\[T = 2\pi \sqrt{\frac{I}{mg\ell}} \]

\[I_1 = \frac{1}{2} m_1 a^2 - m_1 a^2 \]

\[I_2 = \frac{1}{2} m_2 \left(\frac{a}{2}\right)^2 + m_2 \left(\frac{a}{2}\right)^2 \]

\[m_1 = \pi a^2 \]

\[m_2 = \pi \left(\frac{a}{2}\right)^2 \]

\[I = I_1 - I_2 = \frac{3}{2} m_1 a^2 - \frac{3}{2} m_2 \left(\frac{a}{2}\right)^2 \]

\[= \frac{3}{2} \left(\pi a^2 \lambda\right) a^2 - \frac{3}{2} \left(\frac{\pi}{4} a^2 \lambda\right) a^2 = \frac{45}{32} \pi \lambda a^4 \]

\[y_{cm} = \frac{m_1 \cdot 0 - m_2 \left(\frac{a}{2}\right)}{m_1 - m_2} = -\frac{\pi a^2}{4} \frac{a}{2} \]

\[= -\frac{1}{6} a \]

(“•” just indicates that \(y_{cm} \) is below the center of the disk of radius \(a \))

\[\ell = a + \frac{1}{6} a = \frac{7}{6} a \]

\[T = 2\pi \sqrt{\frac{\frac{45}{32} \pi \lambda a^4}{\left(\frac{3}{4} \pi a^2 \lambda\right) \frac{7}{6} a}} = \pi \sqrt{\frac{45}{7} a} \]
\begin{align*}
\text{Typical forces:} & \quad \sum F_x = m \ddot{x} = f - mg \\
\text{Since} \quad & \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}} \right) - \frac{\partial T}{\partial x} = \mathbf{Q} \\
\text{Then} \quad & m \ddot{x} = mg - k \dot{x} \\
\therefore \quad & m \ddot{u} = mg - ku
\end{align*}

\begin{align*}
\frac{m \ddot{u}}{mg - ku} &= \frac{du}{dt} \\
- \frac{k}{m} \cdot \frac{du}{dt} &= \frac{du}{k - u} \\
\text{Integral:} \quad & \ln \left(\frac{mg}{k} - u \right) = -\frac{k}{m} t + C \\
\therefore \quad & u = \frac{mg}{k} - Ce^{-\frac{k}{m} t} \\
\text{Since} \quad & t=0 \quad u=0 \quad \text{so} \quad C = \frac{mg}{k} \\
\therefore \quad & u = \frac{mg}{k} \left(1 - e^{-\frac{k}{m} t} \right) \\
\text{as } t \to \infty \quad & u = \frac{mg}{k} \\
\text{Which is the maximum velocity}
\end{align*}
Mech A3

Gravitational force on some small mass m on surface is $F_g = G \frac{Mm}{R^2}$

Centripetal force needed for mass to stay on surface is $F_{cp} = m\omega^2 R$

For m to stay on surface we must have $F_{cp} \leq F_g \implies$

$$M = \frac{R^3 \omega^2}{G}$$

with $R = 20000$ m and $\omega = 2\pi$ rad/s, we find $M = 4.7 \times 10^{24}$ kg.

Mech A4

Let m_F be the mass of the freight car and v_F be its initial velocity. Let m_C be the mass of the stationary car and v be the common final velocity of the two when they are coupled. Conservation of the total momentum of the two-car system leads to $m_F v_F = (m_F + m_C)v$, so $v = v_F m_F / (m_F + m_C)$. The initial kinetic energy of the system is

$$K_i = \frac{1}{2} m_F v_F^2$$

and the final kinetic energy is

$$K_f = \frac{1}{2} (m_F + m_C) v^2 = \frac{1}{2} (m_F + m_C) \frac{m_F^2 v_F^2}{(m_F + m_C)^2} = \frac{1}{2} \frac{m_F^2 v_F^2}{(m_F + m_C)}.$$

Since 27% of the original kinetic energy is lost, we have $K_f = 0.73 K_i$. Thus,

$$\frac{1}{2} \frac{m_F^2 v_F^2}{(m_F + m_C)} = (0.73) \left(\frac{1}{2} m_F v_F^2 \right).$$

Simplifying, we obtain $m_F / (m_F + m_C) = 0.73$, which we use in solving for the mass of the stationary car:

$$m_C = \frac{0.27}{0.73} m_F = 0.37 m_F = (0.37) (3.18 \times 10^4 \text{ kg}) = 1.18 \times 10^4 \text{ kg}.$$
Radius of cone is defined by \(r(z) = \frac{z}{H} \)

