UNL - Department of Physics and Astronomy

Preliminary Examination - Day 2
Friday, May 11, 2018

This test covers the topics of Thermodynamics and Statistical Mechanics (Topic 1) and Quantum Me-
chanics (Topic 2). Each topic has 4 “A” questions and 4 “B” questions. Work two problems from
each group. Thus, you will work on a total of 8 questions today, 4 from each topic.

Note: If you do more than two problems in a group, only the first two (in the order they appear
in this handout) will be graded. For instance, if you do problems A1, A3, and A4, only Al and A3
will be graded.

WRITE
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Thermodynamics and Statistical Mechanics Group A - Answer only two Group A questions

A mass of 0.4 kg of a certain gas is contained within a

piston-cylinder assembly. The gas undergoes a process for gas
which the pressure-volume relationship is pV'° = constant .
The initial pressure is 300 kPa, the initial volume is 0.1 m?, pvis=
and the final volume is 0.2 m3. The change in specific internal constant
energy of the gas in the process is u, —u, =55 kJ/kg . Deter-
mine the net heat transfer for the process.
A adiabatics
Consider an engine working in a reversible P ;' I'l
cycle and using an ideal gas with constant heat ca- a ::r li\ b

pacity c, as the working substance. The cycle con-

sists of two processes at constant pressure, joined

by two adiabatics. Which temperatureof T, T,, T ,
T, is the highest and which is the lowest? Justify d

your answer.

An automobile engine whose thermal efficiency is ¢ =22.0% operates at 95.0 cycles per sec-
ond and does work at the rate of 120 hp. How much heat does the engine absorb per cycle? (1 hp
=1 horsepower = 746 watts.)

A mixture of 1.78 kg of water and 262 g of ice at 0°C is, in a reversible process, brought to
a final equilibrium state where the water/ice ratio (by mass) is 1:1 at 0°C. Calculate the entropy
change of the system during this process.
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Thermodynamics and Statistical Mechanics Group B - Answer only two Group B questions

Given a round table, we randomly place three legs under the table. What is probability
that the table will fall?

Two fluids, F, and F,, of fixed volumes and constant heat capacities C, and C,, are ini-
tially at temperatures T, and T, (T, >T,), respectively. They are adiabatically insulated from
each other. A quasistatically acting Carnot engine uses F, as heat source and F, as heat sink,
and acts between the systems until they reach a common temperature T;. Find this T, and also

find the total work done by the Carnot engine.

Consider the Joule-Thomson expansion in which a gas is allowed to flow slowly through a
porous plug between two containers, which are otherwise isolated from each other and from
their surroundings. The enthalpy is defined as H =U + pV . The temperature change of such an

expansion is measured by the Joule-Thomson coefficient j= (G_TJ .
H

a. Show that dH =TdS+ Vdp.

b. Subsequently, show that j= K(Ta - 1) where the coefficient of volume expansion at
C 4
p

v\er

c. Finally, compute the coefficient j for an ideal gas.

constant pressure is defined as «, = l( GVJ .
14

Consider a system of N particles with only three possible energy levels: 0, ¢, and 2¢ . The
system occupies a fixed volume V and is in thermal equilibrium with a reservoir at temperature
T. Ignore interactions between particles, and assume that Boltzmann statistics applies.

a. What is the partition function for a single particle in the system?

b. What is the average energy per particle?
For each of the three energy levels, what is probability that it is occupied in the high-
temperature limit, k,T > &?

d. What is the average energy per particle for k,T > &?

e. Find the heat capacity of the system, C,,, and give the limits for k,T < & and for k,T > ¢
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Quantum Mechanics Group A - Answer only two Group A questions

A monochromatic point source of light radiates 25 W at a wavelength 500 nm.
A metal plate is placed 0.1 m from the source. The work function of the metal is 2.1 eV,
(a) What is the photon current density when they strike the metal?

(b) What is the maximum kinetic energy of the emitted electrons?

An operator B is called anti-Hermitian when B' =-B. Show that the expectation values of

anti-Hermitian operators are purely imaginary.

For a set of square-integrable function on the interval (—oo, c0) prove that

a4

7. 1s antihermitian;

(a) the operator
(b) the expectation value of the kinetic energy of a particle with mass m is
h? oo

() =5

2m —00

dy
dzx

2
dr.

Let the kets |p,) (1=1,2,3,...) be an orthonormal basis of some Hilbert space . We con-
sider the operator P=X_ | ¢, (¢, |.

a. Show that P is idempotent, i.e. P>=P.
b. Is P Hermitian?
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Quantum Mechanics Group B - Answer only two Group B questions

Consider a charged oscillator, of positive charge g and mass m, which is subject to an oscil-

n2
lating electric field E; cos(wt). The particle’s Hamiltonian is H = 5— + %sz +qE, X cos(wt).
m

a. Calculate d(X)/dt, d(P)/dt,and d(E)/dt.
b. Find (X)(t), the expectation value of X as a function of time.

