Vector algebra:

hull = Jod)? + 2 + (2’
u-v = [lullvl cos0
lull = va-u

Unit vector: ti = —

[lul]
u-v=v-u
(au)-v=a(u-v)
(u+v) - w=u-w+v-w
ii=jj=k-k=1
i-j=j-k=i-k=0

(ocu+pv)-w=oa(u-w)+p(v-w)

Magnitude of u X v = ||u]|||v|| sin 6&

uxv=-—(vxu)

ixj=kijxi=—-k

(ou) X v=a(uxv)

(u+v)Xw=uxXw+vxw

|lu X v|| = area of u, v parallelogram

M = R X F,Moment M of F about P

lux viiz = [lul?[Iv]]> = (u - v)?

ixi=jxj=kxk=0

i k

i
uxv=lu, u, u|=@v;— Ui+ Usvy —wvs)j + (Upv; — upvk

UX 1]Z UZ
uXV= wyvE;ek &k is the permutation tensor
e X & = ey

R -0 =Rl R is any point plane, ||R,|| is shortest distance to plane
Plane:ax + by + cz =d, (ai + bj + cE) is normal vector (not unit normal)
d
Shortest distance D = #
va? + b? + c?

|u - v x w| = volume of u,v, w parallelepiped

ul u2 u3
u-vxw=|vl v2 v3

wl w2 w3

u-vxw=uxv-w(if = 0,u,v,ware LD, in plane)
ux(wxw)=(u-wyv—(u-v)Xw
(u-vxw)=u"vxw+u vVXw+u-vxw
[(ux(vxw)]' =W x(VXw)+@x @ xw)+ uxvxw)
’
[lull = ”u”
u;8; =
u-v=u;e;-vje; = uvje; - e = u;v;§
uv=u'v
Cartesion:
R = xi+yj + zk
v(it) =xi+yj+zk
a(t) =x"i+yj+2z%k
dy dz (constant x surface)
dA ={dx dz (constant y surface)
dy dx (constant z surface)

0 i)
Vector differential operator (Gradient): V 6_ +j 0_ ka—
DI v. vy + ov, + v,
V=YY T o Ty Tz
0 d
v-V= Uxa'f' Uy@‘l'VZa—Z
Ju, Ou, Ou.
Gradu=Vu=—i+—j+—k, scalar field u to vector field
ox dy’ 0z
i j k
Curlv=Vxv= i i i
ox 0y 0z

v v,

_ <6vz _ 6vy>i (E)vz _ %)i
dy 0z ox 0z

0v, 0v,

(3%

> k, vector field v to vector field
Polar: €.(0), €4(0)

R =rée,

v(t) =r'é, + 10 &

a(t) = (r"—r0%)e, + (10" +2r'9") &,

08, 08&q
a0 v Tag &
i=cosfé, —sinb &y, j =sin0é,.+ cosO &,

x=rcosf,y=rsinf

Cylindrical: &,(0), 8,(0),é, = k

R =718, + z&,, dR = dré, + rd0é,y + dzé,
v(t) =r'e. +1r0'8y+z'e,

at) = (" —r8?2)e, + (0" +2r0)ey + 2’8,

0&, 08&q

— = e — = -8

a6~ " o0 r

i=cos6é, —sinb &y, j =sinfé.+ cosO &,
€. x8é,=—8, 8gx€,=8, 6. X8 =8,

If taking the cross product, setitup as €. - &g — €,,LtoR
x=rcosf,y=rsinf,z=z

r d@dz (constant r surface) E.g.foraconer,6,and z are not
dA =1 drdz (constant 6 surface) constant. For a cylinder, r is constant.

rdr df (constant z surface)

dV =rdrdf dz
v _Ou +16u +6u
Rl o A

0*’u 1ou 1 d*u 0d%u

Viu = S
R PSR TR Pe

1 6 10 a
V:v= (rvr)+ 69v9+6 v,
Vxv = (1 6172 6179) . (6vr 6172) &+ 1 (6(rv9) 617,) .
V=G oz 9z _or)  \Tar a9/
Spherical: &,(¢,6), €4(,0), ENG))
i 0é 0é
_P_ ~_P_s _P_ é
p A 9% €4, %0 sin¢ &,
R R T
069 -0 069 _ 069 _ . ~ ~
p =0, 3 =0, 30 - smq)ep cos ¢ &,