Moment of inertia = \(I = \)

\[
I = \rho \int_0^H \int_{r(z)}^{R} 2\pi r \, dr' \cdot 2\pi \int_0^r dz \left[\int_{r(z)}^{r} r^4 \, dr' \right] = 2\rho \int_0^H dz \left[\int_{r(z)}^{R} r^4 \, dr' \right] = 2\frac{\pi}{3} \rho \int_0^H dz \left[R^4 - r(z)^4 \right] = \\
= \frac{1}{2} \rho \int_0^H dz \left[R^4 \left(1 - \frac{z^4}{R^4} \right) \right] = \frac{1}{2} \rho \int_0^H dz \left[R^4 - \frac{R^4}{H^4} \frac{1}{3} H^5 \right] = \frac{1}{2} \rho R^4 \left(H - \frac{1}{3} H \right) = \\
= \frac{1}{2} \rho R^4 \frac{2}{3} H = \frac{1}{2} \pi \rho R^4 H
\]

Using \(R = 4, H = 5, \rho = 2500 \text{ kg/m}^3 \) we find

\[
I = \frac{1}{2} \pi \rho R^4 H = \frac{1}{2} \pi \times 2500 \times 4^4 \times 5 = 2\pi \times 2500 \times 4^4 = 4.02 \times 10^6 \text{ kg} \cdot \text{m}^2
\]

(Note:)

Volume

\[
\text{vol.} = \int_0^H dz \left[\int_{r(z)}^{R} 2\pi r \, dr' \right] = 2\pi \int_0^H dz \left[\frac{1}{2} \int_{r(z)}^{R} r^2 \, dr' \right] = 2\pi \int_0^H dz \left[R^2 - r(z)^2 \right] = \\
= \pi \left\{ R^2 H - \frac{1}{2} \int_0^H \frac{Z^2}{H^2} R^2 \, dz \right\} = \pi \left\{ R^2 H - \frac{R^2}{H^2} \frac{H^3}{3} \right\} = \frac{1}{3} \pi R^3 H
\]

Mass density = mass/volume = \(\rho = \frac{\text{mass}}{\text{vol.}} = \frac{\frac{m}{\frac{1}{2} \pi R^3 H}}{\frac{1}{2} \pi R^3 H} = \frac{m}{\frac{1}{2} \pi R^3 H} \)
(* define the cone *)
cone[z_] := \frac{z}{H}

(* calculate the integral of r^2 over the whole object *)
(* integral over r *)
Integrate[2 \pi r r^2, \{r, a, R\}]
\\[
\frac{a^4 \pi}{2} + \frac{\pi R^4}{2}
\]

(* followed by integral over z *)

r2intg = Integrate[\[
-\frac{(cone[z])^4 \pi}{2} + \frac{\pi R^4}{2}, \{z, 0, H\}\]
\frac{2}{5} \pi R^4

(* calculate the integral of 1 over the whole object to get the volume *)
(* integral over r *)
Integrate[2 \pi r, \{r, a, R\}]
\frac{a^2 \pi - \pi R^2}{2}

(* followed by integral over z *)

Volume = Integrate[\[
-(cone[z])^2 \pi + \pi R^2, \{z, 0, H\}\]
\frac{2}{3} \pi R^2

(* now calculate mom. of inertia*)
mass
\frac{mass \ast r2intg}{Volume}
\frac{2}{3} mass \pi R^2

\frac{5}{5}

(* insert numerical values *)

2500. \times \frac{2}{5} \pi 4^4

4.02124 \times 10^6
The kinetic energy of the cylinder can be decomposed into two parts, one involving the translation of the center of mass, and the other involving rotation about the center of mass. Let \(\dot{\theta} \) be the angular velocity of the cylinder. The kinetic energy \(T \) can be written:

\[
T = \frac{I_0}{2} \dot{\theta}^2 + \frac{m}{2} (R - a)^2 \dot{\theta}^2
\]

where

\[
I_0 = \frac{1}{2} ma^2
\]

for a solid cylinder. The constraint of rolling without sliding is \(a \dot{\theta} = (R - a) \dot{\theta} \). Hence (1) becomes

\[
T = \frac{m}{4} (R - a)^2 \dot{\theta}^2 + \frac{m}{2} (R - a)^2 \dot{\theta}^2
\]

\[
= \frac{3}{4} m(R - a)^2 \dot{\theta}^2
\]

The potential energy is

\[
V = - (R - a) mg \cos \delta
\]

(\(V = 0 \) for \(\delta = 90^\circ \))

The Lagrangian function is

\[
L = T - V = \frac{3m}{4} (R - a)^2 \dot{\theta}^2 + mg(R - a) \cos \delta.
\]

Substituting (4) into Lagrange's equation we obtain the equation of motion

\[
\frac{3}{2}(R - a) \ddot{\theta} + g \sin \delta = 0.
\]

For small \(\delta \) we have \(\sin \delta \approx \delta \), and (5) becomes

\[
\ddot{\delta} + \frac{2g}{3(R - a)} \delta = 0
\]

from which we get

\[
\omega = \sqrt{\frac{2g}{3(R - a)}}.
\]
What is the minimum value of F that keeps $2m$ from slipping?