At time £ = 0, a hydrogen atom is in the superposition state

U(r,0) = —=[ti0o(r) + Ya10(r)]

G-

2

where ,,;,,(r) are stationary eigenstates.

(a) Find the expectation value of the Cartesian coordinate z at ¢t = 0.
(b) Find the expectation value of z(t) at ¢ > 0.
(c) Write the Heisenberg equation of motion for z(¢), and find the expectation value of

p.(t) from it.

(a) Using the properties of the lowering and raising angular momentum operators,

(Gm|J|j'm’y = [ Fm) (G £ m 4+ 1)]Y206;5 0mmrs1

1
ja: == §(j+ + J_),

find the matrix representation for the Cartesian component J, of the spin operator J of a
particle with spin j = 1.
(b) Find the eigenvalues and eigenstates of J,.
(c) Suppose the particle is in the eigenstate of J, with the eigenvalue h, and J, is mea-
sured. What are possible outcomes of this measurement, and what are the corresponding
probabilities?
(d) Answer the question (c), if the particle is initially in the eigenstate of .J, with the

eigenvalue 0.
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In a one-dimensional scattering experiment, a steady, uniform beam of protons with
kinetic energy E = 400 eV and density p; = 225 m~! is sent to a potential step of height
Vo = 600 eV, so that the potential energy V(x) is

V=0 for z<0, V=V, for z>0.

(a) Calculate the amplitude A of the incident wave.

(b) Write down the wavefunction v(x) for x < 0 and = > 0. All parameters (coefficients)
should be expressed in terms of given quantities (p;, £ and V}).

(c) Find the total proton density p as a function of z. Simplify it as much as you can.

(d) Show that the total current density J(z) = 0 everywhere.

(e) Explain why .J is independent of the position z in spite of the fact that p does depend on x.



Physical Constants

c=2.998x10° m/s

speed of light

Planck’s constant

h=6.626x10% J-s
Planck’s constant / 27.... h=1.055x10" J-s
ky = 1.381x107 J/K
e=1.602x10" C

Boltzmann constant

elementary charge

electric permittivity &, =8.854x10™"” F/m
magnetic permeability ... 4, =1.257x10° H/m
molar gas constant.......... R=8.314 J/mol-K

Avogadro constant N, =6.022x10% mol™

Equations That May Be Helpful

TRIGONOMETRY

sin(a + f) =sina cos f + cosa sin
sin(a — f) =sina cos  — cosa sin
cos(a + ) =cosacos f—sinasin S

cos(a — ff) =cosacos f+sinasin

sin(26) =2sinfcosd
cos(26) = cos” @ —sin® @ =1-2sin* @ =2cos* -1

sinasin f = %[cos(a — ) —cos(a + ,8)]
cosacos ff = %[cos(a — )+ cos(a + ﬂ)]
sing cos 8 =1] sin(a + B) +sin(ar - f) |

cosasin ff = {sin(a + ) —sin(a — ﬂ)}

THERMODYNAMICS

Z= Zie_ﬂE"
0
= —%(IHZ)

Partition function =

(E)

Average energy =
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electrostatic constant ... k = (47¢,)”" =8.988x10” m/F

electron mass

m, =9.109x10°" kg

electron rest energy...... 511.0 keV

Compton wavelength .. 4. = h/m c=2.426 pm

m, =1.673x10"" kg =1836m,

a, ="/ ke’m, =0.5292 A
a,’ =2721eV

1 hartree (=2 rydberg) ... E, = h*/m_a,

gravitational constant ... G = 6.674x10™"" m®/ kg s’

hc=1240 eV -nm
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. d(E)
Heat ty = C,=N——7F
eat capacity v T
- Q - Q
Clausius’ theorem: Z?’ <0, which becomes Z—’ =0 for a reversible cyclic process of N steps.
i=1 4 i=1 4
d_ A
dT  TAV

For adiabatic processes in an ideal gas with constant heat capacity, pV” = const.

dU =TdS - pdV

H=U+pV F=U-TS G=F+pV Q=F-uN

C, = 90 (%5 c =[22] _r[ & TdS=C,dT +T 95\ v
dr ), T ), po\dr ) T ), v ).

i a_i(a_V]
- Vi ). ~vier),

Triple product: (%j [gj [%j = -1
oY ),\0Z ), \ X ),
Maxwell’s relations:

G=-G), G,=®, G.=-G, -G.=&,

Data for water
specific heat C =4186J/(kg-K)

heat of fusion L, =334 k] /kg
heat of vaporization L, =2256 k]J/kg

QUANTUM MECHANICS

~r/ay 2

4re
Ground-state wavefunction of the hydrogen atom: y/(r) =—7—, where 4, = C— is the
7'a,

me

Bohr radius, using m ~m_, in which m is the electron mass.



