- Phase identification.
- Texture analysis using March model.
- Phase mass ratio determination.
- Peak shape using pseudo-Voigt profile.
- Miller index and Miller-Bravais index for hexagonal system.
- Save Region of Interest and GIF, PNG, JPG, and TIFF resolution.

X.-Z. Li, PCED2.0 - A computer program for advanced simulation of polycrystalline electron diffraction pattern, Ultramicroscopy 110 (2010) 297-304.

28

Flow chart of program design

The flow chart of the PCED design.

29

 \times

Simulation of PCED pattern & Phase Identification

(2,0,0) (1,0,2) (1,1,1)

(1,0,1) (0,0,2) (1,0,0)

SNN NAR	🔘 Param	×	
	Crystal	Phase 1	Phase 2
	File name	AI (default)	Mg (default)
2	K-factor	1.0	1.0
	Grain d(nm)	50.0	50.0
2	Grain t(nm)	20.0	20.0
4	Texture	out-of-plane	out-of-plane
	Plane (hkl)	001	001
	March factor	1.0	1.0

The PCED with simulation of Al and Mg.

(2,2,0)^(1,0,3)

(2,-1,0)

(2,2,2)(3,1,1)

(0,0,4 (2,0,1,1) (2,0,1,0,0) (1,0,4) (2,0,2)

(2,0,3)

(2,-1,4)(2,1,1)

30

Phase identification and semi-quantification

FePt $L1_0$ Phase identification and semiquantitative matching.

31

SPICA

Stereographic Projection for Interactive Crystallographic Analysis

Highlight

- All necessary functions of stereographic projection.
- Calculate two crystal phases simultaneously.
- Display [uvw] labels in various color, size and orientation.
- Display (hkl) labels in various color, size and orientation.
- Generate and overlay two stereographic projections.
- Show Kikuchi maps from the data of (hkl) poles.
- Predicate tilt/rotation angles of zone axes for both double-tilt and rotation TEM holders.

X.-Z. Li, SPICA - Stereographic Projection for Interactive Crystallographic Analysis, J. Appl. Cryst. 49 (2016) 1818-1826

32

Display and control panels

Three basic operational dialogs in SPICA: (a) the calculation dialog, (b) the pole range dialog and (c) the orientation dialog for Wulff net and stereograms.

33

Graphical user interface of SPICA with an (hkl) stereogram of a cubic structure as an example.

34

Example of the hexagonal Zn

Stereogram of the hexagonal structure of Zn: (a) (h k l) stereogram and (b) [u v w] stereogram. In order to display clearly all indices, the maximum indices were set to $h\leq 2$, $k\leq 2$, $l\leq 2$, $u\leq 3$, $v\leq 3$ and $w\leq 1$.

35

Kikuchi map

Kikuchi maps of a primitive cubic structure with [111] zone axis in the center, (a) generated using the method described by Liu & Liu (2012) and (b) generated using the formula by Young & Lytton (1971) with the wave length of 0.0251 Å (200kV).

> H. Liu, and J. Liu, J. Appl. Cryst. 45, 130-134 (2012). 36 C.T. Young and J. L. Lytton, J. Appl. Phys. 43, 1408-1417 (1972).
Application to Mn₂CrGaAl compound

Two crystalline phases in $Mn_2CrGa_{0.5}Al_{0.5}$ alloy as the result of a spinodal decomposition: (a) a TEM image of the two phases, cubic phase in light grey and tetragonal phase with strip shape in dark grey, and (b-d) the electron diffraction patterns taken from the two crystalline phases.

The 14th KH Kuo Summer School on Electron Microscopy and Crystallography

37

Application to Mn₂CrGaAl compound

Composite stereogram with (a) the index labels for the cubic phase and (b) the index labels for the tetragonal phase.

X.Z. Li, W.Y. Zhang, and D.J. Sellmyer, submitted to Acta Materialia (2017) **38**

Application to CoFeCrGe compound

The geometric relation of the observed SAED pattern and the TEM specimen holder for a stereographic projection as a guidance in SAED experiments.

A new tetragonal phase in Co-Fe-Cr-Ge alloy. (a) TEM image of the tetragonal phase with the grain size about 150 nm, (b-d) the SAED patterns of the tetragonal phase.

