E&M A1

Consider the following bizarre circuit shown below. Initially, S1 is closed, and remains closed until a steady-state situation is reached. The battery potential is 5V, L = 4 mH, and R = 2Ω. What is the energy stored in the inductor? Now, S1 is opened, and, simultaneously, S2 is closed. How much power is being dissipated in the resistor 5 msec after S2 is closed?

\[
I_{\text{Initial}} = \frac{\mathcal{E}}{R} = \frac{5}{2} \sqrt{\frac{L}{2}} = 2.5 \text{ A}
\]

\[
U = \frac{1}{2} L I^2 = \frac{25}{8} \times 4 \times 10^{-3} = 12.5 \text{ mJ}
\]

\[
I = I_0 e^{-\left(\frac{R}{L}\right) t}
\]

\[
\text{at} \ 5 \text{ msec} = 2.5 \text{ A} \times \exp\left(-\frac{2}{4 \times 10^{-3} \times 5 \times 10^{-3}}\right) = 205 \text{ mA}
\]

\[
P = i^2 R = 84 \text{ mW}
\]

E&M A2

Consider a long current-carrying wire extending to infinity along the + and - axes. Near the origin, it is given a semi-circular deformation of radius a as shown. The wire carries a current I from right to left. What is the magnitude and direction of the B-field at the origin?

\[
\vec{B}(0) = \frac{\mu_0 I}{4\pi} \int_0^{180^\circ} \, d\theta = \frac{\mu_0 I}{4\pi a^2} \int_0^\pi \, \theta d\theta = \frac{\mu_0 I a}{4\pi} \Rightarrow \frac{\mu_0 I}{4\pi} (\hat{\theta} \times \vec{a})
\]
Consider a Gaussian cylinder of radius 2.5 cm, concentric with the conductors.

\[
\frac{1}{\varepsilon_0} \lambda (2 \text{cm}) \lambda = 2\pi \varepsilon_0 \lambda E_0
\]

\[
\frac{1}{\varepsilon_0} \lambda (2 \text{cm}) = -2\pi \times 1.5 \times 10^{-2} \text{ m} \times 7 \text{ N/C}
\]

\[
8.98 \times 10^9 \lambda (2 \text{cm}) = -0.75 \times 10^{-2} \times 7
\]

\[
\lambda (2 \text{cm}) = \frac{-7.5 \times 10^{-3} \times 7}{8.98 \times 10^9} = -5.85 \times 10^{-12} \text{ C/m}
\]

\[
15 = X - 5.85
\]

\[
\lambda (2.5 \text{ cm}) = +20.85 \text{ pC/m}
\]
Where $\varepsilon = vBL = IR \Rightarrow I_0 = \frac{vBL}{R}$ and $F_0 = ILB = \frac{vB^2L^2}{R}$.

For the loop pulled through the region of magnetic field,

Where $\varepsilon = vBL = IR \Rightarrow I_0 = \frac{vBL}{R}$ and $F_0 = ILB = \frac{vB^2L^2}{R}$.
E&M B1

\[\Phi = q \frac{\alpha}{r} \left(1 + \frac{\alpha}{2r}\right) \]

(a) When \(r = 0 \), \(\Phi \) has a singularity at \(r = 0 \),

\[r \to 0, \quad \nabla^2 \Phi = \nabla^2 (\Phi r) = 4\pi q \delta(r) \]

It is interpreted as a point charges situates at \(r = 0 \) with a magnitude of \(4\pi q \).

(b) \(r \neq 0 \)

\[\nabla^2 \Phi = -4\pi \rho(r) \]

By spherical coordinates

\[\nabla^2 \Phi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Phi}{\partial r} \right) = \frac{q}{\alpha n} e^{-\frac{r}{\alpha}} \]

\[S = -\frac{q}{\alpha n} e^{-\frac{r}{\alpha}} \]

The charge distribution is continuous except at \(r = 0 \). With a maximum value \(-\frac{q}{\alpha n} \), the charge density decay exponentially. The total orbital electronic charge \(Q \)

\[Q = \int_{V} \rho(r) dV = -\frac{q}{\alpha n} \int_{0}^{\infty} r^2 e^{-\frac{2r}{\alpha}} dr = -\frac{q}{\alpha} P(\alpha) \]

i.e. there is a charge equal and opposite to the total electronic charge of the atom at \(r = 0 \), which is the nucleus.
E&M B2

Suppose the electric field inside a large piece of isotropic dielectric is \(E_0 \), so that the electric displacement is \(D_0 = \varepsilon_0 E_0 + P \). Now a long, thin, needle-shaped cavity is hollowed out of the material. This cavity runs parallel to \(P \). We assume the polarization is “frozen in”, so it doesn’t change when the cavity is made. We also assume the cavity is small enough that \(P \), \(E_0 \), and \(D_0 \) are essentially uniform in the solid.

a. Find the electric field vector \(E \) at the center of the cavity in terms of \(E_0 \) and \(P \).

b. Find the electric displacement vector \(D \) at the center of the cavity in terms of \(D_0 \) and \(P \).