For the entire system:

\[F = (M + 3m)g \]

\[F_x,_{tot} = m_{tot}a_x \]

unknowns: F, a

\[T \sin \theta = ma \]

unknowns: T, θ, a

\[T \cos \theta - mg = 0 \]

unknowns: T, θ
Let \(b_1, b_2 \) be the original lengths of springs 1 and 2 when the whole system is at equilibrium and the disc is not rotating. If \(\theta \) is the angle the disc has turned away from the equilibrium position, then spring 1 is stretched by a distance \(x_1 = a\theta \). If spring 2 is stretched by a distance \(x_2 \), the weight is lowered by a distance \(x_3 = \frac{a}{2}\theta + x_2 \). The kinetic energy of the system is:

Kinetic energy of the disc = \(\frac{1}{2} I\dot{\theta}^2 \)

\[= \frac{m}{4} a^2 \dot{\theta}^2 \]

(1)

Kinetic energy of the weight = \(\frac{1}{2} m \ddot{x}_3 \)

\[= \frac{m}{2} \left(\frac{a}{2} \dot{\theta} + \dot{x}_2 \right)^2 \]

(2)

The potential energy of the system is

\[V = \frac{1}{2} k a^2 \dot{\theta}^2 + \frac{1}{2} k x_2^2 - mg x_3 \]

\[= \frac{1}{2} k a^2 \dot{\theta}^2 + \frac{1}{2} k x_2^2 - mg \left(\frac{a}{2} \theta + x_2 \right) \]

(3)

Therefore the Lagrangian function is

\[L = T - V \]

\[= \frac{m}{4} a^2 \dot{\theta}^2 + \frac{m}{2} \left(\frac{a}{4} \dot{\theta}^2 + a \ddot{x}_2 + x_2^2 \right) - \frac{k}{2} (a \dot{\theta}^2 + x_2^2) + mg \left(\frac{a}{2} \theta + x_2 \right). \]

(4)

The Lagrange's equations are

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{x}_2} - \frac{\partial L}{\partial x_2} = 0 \quad \text{and} \quad \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}} - \frac{\partial L}{\partial \theta} = 0. \]

(5)

Substituting (4) into (5), we can immediately get two equations of motion.
E&M A1

\[J_{\text{free}} = J_0 (y^2 + z^2) \hat{x} \]

Thus current density has AXIAL SYMMETRY about the x-axis.

\[\mathbf{B} = B(\rho) \hat{\phi} \quad (\rho = \sqrt{x^2 + z^2}) \]

\[\oint \mathbf{B} \cdot d\ell = \mu_0 I_{\text{enc}}. \quad (*) \]

where the AMPERIAN LOOP of the integral is a circle of radius \(\rho = \sqrt{2} \) m lying in the plane \(x = 1 \), centered on the x-axis.

Thus, the left-hand side of (*) = \(B(\rho)2\pi(\sqrt{2} \text{ m}) \).

\[
I_{\text{enc}} = \int_0^{\sqrt{2} \text{ m}} J(\rho) dA = \int_0^{\sqrt{2} \text{ m}} J_0 \rho^2 2\pi \rho d\rho = 2\pi \int_0^{\sqrt{2} \text{ m}} \rho^3 d\rho = \frac{2\pi J_0 (\sqrt{2})^4}{4} = 250\pi \times 4 = 3142 \text{ A}
\]

Thus \(B(\sqrt{2} \text{ m}) = \frac{3142 \text{ A} \times 4\pi \times 10^{-7} \text{ H/m}}{2\pi \sqrt{2} \text{ m}} = 4.44 \times 10^{-4} \text{ T} = 4.44 \text{ gauss.} \)

Direction (by inspection) = \(\frac{\hat{\mathbf{z}} - \hat{\mathbf{y}}}{\sqrt{2}} \), so \(\mathbf{B} = 3.14 \text{ gauss} (\hat{\mathbf{z}} - \hat{\mathbf{y}}) \)

A2 A capacitor comprises a long thin straight wire and a long thin, cylindrical shell of radius \(R \). The electric field outside the shell is zero everywhere; the field immediately inside the cylinder has magnitude \(E_0 \) and points toward the wire.