Y.L. Jin, X.Z. Li, and D.J. Sellmyer, Mater. Character. 136 (2018) 302-309. **39**

Application to CoFeCrGe compound

A new tetragonal phase in Co-Fe-Cr-Ge alloy as an example using SPICA to predict the tilt angles for all zone axes within the tilt limitation of the TEM specimen holder.

40

A new tetragonal phase in Co-Fe-Cr-Ge alloy as an example using SPICA to predict the tilt angles for all zone axes within the tilt limitation of the TEM specimen holder.

41

TEMUC

Unit Cell Determination in Transmission Electron Microscopes

Highlight

Three methods are implemented for Unit-cell determination.

- Reciprocal lattice reconstruction: easy and efficient.
- Reduced cell method: two SAED patterns and angle between them.
- Reduced cell method: three SAED patterns with shared reflections between any two of them.

X.Z. Li, Computer programs for unit-cell determination in electron diffraction experiments, Ultramicroscopy 102 (2005) 269-277.X.Z. Li, TEMUC3, a computer program for unit-cell determination of crystalline phases in TEM experiments, Micron 117 (2019) 1-7.

42

Conventional method

The 14th KH Kuo Summer School on Electron Microscopy and Crystallography

43

Conventional method

The 14th KH Kuo Summer School on Electron Microscopy and Crystallography

44

Reduce Cell method I

X.Z. Li, Micron 117 (2019) 1-7.

45

Algorithm I

- 1. Two SAED patterns with a common axis and tilt angle.
- 2. Relax the tilt angle in a range.
- 3. Get the reduced cell.
- 4. Try another two SAED patterns to get the reduced cell.
- 5. Compare the closest reduced cell.
- 6. Find the conventional Bravais lattice.

Reduce Cell method II

Yi Yang, Canying Cai, Jianguo Lin, Lunjun Gong, Qibin Yang, Accurate determination of lattice parameters based on Niggli reduced cell theory by using digitized electron diffraction micrograph, Micron 96 (2017) 9-15.

The 14th KH Kuo Summer School on Electron Microscopy and Crystallography

47

Algorithm II

- 1. Determination of the basic vectors.
- 2. Generation of all vectors within a given radius.
- 3. List the lengths of the vectors after a sorting process.
- 4. Do $1 \sim 3$ for a least 3 patterns.
- 5. Find the common length within a given error threshold.
- 6. Obtain the cell of the three common vectors.
- 7. Get the reduce cell.
- 8. Find the conventional Bravais lattice.

TEMUC

🖄 Cell Built with Three EDPs 🛛 🗙	ata Transformation X
Measurement of EDPs (pixel and °) Vector EDP 1 EDP 2 EDP 3 V12 81.9 81.9 33.1 33.1 V31 33.1 33.1 30.1 30.1 Angle ω 78.3 87.6 77.8 Reciprocal unit cell (pixel,°) a* = 81.9 b* = 30.1 c* = 33.1 $\alpha^* = 77.8$ $\beta^* = 78.3$ $\gamma^* = 87.6$	Scale bar (nm ⁻¹ , pixel) Labeled 2 Measured 84 Reciprocal unit cell (pixel, °) $a^* = 81.9$ $b^* = 30.1$ $c^* = 33.1$ $a^* = 77.8$ $\beta^* = 78.3$ $\gamma^* = 87.6$ Direct unit cell (nm, °) $a = 0.52$ $b = 1.43$ $c = 1.32$ $a = 101.97$ $\beta = 101.45$ $\gamma = 89.94$ Clear Convert Next
Initial cell (nm and °) A $a = 0.52$ $b = 1.43$ $c = 1.32$ $\alpha = 101.97$ $\beta = 101.45$ $\gamma = 89.94$ Reduced cell and a vector list Tolerance (nm) 0.001 Create Close	 Keconstruction × ✓ Display the grid ✓ Display the scale bar Radius of Sample Points 3 Operations Freeze Reset the coordinate origin Reset the orientation Reset the scaling Reset the v2 length Reset the v3 length Reset the (v2^v3) angle

49

Simulation and Analysis of Kikuchi Patterns

Highlight

- Simulation of Kikuchi patterns with SAED patterns.
- Indices of Kikuchi lines
- Basic image processing of experimental SAED patterns.
- Accurate determination of orientation using a Kikuchi patterns with three poles.
- Simulation of SAED pattern by considering double diffraction effect.
- Save Region of Interest and user-defined TIFF resolution.