R = pé,, dR = dp&, + pdpéy, + psind doe,

v(t) = pé,+ppey+ pbsing &

a(t) = (p" — pp? — po?sin® p)&, + (pp" +2p'¢p’
— pB?sin ¢ cos p)&y, + (p0"sing + 2p'¢p’sin¢g
+2p6'¢p cos p) &,

p?|sinp|d¢ d8 (constant p surface)

dA =1 p|sing|dp d8 (constant ¢ surface)

pdpdg (constant 0 surface)

dV = p?|sing|dp d¢ db

€9 X &, =&y, 8y X €. = —8,, €y X € =8,

=sin¢ (cos0i+sinbj) + cosp k

= cos¢ (cos@i+sin@j) —singk

9 = —sinfi+cosfj

=sin¢ cosf &, + cos P cos§ &g, —sinf &,

<

Il
5

sing sinf &, + cospsinf &, + cosd &,

>N = Dy @ D
°

k=cos¢p&,—sing &,
x = psing cosf

y =psingsinf
z=pcos¢p

ou_  10u _ 1 ou_
Vu =

ap Tpap e peing20 e
v 1 6( 0u)+ 1 ( 6u)+ 1 9%u
u 6p p smqbz?q,’) ¢6¢ sin? ¢ 962
1 Jdvy
==Y, = i 0
pZ ap (p v) psin¢ op (v¢ sing) + psin ¢ 90
1 1/ 1 0y, d(pvp)\ .
psm¢<6¢(vesm¢) > p+;<sin¢%_ ap ‘o

1/(09(pvy) avp>A
+p< op )¢

Curves and line integrals

Arclegth s(z) = f RO ROt

b
Line Integral:f f(x,y,2)ds = f f(x(‘[),y(r),z(‘[))w/R'(T) ‘R'(7)dt
c a



Note: R is the vector that traces out the curve. For example, if the curve is a
semicircle in the quadrant I and Il, then R(8) = &, = cos01 + sin6j, where
0<6< m. And in this case, T =0.
Parameterization of a straight line:
x=x1+—x)t,  y=y1+ @2yt z=12+ (2, — 7)1,
(0<t<1)
Parameterization: The goal is to solve for your curve or surface in terms of a
variable that suits your preferred coordinate system. If your curve is an intersection
of two surfaces, then solve for the intersection just like you would a system of
equations (Gauss elimination, etc.), but before you solve, chose a parameterization
that makes sense for the surfaces in question. l.e. if you have a plane intersecting a
cylinder, chose 0 as the parameter (from 0 to 2r), make the appropriate substitutions
x =rcos8,y = rsin@ for the cylinder and then solve for x,y, and z in terms of
the new parameter.

Net work done traversing curve C:f v-dR = fde,
c c

Where v is a force vector field and R is the position vector to some reference point.
J. v-dR = f(v (x, v, 2)dx + v, (x,y,2)dy + v,(x,y,2)dz),

Note 1: The dot turns this from two vectors to a scalar.
Note 2: If the curve is not continuous, need to break up the integral.

Stoke's Theorem: :f; v -dR = fﬁ -V X vdA,
S

Note 1: If the surface is not closed, the fi follows the right hand rule.
Note 2: The line integral must be closed.

P
Greene'sTheorem: f —Q - % dA = f Pdx + Qdy
Note 1: Vector field: v = P(x, y)i + Q(x,y)j

Note 2: Edge of S must be piecewise, smooth, simple, closed oriented CC.

Greene's 1st identity: f (Vu - Vv + uV?v)dV = f u— dA

, ov ou
Greene s 2nd identity: f (uV?v - Vv —vV2u)dV = f (u— - v—) dA
v s\ on on

dv N
Note 1: u— =un- Vv
on
Note 2: u and v are scalar fields

Divergence Theorem: f V-vav = f n-vdA
v N

fﬁudA=fVudV, fﬁxvdA=fV><vdV
s v s v

Where: v is a vector field, and 0 is the unit normal vector to the surface.
If you have several discontinuous surfaces forming one piecewise smooth
surface, you need to integrate each one seperately, and then add them.
The unit normal vectors always point outward from the surface.