R 1 mk*e*
r)=R (r)Y, (r E =——
l//nlm( ) nl( ) lm( ) n nz th

2 —r/a,
Ry (r)=—5e€ %

0
1 r ~r/2a,

R, (r)= 31/2(251 )3/2 a_
0 0
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Particle in one-dimensional, infinitely-deep box with walls at x=0 and x=a:

222
, T°h

2ma*

Stationary states y, =(2/a)"*sin(nzx/ a), energy levels E =n

Angular momentum: [L L ]=ihiL, et cycl.

L, |£,m)=nJ(£+m+1)(C—m)| £, m+1)

Ladder operators:
L |6,my=nJ(¢+m)(L—m+1)|£,m—1)

Creation, annihilation operators:

P LA S G (M@l s i P
2h mw 2h mw

Aty ="n+1|n+1) alny=n|n-1y

ox ox m

Probability current density: J(x)= zi(l// o _ v al} = EIm (W* G_Wj '
mi
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Table Spherical harmonics and their.expressions in Cartesian coordinates.

Yim @, ) Yim(x, y,2)

Y00 (0, ¢) = ﬁ Yoo(x,y,z) = \/%

Y10(0, 9) = \/% cos 6 Yio(x, y,z) = \/%f

V1,210, 0) = ¥/ €47 sin 6 Vi,e10x,p,2) = ./ 542

Y2000, ¢) = \/%(3 cos? 6 — 1) Y20(x,»,2) = /15> %—r_z

Y2410, 9) = Fy/ 22 ¢+ sin 6 cos 0 V2,41(x,7,2) = Fy/ = &%Q’E

11200,0) = |/ 42 sin® 0 Voaa(, ,7) = T L
H,, =-7SB
Pauli matrices: o ={O 1} , O :LO _i] , O =(1 0 ]

1o Y0 2o 41

Compton scattering: A'—4=A.(1-cos#)
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- L VECTOR DERIVATIVES VECTOR IDENTITIES
Cartesian. dl=dxX+dyV+dzi; dr=dxdydz
Triple Products
e, o, ot
Gradient : Vi = —X+—¥+—12
ax dy~ | oz () A-BxC)=B-(CxA)=C-(AxB)
Divergence: V-v = o % 3 @) AxBxC)=BA C) - CA-B)
dx ay dz
Product Rules

Curl : Vxv = AQIEVm.TﬁQIEVm.TAgIFVW

Laplacian - vy = Xr ¥ o @ VA-B=Ax(VxB)+Bx(VxA) (A -V)B|(B-V)A

@) V() =f(Ve)+e(Vf)

X A (5) V-(fA)=f(V-A)+A-(V])
Spherical. dl =dri+rdif +rsin6dg¢; dr =r’sinfdrddde
6 V- (AxB)=B-(VxA) - A-(VxB)
ar _m-m+ 1 or .

Gradient : Vi = Sttt rmeas? (N V% (fA) = F(V x A) — A x (Vf)
" . vy = AP0 1 3 1 _dvg #) Vx(AxB)=(B-V)A-(A-V)B+AV-B) - B(V-A)
Divergence: V-v = ..u?.? =L+E.Emmm?_=m§v+nmﬁm 3
Second Derivatives

Curl : 4<||_!m.m;|¢k,
urt: XV = o e -5 |F 9 V- (VxA)=0

1T 1 du, @ 17a av, 7 » (10) Vx(Vf)=0

t; Tua ) mqﬁ:i“_u+ r TLS& N aT

(1) Vx(VxA)=V(V-A)— VA

1a i 1 a Bt 1 @
Laplacian : V% o= —— 2 — | sing- —
apacien ! Zor A_. ?v F Zsno a0 T.&%u Y iinZo 997

Cylindrical.  dl =ds§+sdpd +dzé; dr =sdsdpdz FUNDAMENTAL THEOREMS
- _ar, Mo . b, ‘ )
Gradient : Vi = M:u_.wa.“.+m|mun r
Gradient Theorem :  ['(V[)-dl= f(b) - f(a)
Divergence: V.v = Mwaheu+w§+we_h
rgence : = sReWtI Y Divergence Theorem : [(V - A)dr = fA-da

. 1dv dug . duy, A, ). I8 vy ] . Curl Theorem - VxA)-da=¢FA.dl
Carl ; v = |-=-2 S ACE F L R R J(VxA)-da=§
Curl v T& QLT.,TN ?T_;?:Eu gu_n

19 ot 1 0% o
Laplacian : Vi = - (s )+5—5+3
“aplacian 5 s A &v t et
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CARTESIAN AND SPHERICAL UNIT VECTORS

% = (sin @ cos §)t + (cos O cos #)B —sin g ¢
y = (sin@sin @)t + (cos fsin $)0 + cos ¢ (i)
2=cosOt—-sind O
INTEGRALS
@) [, flxyax <
I sdx =
o 1+bx
o) w
eI . V3 Ix"e’bxdx =L
2vVa g b’
xe x L
............... >
XZE_G x2 \/;
--------------- 4 a3/2
x3€—a x2 1
242
x4(€—a x2 3V
8 g2/2
2
S5 ,—ax 1
X"€@ 7 e, =
@3
6€—a x2 15Vn