X.-Z. Li, On precise determination of crystal orientation with Kikuchi pattern, Journal of Materials Education, 42 (2020) 99-106.X.-Z. Li, SAKI, software for simulation and analysis of Kikuchi patterns, Journal of Chinese Microscopy Society, 04 (2021) 398-405.

50

SAKI: simulation of Kikuchi pattern with index

The simulated SAED and Kikuchi pattern with index. 51

SAKI: simulation of Kikuchi pattern with index

Simulated spot pattern in kinematical diffraction, (b) with double diffraction effect. (c) Simulated Kikuchi pattern supposed on experimental pattern (d) the simulated pattern only for clarity. 52

SAKI: determination of orientation from three Kikuchi poles

Snap-shot of the main panels in SAKI with analysis of Kikuchi pattern of Mg. 53

SAKI: determination of orientation from two Kikuchi poles

Simulation of double diffraction effect

Crystalline structure: α -Mn, P 4₁ 3 2 (213), a = 0.6312 nm. (a) The simulated SAED pattern and (b) with double diffraction.

55

Quantification and Processing of SAED Patterns

Highlight

- Preparation of experimental SAED patterns for publication.
- Precise measurement of the reciprocal lattice spacing.
- Basic image processing of the experimental SAED pattern.
- Retrieval and display of the intensities of SAED patterns of crystal structures and correction by symmetry.
- Line profiles from SAED patterns of crystal structures, including aperiodic crystals.
- Preparation of input data for ESPOT module.
- Save Region of Interest and user-defined TIFF resolution.

X.-Z. Li, JECP/QSAED, a Computer Program for Quantification of SAED Patterns, Microsc. Microanal. 20S3 (2014) 1486-1487.

56

QSAED: load an experimental SAED pattern

GUI of QSAED with a loaded SAED pattern.

57

QSAED: operation dialogs

🗱 Edge grayscele 🛛 🗙				
Edge grayscale Grayscale: 12	🜼 Image operati	on X	🍀 Shift & Center	×
ROI size (pixel) & TIFF image (ppi)	Ima	age resize	Show circles S	ihow lines
ROI size (1 <val<750)< th=""> 432 TIFF ppi (1<val<999)< td=""> 300</val<999)<></val<750)<>	المعادم المعادم المعادم المعادم	1.86 ÷	Number of cirices 5 N-fold symmetry 8	5
Done		5.8 +	Close	
Edge grayscale Grayscale: 12	F X	Scaling factor	× h circle	
ROI size (pixel) & Show region ROI size (1 <val TIFF ppi (1<val< th=""><td>Align (Ppi) n of interest (ROI) <750)</td> 432 <999) 300<td>2.0 ○ 1/Å</td><td>1/nm</td><td></td></val<></val 	Align (Ppi) n of interest (ROI) <750)	2.0 ○ 1/Å	1/nm	
D	one	Done		

Edge grayscale dialog, resize and rotate dialog, and the shift & center dialog, and scaling factor dialog.

QSAED: load an experimental SAED pattern

Resize, rotate, center, invert operations on the SAED pattern.

59

QSAED: fast to prepare the pattern

SAED pattern can be easily adjusted for the final report.

60

QSAED: search for the basic vectors

QSAED: background intensities

Search background intensities in QSAED. 62

QSAED: improvement of an **SAED** pattern

(a) Retrieved intensities and (b) adjusted intensities.

63

QSAED: retrieve and display the intensities

Retrieval of intensities from EDP in QSAED.

64

QSAED: linear profile retrieve and display

👯 Profile	e Style			x
Profile Style				
Color 🤇	Blue 🧕	Red	0	Green
Туре 🤇	Dot 🤅	Line	0	Solid
Gridlines				
Show at	Step 24	* + (*	1/10) *	4
Eine Profile	Analysis	_		×
		10	12	14 16

Analysis of line profile from ED pattern in QSAED.