=+ ||§ i ,Where g = g(x,y,2),or g(p, ¢, 0),etc.= a surface
Example: We have the equation for a paraboloid: x? + y? = z. First, get all the
variables to one side, so: x2 + y? — z = 0. This is now g(x, y, z). The gradient of g
is now the normal to the surface. This is a “level surface”. If we want to find the
normal to a “level curve”, then we set X,y,0r z to a constant and the take the
gradient, e.g.: 12+ y% — z = 0. Thisis now our g(x,y, 2).

Distance between x and x":d(x,x) = [(x; — x,)2 + -

of
for =35 (52)
y \dx
dF af of ox _of dy
Chain rule: dt + FE —+ == 3y ot s F = f(x(0),y(®)
b(t)
Leibniz rule — f(x, t)dx

a(t)

b(c)
=f —f(x Odx +b' O f (b(6), ) — a'(O)f (a®),t)

a@ 0t
CIC 0x; 0x,
Jacobian Matrix: M = :
I r¥n) gy, dym
B, | 0xn
Divv=V-v, vector field v to scalar field

Physical significance of curl: if v is a fluid velocity field, then V
X v at any point P is twice the angular velocity of the fluid at P.
If Curl v = 0, we have irrotation field

Diveurlv=V-Vxv=0
curlgradu =VxVu=0

V-v=Vv?2
9% 9?2 9?
Vi=_—+ —
PR N P
Vx=1Vy=j

V-(au+pv)=aV-u+pv-v

V(au + pv) = aVu + Vv

VX (au+pv) =aVxu+pVxv

V-(uv) =Vu-v+uV-v

VX (uv) =Vuxv+uVxv

V-(uVv) =Vu-Vv+uVv- Vv
V-(uxv)=v:-VXu—u-Vxv
Vx(uxv)=uV-v—vV-u+ (v-V)u— (u-V)v
Viu-v)=@-V)v+ (v-Vu+ux (VXv)+vxVxu)

&V = v
ull- Vv =u_-
(u-V)v=(u- V)(v1+ ]+vk)

vy v, av,\ N ~
Uy —— 5 +u,—= 5 +u27 i+ (etc.)j + (etc.)k

Laplace equation: V2@ = V- V¢ = 0
Poisson equation: V2@ = F

e s . 2 ae

Diffusion equation: V4¢@ = o
aZ

Wave equation: c2V2¢@ = a_t(zp

Level Curve: The function parameters that yield a specified “z”
fi-vdA
div v(P) = lim (L)
B—0 74

Trig Identities:
1 =cos?6 +sin? @

cscl = ——
sin @

secl =
cosf

sin260 = 2sinf cosf
co0s 260 = cos? @ — sin? 0

tan6 = sin@
ne= s
‘o = cos6
cotv = in®
b _a

sinf ~ sina sinf

where R is the radius of the triangle’s circumference.
sin(a + ) =sinacos B + cosasinff  We can derive all the others from these
cos(a + ) = cosacosf Fsinasinf twoandsin?6 + cos?6 =1
Law of cosines: c? = a? + b? — 2ab cosy
Length of any one side of a triangle cannot exceed the sum of the lengths of the
other two sides.

a+b+c

A of triangle a,b, ¢ = \/s(s —a)(s—b)(s —c),wheres = >

Change of Variables Example:

Geometry:
Plane General Equation: ax + by + cz
= d, where a, b, c makes a unit normal vector.

Distance from origin: D = #
Given 3 points: (x1,y1, z1), (x2,y2, z2), (x3,y3, z3)
1y z x 1 z X ¥ o1 X1 Y1 24
a=1|1 y;, z|,b=|x; 1 Zfc=|x; y, 1l{d=—[X2 Y2 2
1 y; 2z x3 1 z3 x3 y; 1 X3 Y3 Z3

Sphere: Equation for a sphere, centered at x,, y,, Zo, radius 7: (x — x,)?
T+ =y)+(z—2)* =17
Surface area of sphere: A = 4mr?



4
Volume of a sphere:V = §nr3

Cylinder: ax? + by? = r, where r is the radius.