Calculate the line charge density, \(\lambda \), on the wire.

ANSWER:

A) From Gauss’ Law, we find field of line alone is \(E = \frac{\lambda}{2\pi \varepsilon_0 r} \).

B) Outer shell does not contribute to fld inside

C) Therefore, \(E_0 = \frac{\lambda}{2\pi \varepsilon_0 R} \Rightarrow \lambda = 2\pi \varepsilon_0 R E_0 \)
Easy way
This is equivalent to two separate capacitors (each of half the area A) in parallel. One has capacitance $C_1 = K_1 \frac{\varepsilon_0 (\frac{1}{2} A)}{d}$; the other $C_2 = K_2 \frac{\varepsilon_0 (\frac{1}{2} A)}{d}$.

Net capacitance is then $C = C_1 + C_2 = K_1 \frac{\varepsilon_0 (\frac{1}{2} A)}{d} + K_2 \frac{\varepsilon_0 (\frac{1}{2} A)}{d} = \frac{1}{2} \left(K_1 + K_2 \right) \frac{\varepsilon_0 A}{d}$

Hard way
Charge cap with charge Q and calculate resulting voltage, then find $C = \frac{Q}{V}$.

Charge distributes itself such that electric fields left/right become equal.

Say free surface charge on left part of plate is σ_1, on right side, σ_2.

Field in left part is $E_1 = \frac{1}{K_1} \frac{\sigma_1}{\varepsilon_0}$, in right part, $E_2 = \frac{1}{K_2} \frac{\sigma_2}{\varepsilon_0}$.

Fields must be equal: $\frac{1}{K_1} \frac{\sigma_1}{\varepsilon_0} = \frac{1}{K_2} \frac{\sigma_2}{\varepsilon_0} \Rightarrow \frac{\sigma_1}{K_1} = \frac{\sigma_2}{K_2}$ (Eq. #1)

We have $\sigma_1 \frac{1}{2} A + \sigma_2 \frac{1}{2} A = Q \Rightarrow \sigma_1 + \sigma_2 = \frac{2Q}{A}$ (Eq. #2)

Solving for σ_1, σ_2, we get $\sigma_1 = \frac{2Q}{A} \frac{K_1}{K_1 + K_2}$ and $\sigma_2 = \frac{2Q}{A} \frac{K_2}{K_1 + K_2}$

$E_1 = E_2 = \frac{2Q}{\varepsilon_0 A} \frac{1}{K_1 + K_2} \Rightarrow V = Ed = \frac{2Q}{\varepsilon_0 A} \frac{d}{K_1 + K_2} \Rightarrow C = \frac{Q}{V} = \frac{\varepsilon_0 A}{d} \frac{1}{2} \left(K_1 + K_2 \right)$
Expiring Battery

\(a. \)

Initially, the current is 2 ampere, and the battery has a voltage of 120 V. Therefore,
\[V_b = IR \quad \Rightarrow \quad R = \frac{V_b}{I} = \frac{120}{2} = 60 \, \Omega. \]

\(b. \)

The power (in J/s = W) with which heat is developed in the resistor is \(P(t) = I^2(t)R \). The total amount of heat \(Q \) added to the water is then
\[Q = \int_0^\infty P(t')dt' = R \int_0^\infty I^2(t')dt' = R \int_0^{180} I^2(t')dt' + R \int_{180}^{240} I^2(t')dt'. \]

The first term is simple because the current is constant:
\[Q_1 = 60 \times \int_0^{180} 4 \cdot dt' = 240 \times 180 = 43.2 \, \text{kJ}. \]

To calculate the second term, we need a function describing the linear drop of the current between 180 s and 240 s, from 2 amps to 0 amps. This function is \(I(t) = 8 - t / 30 \). Then

\[
Q_2 = R \int_{180}^{240} I^2(t)dt = 60 \int_{180}^{240} (8 - t / 30)^2 dt = 60 \left[-10 \left(8 - \frac{t}{30} \right)^3 \right]_{t=180}^{t=240} = \\
60 \left[\left\{ -10 \left(8 - \frac{240}{30} \right)^3 \right\} - \left\{ -10 \left(8 - \frac{180}{30} \right)^3 \right\} \right] = 60 \times 80 = 4800 = 4.8 \, \text{kJ}
\]