65

Quantification and Processing of PolyCrystalline SAED Patterns

Highlight

- Ellipticity correction.
- Pseudo-color pattern enhancement.
- Max intensity profile and ring highlight.
- Ring intensities -> Intensity profile.
- Background subtraction.
- Profile analysis: peak profile.
- Retrieval of intensities.
- Lattice parameter refinement.

X.Z. Li, QPCED2. 0: a computer program for the processing and quantification of polycrystalline electron diffraction patterns, J. Appl. Crystallogr., 45, 862 (2012).

66

67

Image operation	
Resize: x 1.00 Rotate: 0.00 Image alignment Mouse click EV Arrow keys	Ellipse To Circle × Transformation Long axis 100 Short axis 100 Angle (°) 0 ► U
Circle guide	Close
Radius 180	
Scanning lines	
Rotation (°)	

The adjustment dialog and (b) the ellipticity dialog.

68

Preparation of a figure for publication.

69

The profile of maximum diffraction intensities and pseudo-coloring of an SAED pattern.

70

The 14th KH Kuo Summer School on Electron Microscopy and Crystallography

71

Intensity distribution along diffraction ring due to texture. Carbon fiber composite as an example.

72
QPCED

Remove the incident beam and average the intensity profile.

73

QPCED

Background can be defined either automatically or manually.

74

Analysis of the intensity profile by fitting of the diffraction peaks, least-square refinement and manual trial-and-error. **75**

QPCED

Retrieval of the intensities for diffraction peaks.

76

	🧏 JECP/HOLZ: Interactive Simulation of HOLZ Pattern 📃	\times
10.7787/CO	File Fine-tune Display Index Table Option Help	

An Interactive Computer Program for Simulation of HOLZ Pattern with Correction of Dynamical Effect

Highlight

- Simulation of the higher-order Laue zone (HOLZ) lines using kinematical approximation and a first-order dynamic correction.
- Various schemes for indices of the HOLZ lines.
- Dual-view of convergent-beam pattern and HOLZ lines in disk.

X.Z. Li, JECP/HOLZ–an interactive computer program for simulation of HOLZ patterns, J. Appl. Crystallogr., 38, 576-577 (2005).

77

Formulas of the HOLZ lines under kinematical theory

A HOLZ line in the kinematical approximation is the locus of the Bragg condition for a HOLZ reflection **g**. The incident beam **k** is described as \mathbf{k}_n along -**z** and \mathbf{k}_t in (**x**, **y**) plane. We may think of the HOLZ line as a function of K_t , a vector which originates in the center of the zone axis and extends to a point of interest in the central disk, the trajectory is described by the following two equations (Spencer and Zuo, 1992):

$$g_{x}k_{x} + g_{y}k_{y} - g_{y}k_{x} + \frac{g^{2}}{2} = 0$$

 $k = (0t^{2} - t^{2} - t^{2})$

Here: $g^2 = g_x^2 + g_y^2 + g_z^2$

If we use a paraboloid equation, $k_{\mu} = k - \frac{k_{\mu}^2 + k_{\mu}^2}{2k}$ as an approximation of the sphere equation, $k_{\mu} = \sqrt{k_{\mu}^2 - k_{\mu}^2 - k_{\mu}^2}$ we end up with an equation for the HOLZ line trajectory (Li, 2007):

$$(\lambda_{x} + \frac{g_{x}}{g_{x}}\lambda)^{2} + (\lambda_{y} + \frac{g_{y}}{g_{x}}\lambda)^{2} = \lambda^{2} + (\frac{g}{g_{x}}\lambda)^{2} - \frac{g^{2}}{g_{x}}\lambda$$

J.C.H. Spence, and J.M. Zuo (1992). *Electron microdiffraction*, Plenum Press. X.Z. Li, *J. Mater. Educ.* 29, 177 (2007).