If aand b are 1, then it is a circular cylinder.
2 2

x
Ellipse: ; + % = 1, where a is semiminor axis, b is semimajor axis
Paraboloid: z = x? + y? (elliptic),  z = x% — y? (hyperbolic)
Parabola (example): z = y% + 1, note thaty

= r ir we revolve the parabola about z.
Another parabola:x? —y? =1

Circle: x% + y? =12

Parameterization of curves, surfaces, and volumes:
R(7) = x(D)i + y(0)j + z(D)k
R(u, v) = x(u, V)i + y(u, v)j + z(u, v)k
R(u, v,w) = x(u, v, w)i + y(u, v, w)j + z(u, v, w)k
ds = /R'(7) -R'(7)dt
dA = ||Ry X R, ||dudv
dV = |R, ‘R, X R, |dudvdw
R, xR, _ _ oR
m, R(u, v)is parameterized surface, R, = Fm

Computationally, we can express these in terms of the components x,y,z of R:
ds =\x?+y?+z%dt
dA = JEG — F2du dv,where: E = x2 + y2 + 22, G=x%+y2+22
F = xuxv + yuyv + Zqu

Notes: Find x,y, and z in terms of the two parameters u and v. z will be in terms of u
and v, e.g. f(x,y). Then take the appropriate derivatives. The limits of integration
are over the new parameters u and v.

o(x,y,z) .

V = ———dudvdw, note the Jacobian.

I(u,v,w)

Special cases of the above:

n=

a(x,y)
a(u,v)

Case 2: surface is known of the form z = f(x,y): dA = /1 + & + fFdxdy

When we integrate Case 2, the limits of integration are defined by the region in the
Xy plane under the surface.
Tangent plane at x,,, ¥, z, on a surface: f,(x,, ¥, 2, ) (x — x;,)

+ fy(xp'yzz'zp)(y - yp) + fZ(xp'yszp)(Z - Zp) =0
Note: f(x,y, z) is the function, e.g. if our equation is x? + y* = z, then

dudv

Case 1:surface is flat and in the xy plane: dA =

.0
fl,y,2) =x*+y?—z Andf, is é
(fxi+fyi+fzi()

fi=
[+

,where f,, f,, f; are evaluated at the point (x,,¥,,z,)on S.

A= ffllRu X Ry|ldudv, dA = ||R, X R,||dudv

R
A= ff ,1 + f2 + f?dxdy,where A is the area of the surface and
R

R is the region in the x,y plane under S. We only use this equation if we can
write the surface as z=f(x,y).

y2 x2(y)
a=[[rpaa=[ [ repixay
R y1 x1(y)

72 y2(z) x2(yz)

V= ff flx,y,2)dV = f
R

z1 y1(z) x1(y,z)

f(x,y,2)dxdydz

Matrices
A+B=B+A a(BA) = (af)A

n
AB=C={c;)} ={Zaikbkj}; (l<isml<j<p)
k=1
Note sizes of ABC:m X ntimesn Xp =m X p
AB # BA
AA ... A = AP, APAY = AP*9 (AP)4 = AP
If AB = AC, does not imply that B = C
(AB)? # A’B?: (AB)? = ABAB, A’B? = AABB
Transpose: switch rows for columns: (AT)T = A
(A+B)T=AT +BT
(aA)T = aAT
(AB)T = BTAT, (ABCD)T = DTCTBTAT
x and y are column vectors:
x-y=xTy
If AT = A, then A is symmetric.
If AT = —A, then A is antisymmetric.

1 1
Decompose: A = > (A+A") + 3 (A-A")

= A; + A,,where A is square, A, is symmetric,and A, is antisymmetric.
A?I does not imply that A = +I
Ax =, x=A"1c
AlA=AAT=
AB = A[C; ...C,] = [AC; ... AC,] If B is paritioned into n columns.
n

detA = Z ajxAjr,  where Ay = (—1)KMy,
k=1

Notes: Fix j, Find the M’s (little determinants), carry out the summation.

Properties of determinants:

1)  Ifarow or column is modified by adding « times another row, then detA does
not change.

2)  If any two rows are changed then detA=-detB.