Part a. The boundary condition for the \(E \) field is \(E_{\text{above}} - E_{\text{below}} = \frac{\sigma}{\varepsilon_0} \hat{n} \), but here \(\sigma = \sigma_b = P \cdot \hat{n} = 0 \), so \(E_{\text{in needle}} = E_{\text{solid}} = E_0 \).

Part b. We have no polarization in the cavity, so \(P_{\text{in needle}} = 0 \).

Hence, \(D_{\text{in needle}} = \varepsilon_0 E_{\text{in needle}} + P_{\text{in needle}} = \varepsilon_0 E_0 = D_0 - P \)
The potential at point P (\(\mathbf{E}_P \))

\[
\mathbf{E}_P = -\frac{q}{r_1} - \frac{q}{r_2} \quad \ldots (1)
\]

where $r_1 = \sqrt{r^2 + d^2 - 2rd\cos\theta}$; $r_2 = \sqrt{r^2 + d^2 + 2rd\cos\theta}$

\[
\hat{n} \cdot (\mathbf{E}_2 - \mathbf{E}_1) = 4\pi\sigma
\]

\[
\hat{n} \cdot (\nabla \phi) = -4\pi\sigma
\]

Use spherical polar co-ordinates with the z axis passing through q and q'. Since \mathbf{E} is not a function of ϕ, we obtain

\[
\sigma = -\frac{1}{4\pi} \hat{n} \cdot \left(\mathbf{E}_r \frac{\partial \mathbf{E}}{\partial r} + \frac{\partial \mathbf{E}}{\partial \theta} \frac{\partial \hat{\phi}}{\partial \theta} \right) \quad (2)
\]

Substitute $\theta = \frac{\pi}{2}$ and $r = \rho$, i.e., on the conducting plane where ρ is the radius on the plane with the origin as the center, Eq. (2) becomes:

\[
\sigma = -\frac{q_d}{2\pi (\rho^2 + d^2)^{\frac{3}{2}}} \quad (3)
\]

By Coulomb's Law of force between its image,

\[
\mathbf{F} = \frac{q q'}{(2d)^2} \hat{k} = -\frac{q^2}{(2d)^2} \hat{k}
\]
Consider a sphere of radius R with a constant uniform magnetization M. The magnetic field inside the sphere is given by $\mathbf{B} = \frac{2}{3} \mu_0 \mathbf{M}$.

\begin{enumerate}
\item Calculate the surface current density at any point on the surface.
\item Calculate the tangential component of the B field just outside the sphere.
\item Calculate the normal component of the B field just outside the sphere.
\end{enumerate}

SOLUTION

We’ll need

\[
\mathbf{\hat{x}} = \sin \theta \cos \phi \mathbf{\hat{r}} + \cos \theta \cos \phi \mathbf{\hat{\theta}} - \sin \phi \mathbf{\hat{\phi}}
\]

\[
\mathbf{\hat{y}} = \sin \theta \sin \phi \mathbf{\hat{r}} + \cos \theta \sin \phi \mathbf{\hat{\theta}} + \cos \phi \mathbf{\hat{\phi}}
\]

\[
\mathbf{\hat{z}} = \cos \theta \mathbf{\hat{r}} - \sin \theta \mathbf{\hat{\theta}}
\]

We also have $\mathbf{\hat{z}} \times \mathbf{\hat{r}} = (\cos \theta \mathbf{\hat{r}} - \sin \theta \mathbf{\hat{\theta}}) \times \mathbf{\hat{r}} = -\sin \theta \mathbf{\hat{\theta}} \times \mathbf{\hat{r}} = -\sin \theta (-\mathbf{\hat{\phi}}) = \sin \theta \mathbf{\hat{\phi}}$

Define these quantities:

- $\mathbf{B}^{(0)}_{\perp}$ = inside field perpendicular
- $\mathbf{B}^{(0)}_{\parallel}$ = inside field parallel
- $\mathbf{B}^{(0)}_{\perp}$ = outside field perpendicular
- $\mathbf{B}^{(0)}_{\parallel}$ = outside field parallel

\[
\mathbf{B}^{(0)} = \frac{2}{3} \mu_0 \mathbf{M} = \frac{2}{3} \mu_0 \mathbf{M} \mathbf{\hat{z}} = \frac{2}{3} \mu_0 \mathbf{M} (\cos \theta \mathbf{\hat{r}} - \sin \theta \mathbf{\hat{\theta}}) = \frac{2}{3} \mu_0 \mathbf{M} \cos \theta \mathbf{\hat{r}} - \frac{2}{3} \mu_0 \mathbf{M} \sin \theta \mathbf{\hat{\theta}}
\]

\[
\mathbf{K}_b = \mathbf{K}_{b,\parallel} + \mathbf{K}_{b,\perp} = \mathbf{M} \times \mathbf{\hat{n}} = \mathbf{M} \mathbf{\hat{z}} \times \mathbf{\hat{r}} = \mathbf{M} \sin \theta \mathbf{\hat{\phi}}
\]