78

Schematic diagrams to show the formation of the HOLZ lines based on the kinematic approximation. (a) the rigorous kinematic model, (b) the "kinematically incorrect" model, (c) similar to the (b) scheme, but with curved HOLZ lines, (d) the dispersion surface construction. 79

Formulas of the HOLZ lines under first-order dynamical correction

In the first-order dynamical correction, it is assumed that only weak interactions occur between HOLZ reflections, the position of a HOLZ line can be approximated by finding the intersection between the zero-layer dispersion surface $(k_1=k_0+\gamma^{(1)})$, here $\gamma^{(1)}$ is the distance of the topmost excited branch of the dispersion surface from the sphere at the zone axis itself) and a plane-wave sphere centered on the HOLZ reflection (Bithell and Stobbs, 1989; Lin et al. 1989; Zuo, 1992).

When the incident beam is far away from a zone axis, the first branch of the dispersion surface can be approximately considered as sphere with radii of $k_1 = k_0 + \gamma^{(1)}$. Thus, the dynamically corrected HOLZ-line equation is derived as (Li, 2007):

$$s_{1}k_{2} + s_{2}k_{3} - s_{2}k_{4} + \frac{s^{2}}{2} + s\Delta s = 0$$
 $s\Delta s = (47^{10} + \frac{7^{100}}{2})$

When the incident beam is near or at a zone axis, the first branch of the dispersion surface can be approximately considered as a flat plane with a distant of $k_1 = k_0 + g^{(1)}$ to the origin of reciprocal lattice. Thus, the dynamically corrected HOLZ-line equation is derived as (Li, 2007)

$$(k_x + g_x)^2 + (k_y + g_y)^2 = r^2 = k^2 - (k_x + \gamma^{42} - g_y)^2$$

X.Z. Li, J. Mater. Educ. 29, 177 (2007).

80

Schematic diagrams of the formation of HOLZ lines using the dispersion surface construction: (a) weak dynamical effect and (b) strong dynamical effect in a zero order Laue zone. The intersected lines are valid within the first Brillouin zones and the extensions of the intersected lines to form circles are for illustration purposes only.

81

A snapshot of the HOLZ panel with a HOLZ pattern.

82

a CBED pattern.

83

GUI of JECP/HOLZ with (a) a simulated and (b) an experimental HOLZ patterns of Si [553].

84

 Simulation and Measurement with high Accuracy on a Rocking curve for crystal Thickness
 \square \times

 Crystal Experiment Calculation Pattern Table Option Help
 \square \square <

Simulation and Measurement with high Accuracy of a Rocking curve for crystal Thickness

Highlight

- SMART can be used for the simulation of two-beam CBED pattern, including the absorption effect.
- Computer assisting the measurement of crystal thickness using the experimental two-beam CBED pattern.
- Allow selecting a region of interest on the simulated and experimental CBED patterns to .tif, .jpg. and .gif formats.

X.-Z. Li, Journal of Microscopy and techniques (to be published 2023).

85

SMART \times imulation and Measurement with high Accuracy on a Rocking curve for crystal Thickness Crystal Experiment Calculation Pattern Table Option Help 📐 g,ξ š/ξ 🚣 (a) 🌆 🕑 ピ 🔛 😂 🖴 📈 🏭 🛈 $\sim \sim \sim$

The graphic user interface of SMART. The rocking curve and CBED pattern of Aluminum under the condition of two-beam and g(200). **86**

di Measurement 🛛 🗙
Experimental image File name: default_smart.tif Scale info: 0.1599 (Å-*/100pixel) Resize factor: 1.1587
Preparation Full image of a CBED pattern Disk position and radius disk o disk g Transfer Color Red
Display board Retrieved rocking curve Experimental CBED pattern
Data collection Position of Bragg conditions Guide mark on curve / disk Add-on Remove Extinction distance and thickness
(b) <u>n1 = Calculate</u>

(a) Control panel for simulation and (b) control panel for measurement.

87

The halfway of the process; only the position and radius of the o disk are defined.

88

The experimental rocking line and CBED disk. Local minima are marked.

89

The drawing panel and result table. Selection of n1 (default value =1) and calculate the extinction distance and specimen thickness by the calculate button.