3) If Alis triangular, then detA is the product of the diagonal.

4)  If arow or column is O then the det is 0.

5) Ifaroworacolumn is a linear combo of other rows or columns then the det =
0

6) det(aA) = adetA

7)  det(AT) = detA

8) det(A + B) # det(A) + det(B)

9) det(AB) = det(A) det(B)

10) If any two rows are equal, det=0.

11) If det # 0, then Ax=c has a unique solution.

12) If det=0 then A is singular.

13) If m < n then system is underdetermined.

14) If m > n then system is overdetermined.

15) Underdetermined and 2 unknowns-> 2 parameter family of solutions and
solutions lie in a plane. 1 parameter family and solutions like on a line, etc.

16) Inconsistent system: 0= -15 for a solution (for example).

17) Scaling a row or column scales the determinant.

0

A=| : i |,detA = (detAq)(...)(detAn)
0 -
n n n n
= (5 e)
i=1 Jj=1 i=1 Jj=1
o o1 A Am
B (JletAad]A " detA A:m A;n ’

adjA is the transpose of the cofactor matrix.
Recall that the cofactor is: Ay = (—l)i“‘Mjk. Remember to take the Transpose of
Aj« to get the adjA
Another way to find A=1: Augment A|l, then use elementary ops to get I|A~1

1
Inverses: (AB)™! = B"1A71, (AH) 1= (AT, det(A™) = —

detA
I-A)T=1+A+A%+ - +APL,
where p is the power that yields AP = 0 (Nilpotent).
If Ais invertible, then AB=AC implies that B=C, BA=CA implies that B=C, AB=0
implies that B=0.

Theorem:
If Aisn X n anddetA # 0, then Ax = c admits the unique solution x = A lc



4_fa b'_fd -b_ 1
Al:[c d] :[—c a]ad—bc
Cramer’s Rule: If Ax=c where A is invertible, then each component x; of x may
be computed as the ratio of two determinants; the denominator is det A, and the
numerator is det A but with the ith column replaced by c.

1 0 O0y[uir Wz U
Iy 1 0[O0 up uxp
I3, I3 1] [ 0 0 u33]
Notes: Decompose A into LU (e.g. start with ui; = ai1, then uyg Iy=a,4, etc.), then
solve Ly=c for y, then solve Ux=y for x.
11l conditioned: Small changes in matrix elements yield large changes in det,

A=LU=

inverse, etc. To test if << 1 then the matrix is ill conditioned.

et

nsyn
27X aji
Vector Spaces:
N — space: R" = (a4, a,, ..., a,) This means we have a vector with “»”” dimesions.
Subspace: If a subset T of a vector space is itself a vector space (with the same
definitions as S for vector addition u+v, scalar multiplication au, zero vector 0, and
negative vector —u), then T is a subspace of S.
Dot product, norm, and angle for n-space

n

u'v=uv + o+ uv, = Zujvj
=1

We can “weight” each component:
n

U vV=wu v+ o+ wau,v, = ijujvj

=1
0 =cos™! (L)
[[all{lvl|

[u-v| < [lulllv]|

Orthonormal: a set of vectors where each vector is normalized and each vector in

one set is orthogonal to every other vector in the other set. This can be described as
1i=j

the Kronecker delta = u; - v; = §;; = {O,i +j

Norms:

n
Taxicab norm: ||u|| = Zlujl
=

n 2 3 H H
/ m_iwjuf, if we are using weights.

llull

llull

If vector space consists of functions, say, u(x), v(x) then the inner product is:
u-v=(uk),v)= fabu(x)v(x)dx, where a and b are the bounds of the
function. Note that the norm can be found for a vector |u|| = [[u(x)|| =

fol u2(x)dx

Span: The set of all linear combinations of the vectors in a vector space is called
the span. E.g. for a vector space uy, ..., uy, the span is a, u, ..., oy uy, and is denoted
as span{uy, ..., u }. The span is a subspace of S. The span has to include the origin.