The total heat added to the water is thus \(Q = Q_1 + Q_2 = 43.2 + 4.8 = 48 \, \text{kJ} \). The temperature increase is \(\Delta t = \frac{Q}{mc_w} = \frac{48,000}{200 \times 4.18} = 57 \, \text{K} \). The final temperature of the water is thus \(t_f = t_i + \Delta t = 20^\circ \text{C} + 57^\circ \text{C} = 77^\circ \text{C} \).
\(\mathbf{P} = P_0 (1 - r / R) \hat{z} \)
\[\sigma_{\text{bound}} = \mathbf{P} \cdot \hat{n} = 0 \]
\[\rho_{\text{bound}} = -\nabla \cdot \mathbf{P} \]

\(\mathbf{P} = (P_\rho, P_\phi, P_z) = (0, 0, P_z) \) in cylindrical coordinates.

In cylindrical coordinates, \(-\nabla \cdot \mathbf{P} = -\frac{\partial P_z}{\partial z} = 0 = \rho_{\text{bound}} \), thus \(\mathbf{E}(r \leq R) = 0 \).

\[\lambda \ell = 2\pi R \ell \sigma \]
\[\lambda = 2\pi R \sigma \]
\[\lambda \ell = 2\pi r \ell \varepsilon_0 E(r); \quad E(r \geq R) = \frac{\lambda}{2\pi r \varepsilon_0} = \frac{2\pi R \sigma}{2\pi r \varepsilon_0} = \frac{R \sigma}{r \varepsilon_0} \]

\[\mathbf{E}(r \geq R) = \frac{R \sigma}{r \varepsilon_0} \hat{r} \]
Fig. 1 - A parallel LRC circuit.

SOLUTIONS

(we use $X_L = \omega L$, $X_R = R$, $X_C = 1 / \omega C$)

$$I_L = \frac{E_m}{X_L} = \frac{E_m}{\omega L} = \frac{80}{377 \times 2.7 \times 10^{-3}} = 79 \text{ A}$$

lags E_m by 90°

$$I_R = \frac{E_m}{R} = \frac{80}{1.8} = 44 \text{ A}$$

in phase with E_m

$$I_C = \frac{E_m}{X_C} = \omega C E_m = 377 \times 1.6 \times 10^{-3} \times 80 = 48 \text{ A}$$

leads E_m by 90°

Amplitude of total current $I_{tot} = \sqrt{(I_L - I_C)^2 + I_R^2} = \sqrt{(79 - 48)^2 + 44^2} = 54 \text{ A}$.

We must have $I_{tot} = \frac{E_m}{Z} \Rightarrow Z = \frac{E_m}{I_{tot}} = \frac{80}{54} = 1.5 \Omega$.

We have $|\varphi| = \arctan \left(\frac{I_L - I_C}{I_R} \right) = \arctan \left(\frac{31}{44} \right) = 35^\circ$.

Because $I_L > I_C$ the total current lags the emf so $\varphi = +35^\circ$.
(a)

Field between plates due to one plate \(2Bd\ell = \mu_0 \frac{I}{w} d\ell \implies B = \frac{\mu_0 I}{2w}\).

Field due to both plates \(B = \frac{\mu_0 I}{w}\).

(b)

\[W = \frac{B^2}{2\mu_0} wd\Delta\ell, \text{ where } \Delta\ell \text{ is the length in the direction of the currents} \]

\[\frac{W}{\Delta\ell} = \frac{\mu_0 I^2 d}{2w} \]

(c)

\[W = \frac{1}{2} LI^2 \implies \frac{W}{\Delta\ell} = \frac{1}{2}(L / \Delta\ell)I^2 \implies \frac{L / \Delta\ell = \frac{\mu_0 d}{W}}{W} \]
Calculate first field due to uniformly charged sphere

\[E4\pi r^2 = \frac{\rho}{\varepsilon_0} \Rightarrow E = \frac{\rho}{3\varepsilon_0} \Rightarrow E(r) = \frac{\rho r}{3\varepsilon_0} \]

Then use the superposition principle to calculate field at the position \(r \) in the figure.

\[\mathbf{E}(r) = \mathbf{E}_s + \mathbf{E}_{\text{cav}} \] where \(\mathbf{E}_s \) is unknown field, and \(\mathbf{E}_{\text{cav}} \) is the field due to charge filling the cavity

\[\mathbf{E}_{\text{cav}}(r) = \frac{\rho r_1}{3\varepsilon_0} \]

\[\mathbf{E}_s = \mathbf{E}(r) - \mathbf{E}_{\text{cav}} = \frac{\rho}{3\varepsilon_0}(r - r_1) = \frac{\rho r_2}{3\varepsilon_0} \] where \(r_2 = a \) is the position of the center of the cavity.