ESPOT		
🧐 Projected Atomic Potential Map 🛛 🗖 🗌	×	
Data EDP APM Option Help		
🛛 🖾 🔛 🕪 🧐 🖳 🔜 🔳		

Electrostatic Potential (Difference) Map

Highlight

- ESPOT is an extension of SAED and QSAED.
- It can be used to calculate projected atomic potential map from the calculated diffraction data, which is calculated from SAED.
- With the diffraction data retrieved from experimental pattern using QSAED, the projected atomic potential difference map can be obtained to analyze and improve the structural model.
- Three types of projected atomic potential difference maps are available.

X.-Z. Li, Structural investigation of Zr_2Co_{11} and $Zr_2Co_{11-x}(MoBSi)_x$ phases using quantitative electron diffraction data, J. Applied Cryst., in preparation (2023).

91

🦉 Display 🛛 🗙	🦉 Adjustment 🛛 🛛	🦉 Potential 🛛 🛛	🦉 Contour	×	
Cal. pattern Black Exp, pattern Black Reflection style © Circle Disc	Calculated pattern Experimental pattern Orientation 0.0° Zoom 1.000	Calculated pattern Amplitude (M cal N exp.) Experimental pattern 1 - 0 1 - 1 2 - 1 3 - 2 Zoom 1 000 Sampling matrix	 Show unit cell Show grids Show density Show filename 		
Full Half Display Resolution circle Basic vectors Zone axis Crystal info	Scale 1.000 Resolution x 100% Close	Sampling on v1 100 Sampling on v2 100 Selected range v1 v2 From N1/N 0.0 To N2/N 1.0 Calculate	Bezier curve N layers Grid on v1 Grid on v2 Noise filter (%) Zoom Shift X	0.1 10 10 10 0.0 1 0	
Close			Shift Y	0 2x1 2x2	
			Curve color	± 0 ○ < 0	
			e Red Black Display	O Blue O Grey	

The main operational dialogs of ESPOT.

92

(a) GUI of ESPOT with a calculated diffraction pattern; (b) the GUI of ESPOT with a projected atomic potential map. **93**

(a) comparison of two diffraction patterns, calculated pattern and (simulated) experimental pattern; (b) the projected atomic potential difference map based on the diffraction data in (a). Missing atoms is revealed in the dot line peaks.

94

X. Zhao, M. C. Nguyen, 1 W. Y. Zhang, C. Z. Wang, 1 M. J. Kramer, 1 D. J. Sellmyer, X. Z. Li, F. Zhang, L. Q. Ke, V. P. Antropov, and K. M. Ho, Exploring the Structural Complexity of Intermetallic Compounds by an Adaptive Genetic Algorithm, Phys. Rev. Letter, 112 (2014) 045502.

The Adaptive Genetic Algorithm approach is demonstrated by solving a long-standing puzzle in the complex crystal structures of the orthorhombic, rhombohedral, and hexagonal polymorphs close to the Zr_2Co_{11} intermetallic compound.

The rhombohedral structure has space group R32 with lattice parameters a = 0.469 and c =2.40 nm, which match well with experimental data.

95

对比实验电子衍射强度,我们修改了Zn₂Co₁₁三方晶体相的结构模型。修改后的结构模型可有助于解释Zn₂Co₁₁的同形异构的调制结构的形成。

Rhombohedral phase is formed in $Zr_2Co_{11-x}(MoSiB)_x$ alloy.

Rhombohedral phase was synthesized in $Zr_2Co_{11-x}(MoSiB)_x$ alloy.

Rhombohedral phase was synthesized in $Zr_2Co_{11-x}(MoSiB)_x$ alloy.

(a) The structural model for Zr_2Co_{11} from AGA and (b) the modification. **98**

Simulation and Visualization Tool for Contrast Transfer Function

Highlight

- To calculate the CTF with temporal and spatial dumping envelopes for conventional TEM
- To extend it to various aberrations (up to fifth order) for aberration-corrected (AC)-TEM.
- It includes effects on the CTF and imaging due to the objective aperture and image drift for tutorial purposes.

X.-Z. Li, An Interactive Simulation and Visualization Tool for Conventional and Aberration-corrected Transmission Electron Microscopy, Microscopy Today, Nov.-Dec. issue (2022) 20-27.