Some linear combinations of u and v in R?:

au + [fv au + G

(0<a,g<l)

The above example shows a few linear combinations of the vectors u and v; the

span of this vector space would include all the linear combinations (a plane).

e To discover if two spans are equal, say span; {uy, u,}and span,{vy, v,}, write
the equation (a;u; + a,u;) = w,and (a,v; + a,Vv,) = w and solve for
a,and a, in terms of w. Compare the w vectors. E.g. (for a R3vectors):

Uy, Uz Wy
- |

Uy, U, w3
elementary operations so that the last row of A is zero (keeping track of the
operations on w). This gives us an equation only in terms of w, e.g. 0 = cw; +
dw, + ews

Bases:

. In this case we have a non-square matrix, so reduce using

o u=aqe;+-+ae.Asetofe’sisa basis foru
iff itis Ll and span S.
o Orthogonal basis are preferred. Given orthog. basis
vectors: {ey, ... e}, suppose we wish to expand a
given u in terms of these, then
o u=ae; + -+ aze,where a, = (u'el)el,
} e2 ere1

el

Orthogonalization process: Given k LI vectors vy, ..., v we can get k ON vectors
€4, ..., & in span{vy, ... i Jby:

P TN ol (R VL —Z;:i("i “&)&

llvall [[v. — (v - &pé, || ! Hv}. -0 &) |

Dimensions: The dimension of a vector space is the greatest number of LI vectors
in that vector space. If a vector space contains only a zero vector, the dimension is
0. Dimension relates to bases: The number of basis vectors equals the dimension
(because the bases are LI). The dim of a space will be no greater than n (R™).
Linear Independence: A set of vectors is LD if at least one of them can be
expressed as a linear combination of the others. Example: (1,0), (1,1), and (5,4)are
LD (u; = uy + 4u,).
A set of vectors is LD iff there exist scalars, not all zero, such that a;uy + -+ +
a,uy, = 0. To solve for the scalars: 1) Set up a system of equations: Aa = 0. Where
A is the matrix of the vectors. 2) Use elementary row operations to reduce to “row
echelon form” or as close to it. The non-zero rows are LI.
e  Aset containing the zero vector is LD.
e  Every orthogonal set of nonzero vectors is LI.
Best Approximations:

If u is any vector with |[u| = vu-u
N

u= Z(u “€))§;

j=1
Where we are given u and an orthonormal basis set {€;, ..., €y}. The more basis
vectors we use, the closer our approximation will be (up to the number of bases

equal to the dimension of u.) The error of our approximation is:
N

BN = flulf? - " 2

j=1

Where: a; = u- §

Row-echelon form:

1) In each row not made up entirely of zeros, the first nonzero element is a 1.

2) In any two consecutive rows not made up entirely of zeros, the leading 1 in the

lower row is to the right of the leading 1 in the upper row.

3) If a column contains a leading 1, every other element in that column is a zero.

4) All rows made up entirely of zeros are grouped together at the bottom of the

matrix.

Rank:

1) A matrix (maybe not square) is of rank r if it contains at least one r x r
submatrix with nonzero determinant but no square submatrix larger than r x r
with nonzero determinant. You can swap rows and columns to find these
submatrices. The zero matrix is of rank 0.

2)  Elementary row operations do not alter the rank.

3)  #of LI row vectors = # of LI column vectors = rank.

Elementary operations:

1) Operate on the augmented matrix (glue c onto A).

2) Addition of a multiple of one row to another.

3) Multiplication of a row by a nonzero constant.

4) Interchange of two rows.

Terminology

1) Consistent: one or more solutions

2) Unique: only one solution

3) Non-unique: more than one solution

4) Inconsistent: No solutions.

5) If m<n: Consistent or inconsistent. If consistent no unique solution exists (p

parameter family, wheren —-m < p < n.

6) If m>n: Consistent or inconsistent. Can have unique or non-unique solution. (p

parameter family, where 1 < p < n).

Eigenvalue Problem




Av=Av

v
If v is an eigenvector of A, then v lies on the vector Av. In other words, if v is an
eigenvector of A, then Av is the same as some constant times A, e.g. Av.

(A —ADx = 0, Characteristic equation: det(A —AI) = 0

To find eigenvalues, solve the characteristic equation for A. To find the eigenspaces,
1) find the eigenvalues A, 2) for each A, plug back into (A — AI)x = 0, and solve for
x. This will give us an eigenvector for each eigenvalue. 3) We should end up with
at least one arbitrary solution (0=0) for each eigenvector. This will give us our
arbitrary constants (a, 8, y, etc.) that when multiplied by the eigenvector gives us
our eigenspace.