NOTE: this is \parallel

so $\mathbf{K}_{b,\parallel} = \mathbf{M} \sin \theta \mathbf{\hat{\phi}}$ and $\mathbf{K}_{b,\perp} = 0$
\[
\begin{align*}
\frac{\mathbf{B}^{(0)} - \mathbf{B}^{(i)}}{\mu_0} &= \mathbf{K} \times \hat{n}_{\parallel} \quad \text{so} \quad \mathbf{B}^{(0)} = \mathbf{B}^{(i)} = \frac{2}{3} \mu_0 M \cos \theta \hat{r} \\
\frac{\mathbf{B}^{(0)} - \mathbf{B}^{(i)}}{\mu_0} &= \mathbf{K} \times \hat{n} = M \sin \theta \hat{\phi} \times \hat{r} = M \sin \theta \hat{\Theta} \quad \Rightarrow \\
\Rightarrow \quad \mathbf{B}^{(0)} &= \mathbf{B}^{(i)} + \mu_0 M \sin \theta \hat{\Theta} = -\frac{2}{3} \mu_0 M \sin \theta \hat{\Theta} + \mu_0 M \sin \theta \hat{\Theta} = \frac{1}{3} \mu_0 M \sin \theta \hat{\Theta}
\end{align*}
\]
Quantum A1

1. intensity \(I = UC \)

\[
u = \frac{I}{C} \quad \lambda = \frac{U}{h} = \frac{UC}{h} = \frac{I}{hC^2}
\]

\[
= \frac{5 \times 10^4 \text{ W}}{m^2} \cdot 5 \times 10^{-7} \text{ m}
\]

\[
\frac{6.63 \times 10^{-34} \text{ J s} \cdot 9 \times 10^{16} \text{ m}^2/s^2}{6.63 \times 10^{-34} \text{ J s} \cdot 9 \times 10^{16} \text{ m}^2/s^2} = 0.42 \times 10^{15} \text{ photons/m}^2
\]

Quantum A2

2. \(n_{\text{min}} = l + 1 = 7 \)

\[
E = -\frac{13.6 \text{ eV}}{h^2} = -\frac{13.6 \text{ eV}}{49} = -0.28 \text{ eV}
\]

Quantum A3

3. wave function

\[
\psi(x) = \exp \left\{ -\frac{i}{\hbar} \sqrt{2m(V_0 - E)} x \right\}
\]

penetration depth

\[
= \frac{\hbar}{\sqrt{2m(V_0 - E)}} = \frac{1.055 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 15.1 \times 10^{-19}}}
\]

\[
= 0.05 \times 10^{-9} \text{ m} = 0.05 \text{ nm}
\]
4. \(E \propto \mu \) where \(\mu = \text{the reduced mass} \)

\[
\mu = \frac{m_u m_p}{m_u + m_p} = \frac{207 \times 1836}{207 + 1836} m_e
\]

\[
= 186 m_e
\]

\[
E = -13.6 \text{eV} \times 186 = 2530 \text{eV}
\]

\[\text{Hard}\]

Quantum B1

5. \(\lambda' - \lambda = \lambda_c (1 - \cos \Theta) \)

(a) \(\lambda' - \lambda \) is max when \(\Theta = 180^\circ \)

(b) \(\lambda' - \lambda = 2 \lambda_c \)

\[
\lambda' = \lambda + 2 \lambda_c = \frac{hc}{E} + 2 \lambda_c
\]

\[
E' = \frac{hc}{\lambda'} - \frac{hc}{\lambda}
\]

\[
K_e = E - E' = E - \frac{hc}{\lambda'} = E - \frac{hc}{\lambda_c + \lambda_c}
\]

\[
= E - \frac{1}{E + E_0}
\]

where \(E_0 = \frac{hc}{\lambda_c} = \frac{hc}{\frac{hc}{m} = mc^2} \)

\[
K_e = \frac{1 + \frac{E_0}{E} - 1}{1 + \frac{E_0}{E}} = \frac{E}{1 + \frac{E_0}{E}} = \frac{200}{1 + \frac{200}{200}}
\]

\[
= 56 \text{ keV}
\]
If the particle is localized within the region limited by 1×1, it creates the momentum uncertainty $\frac{h}{x}$ and the min possible momentum $\frac{p}{x}$.