100

The main frame of the CTFscope with a graphic panel and (b) a dialogue box for microscope setup and optical parameters. **101**

Focal Spread X	Dther Params X	
Cc (mm) 1.2	Spherical aberration	
Energy spread (eV) 0.4	C5 (mm) 0.0	
HT Ripple (ppm) 0.25 Obj lens instby (ppm) 0.5	Astigmatism (z , θ)	
	A1 (nm,°) 0.0	
Focal Spread Δ (nm) 2.7	A2 (nm,°) 0.0 0	
Calculate	A3 (μm,°) 0.0 0 -	
Aport & Drift	A4 (μm,°) 0.0 0	
Apert. & Dint A	A5 (mm,°) 0.0	
Center x (nm-1) 0.0	- Coma (z , θ)	
Center y (nm ⁻¹) 0.0	B2 (nm,°) 0.0 0	
Radius r (Rs) Off	Star aberration (z , θ)	
Drift	S3 (μm,°) 0.0 0 ÷	
	Three-lobe aberration (z , θ)	
Time (s) 1.0	D4 (mm,°) 0.0 0	
(b) Close	(C) Close	

The dialogue boxes for (a) focal spread coefficients, (b) the parameters for an aperture and a continuous drift, (c) astigmatism coefficients, and other higher order aberration coefficients.

The display panel for the calculated CTF in (a) a pseudo color, (b) a grayscale I (from 0 black to $|\pm 1|$ white), a grayscale II (from 0 white to $|\pm 1|$ black) and (d) a grayscale III (from -1 black to 1 white). The circular marker is in (b ~ d). **103**

The point spread functions as the Fourier transform of (a) the CTF and (b) |CTF|.

104

(a) An original image before processing, (b) the processed image using CTF, and (c) the processed image using |CTF|.

105

The calculated images using the same parameters in Figure 1 of [S. Uhlemann, M. Haider, Residual wave aberrations in the first spherical aberration corrected transmission electron microscope, Ultramicroscopy 72 (1998) 109-119.]

106

CTF Map	X	Basic Params X	Focal Spread X	Other Params X
O Pseudocolor O Grayscale I O Grayscale II O Grayscale III		Display	Cc (mm) 0.5	Spherical aberration
		● CTF ○ PSF-I ○ PSF-II	Energy spread (eV) 0.13	C5 (mm) 0.0
		Microscope parameters	HT Ripple (ppm) 0.5	Astigmatism (Izl, 0)
		HT (kV) 200	Obj lens instby (ppm) 0.2	A1 (nm.°) 0.814 -75.8
		Cs (mm) 0.00041	Focal Spread ∆ (nm) 0.46	A2 (nm.°) 41.19 -54.8
		Focal spread ∆ (nm) 0.46	(C) Calculate	A3 (µm,°) 6.858 134.8
		Beam convg. (mrad) 0.15		A4 (μm,°) 13 127.2
		Dumping envelope		A5 (mm,°) 0.0
		✓ Temporal ✓ Spatial		Coma (z , θ)
		Underfocus / Overfocus		B2 (nm,°) 11.11 -104.5
	11	∆f = 0 nm		B4 (μm,°) 0.0 0 +
				Star aberration (z , θ)
		Marker		S3 (μm,°) 0.626 66.5 ÷
		k = 9.56 nm ⁻¹ , d = 0.105 nm		Three-lobe aberration (IzI, 0)
				D4 (mm.°) 0.0 0
		(b) Close		
				(d) Close
(d) Marker Zoom 0.34				

The CTF 2D graph without aperture and drift, calculated using CTFscope using (b-d) the same parameters as those in Figure 4 of reference [S-C Lee, J-M Jeung, S-G Lee and J-G Kim, Journal of Analytical Science and Technology 11 (2020) 31.]. **107**

EMIPA

Transmission Electron Microscope Image Processing and Analysis

Highlight

- Convenient tool for selecting area, resizing, and rotation of experimental images.
- Measure the scale bar and transfer to selected image, FFT pattern and IFFT image.
- A series of intensity profiles on HREM images can be retrieved and compared.
- Square and Inscribed circle of an arbitrary length for FFT.
- Varies of masks are available for inversed FFT images.
- Tools for adding scale bars and indices for processed images and FFT patterns.