$$E = \frac{p^2}{2m} + Ax^4$$

minimum with respect to x:

$$-\frac{h^2}{8mA^2} + 4Ax^3 = 0$$

$$x^3 = \frac{h}{(4ma)^{1/3}} \quad x = \frac{h^{1/3}}{(4ma)^{1/6}}$$

$$p = \frac{h^{2/3}}{(4ma)^{1/6}}$$

$$E = \frac{h^2}{2m} \frac{(4ma)^{1/3}}{h^{2/3}} + a \frac{h^{1/3}}{(4ma)^{1/6}} = \frac{h^{4/3}a^{1/3}}{m^{1/3}}$$
\[\psi(x, o) = e^{i \left(\frac{1}{2} (\mathcal{H} - E_1) \right)} \]

(a) \[e = \frac{1}{\sqrt{2}} \]

(b) \[\psi(x, t) = \frac{1}{\sqrt{2}} \left[\psi_1(x) e^{-iE_1t/\hbar} + \psi_2(x) e^{-iE_2t/\hbar} \right] \]

\[E = \frac{\hbar^2}{2m} \int |\psi(x, t)|^2 \frac{\text{d}x}{dx} \]

\[\langle E \rangle = \frac{1}{2} \int \left[\psi_1^*(x) e^{iE_1t/\hbar} + \psi_2^*(x) e^{iE_2t/\hbar} \right] \psi_1(x) e^{-iE_1t/\hbar} + \psi_2(x) e^{-iE_2t/\hbar} \text{d}x \]

\[\mathcal{H} \left[\psi_1 e^{-iE_1t/\hbar} + \psi_2 e^{-iE_2t/\hbar} \right] \]

\[= \frac{1}{2} (E_1 + E_2) \]

since \[\mathcal{H} \psi_1 = E_1 \psi_1 \]

\[\mathcal{H} \psi_2 = E_2 \psi_2 \]

(c) \[\int |\psi(x, t)|^2 \text{d}x = \]

\[\frac{1}{2} \int \left[|\psi_1(x)|^2 + |\psi_2(x)|^2 \right]^2 + 2 \text{Re} \left\{ \psi_1(x) \psi_2(x) e^{i(E_1 - E_2)/\hbar} \right\} \text{d}x \]

\[= \int \psi_1(x) \psi_2(x) \text{d}x \]

\[= \int \psi_1(x) \psi_2(x) \text{d}x \cos \cot \theta = A \cos \cot \theta \]

\[\cot \theta = \frac{E_1 - E_2}{\hbar} \]

\[\langle x \rangle = 0 \quad \text{for start state} \]

since \[|\psi_1|^2 \] and \[|\psi_2|^2 \] are even

(d) energies can be found from the de Broglie

\[p = \frac{h}{2\alpha} \]

\[E = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{8ma^2} = \frac{n^2 \hbar^2}{2ma^2} \]

or give them energies
\[\omega = \frac{E_2 - E_1}{\hbar} = \frac{\pi^2 \hbar^2}{2ma^2} \left(l^2 - 1^2 \right) = \frac{3\pi^2 \hbar}{2ma^2} \]

\[T = \frac{\omega}{2\pi} = \frac{4ma^2}{\omega \hbar} \]

Classical time \[\frac{2a}{v} = 2a \sqrt{\frac{m}{2\epsilon}} \]

Substitute \[E = \frac{E_1 + E_2}{2} = \frac{5a^4 \hbar^2}{4ma^2} \]

\[T_{cl} = 2a \sqrt{\frac{2ma^2}{5a^4 \hbar^2}} = \frac{2a}{\hbar} \sqrt{\frac{2}{5}} \]

\[\frac{T}{T_{cl}} = \frac{4/5}{2 \sqrt{\frac{2}{5}}} = \frac{2}{3} \sqrt{\frac{5}{2}} = \frac{\sqrt{10}}{3} = 1.05 \]

Quantum B4

\[f \sim A r^2 e^{-r/\alpha_0} \]

\[P(r) = \rho^2 r^2 = A r^6 e^{-2r/\alpha_0} \]

(a) \[\langle r \rangle = \frac{\int r^7 e^{-2r/\alpha_0} dr}{\int r^6 e^{-2r/\alpha_0} dr} = \left(\frac{\alpha_0}{2} \right)^3 \frac{7!}{6!} \]

\[= \frac{3}{2} \alpha_0 \cdot 7 = 10.5 \alpha_0 \]

(b) \[\frac{d\rho}{dr} = 0 \implies 6r^5 - \frac{2}{3} \alpha_0 r^6 = 0 \implies r = 9 \alpha_0 \]

(c) \[l = 2, \quad L = \hbar \sqrt{2.3} = \hbar \sqrt{6} \]

(d) \[E = -\frac{\hbar^2 \omega}{9} = -1.51 \text{eV} \]