108

The GUI of HREM-IPA with a drop-down menu and a toolbar menu. The panel shows an electron microscopy image as an example. 109

K Caliper X	Image Adjustment 🛛 🗙
Caliper & scalebar label Show 2 nm Length (pixel) & angle (°) 75 - 0.7 -	Contrast inversion Image adjustment ··· Image center Mouse pointer and right-button
Close (a)	Resize image
Length	
On image 2 nm On FFT 5 1 / nm	Close (b)
On IFFT 2 nm	KOI X
Shift x -20 Shift y 20 ← Left Right → Option Font size 40 Color white Thickness 6 Color	Show region of interest Rectangle area x 530 y 400 w 500 h 500 Save Close (d)
Close (C)	

The image operation tools (a) caliper, (b) adjustment,(c) scale bar, and (d) ROI.110

The image is slightly rotated for alignment and calibration on the scale bar. An area is selected and ready for output. **111**

112

The 14th KH Kuo Summer School on Electron Microscopy and Crystallography

Heusler alloy.

(a) The image HREM image was taken in the Mn_2RuSn Heusler alloy, (b) An array of the image spots can be retrieved from the image.

113

			😽 FFT and Inv-FFT	– 🗆 ×
8	Area Selec	tion X		
	✓ Draw the	area frame		
	Square Radius (%) Frame color Stroke width Clo	Circle		
FFT / IFFT FFT→ Autocorrelat Inverted control ✓ Display of un P Seudo colot Replacement	X ition itrast	FFT / IFFT × Autocorrelation		
Adjustment Zoom Brightness Gamma Close		Adjustment Zoom Brightness Gamma Close		

The FFT pattern from the HREM image and a circular mask. 114

115

The IFFT pattern by using a mask with a pair of reflections (1 0 0) and (-1 0 0). Two dislocations cores are pointed out by arrowheads.

116

(a) HREM image and (b) the IFFT processing image of the main compound in the $Fe_3Co_3Ti_2$ alloy

117

An FFT pattern (inserted) and an IFFT image (right side) of the experimental image of graphite fiber (left side).

118

A Real-Time Logging System for Managing Multiuser Equipment

A flowchart of software design for the RTLS. Three main functions are indicated in bold frames.

X.-Z. Li, A real-time logging system for managing multiuser equipment, Microscopy Today, January (2018) 2-4. 119

A Real-Time Logging System for Managing Multiuser Equipment

X.-Z. Li, A real-time logging system for managing multiuser equipment, Microscopy Today, January (2018) 2-4.

120

RTLS

PT Ls	RTLS U	ser Info	×	RT Ls	Real Time	e Logging System	_ 1	×
- User Inf	User fo First Name Last Name Phone number Email address Department Supervisor	Info		User name Date & Time Today Dece Experimental condition	Xingzhong Li ember 05 2015 Starting s & notes	Cost object	346778889 Irrent time 05:39:02 PM	
Find	Cost Center user id		Save	With	n Facility Specialist	Minimize	Log out	

X.-Z. Li, A real-time logging system for managing multiuser equipment, Microscopy Today, January (2018) 2-4.

121

The components in the Landyne and Landyne+ software suites

Software	Description of components in the Landyne suite
PTELS	Periodic table of the elements for the Landyne suite
SVAT	Structural viewer and analytical tool including atom cluster and layer.
SPICA	Stereographic projection for interactive crystallographic analysis.
SAED	Simulation and analysis of electron diffraction (spot) patterns.
PCED	Simulation of PCED (ring) patterns and phase identification.
QSAED	Processing, quantification, and analysis of SAED (spot) patterns.
QPCED	Processing, quantification, and analysis of SAED (ring) patterns.
HOLZ	Simulation of HOLZ pattern including dynamical correction.
SMART	Simulation and measurement of rocking curve for crystal thickness.
SAKI	Simulation and analysis of Kikuchi lines and double diffraction effect.
TEMUC	Lattice determination of unknown structure in TEM/ED experiments.
ESPOT +	Electrostatic potential maps derived from electron diffraction patterns.
CTFscope +	CTF simulation and visualization for conventional and AC-TEM.
EMIPA +	HREM image processing and analysis
EMCIP+	HREM image crystallographic image processing

The 14th KH Kuo Summer School on Electron Microscopy and Crystallography 122