Symmetric Matrices:
e If A'is symmetric, then all of its eigenvalues are real.
o Ifan A of a symmetric matrix A is of multiplicity k, then the eigenspace
corresponding to A is of dimension k.
o If A is symmetric, then eigenvectors corresponding to distinct eigenvalues are
orthogonal.
e Ifan n x n matrix A is symmetric, then its eigenvectors provide an orthogonal
basis for n-space.
o If A is symmetric, then
_eTAe
‘eTe
Where e is an eigenvector of A.
Diagonalization: Q"*AQ = D
Especially useful when solving a system of differential equations. Given a system
Ax = x/, our goal is to solve for x by 1) Find the Q and D matrices. Q has the
eigenvectors for rows, D has the eigenvalues in the diagonal (the order of the
eigenvalues matches the order of the eigenvectors in Q). 2) Write ¥’ = DX. 3) This
gives you uncoupled equations, so you can do things like: x' = A% — % = Ce’t. 4)
Now that you have X, you can solve for x, by x = QX.
e Every symmetric matrix is diagonalizable.
e If an n x n matrix has n distinct eigenvalues, then it is diagonalizable. (It may be
diagonalizable anyway—does not read iff).
e If an n x n matrix has eigenvalues, then the corresponding eigenvectors are L.
e A isdiagonalizable iff it has n LI eigenvectors.
o A" =QD™Q!
Quadratic Form/Cononical Form: A quadratic form is said to be canonical if all
mixed terms (such as x; x,) are absent.
Example: reduce f(x;, x,) = a11%% + ay,x2 + (aq, + ay;)x,x, to canonical form.
. - a;; a
1) Identify the A matrix: A = [au Gy
matrix is symmetrical. 2) Find the eigenvalues. 3) Plug in to get the canonical form:
(%, %) = 1, % + 2,%2. 4) Find the connection between %and x by x = Q%X
where Q is the eigenvector matrix from A.
Tensors:
Ay =u®v =uv’ = uy,
Ajji = UQVROWRX = U;VjWiX)
I;(A) = A;; = trace(A) = 1st Invariant

12], chose a,,, a,, to be equal so that the

I,(A) = %(AiiA]-i — Aj;Ay;) = trace(A) = 2nd Invariant
1% invariant of stress is hydrostatic pressure.
Eigenvalues of stress and strain tensors are principal stresses and strains.
Eigenvectors of stresses and strains are the directions.
I3(A) = AiAzA3 8 = det(A)=3rd Invariant
To find eigenvalues solve for the roots of:
B-L22+LA-1;=0
_1/8u; Ou; duy duy
Fi=2 <ax; ox; a—x;a—x;)
= Finite strain tensor (as opposed to the small strain tensor).
Where: x' is the reference position.
Fourier Series:
Even function: b,, = 0, f(—x) = f(x), ffAf(x)dx =2 foAf(x)dx

0dd function: @, = b, = 0, f(—x) = —f(x), [*, f(x)dx =0

Decompose any function into its even and odd parts:
+f(= - (=
fx) = ”TM*'”TM =£00)+ f,(x)

nmx nmx
FSf=a, +Z (ancos—+ bnsin—)
l l
n=1
l 1
1 1 nmx
ay == | f(x)dx, a, =— | f(x)cos—dx
21 l l
-1 ]

l
1 nmx
b, =7 ff(x) sianx
]

f is 2l periodic, e. g. if the period is 2m, [ = .

Elementary integral formulas:
1

mmx — nmx 0,m#n
cos——cos—dx{m=n=#0

Jo o im=n=0

l
_mnx _ nmx 0m=*n
fsstdex Im=n+0
]
1

mmx _ nmx
J.cosTsianx =0,forallm,n
]

Integration by parts: [ x? sinx dx = uv — [ vdu, where v' = sinx,u = x?
Questions:

If we have 4 vectors of Rank 3, are they guaranteed to be LD? It seems they are if
we have more vectors than the rank...



Integral Table:

' 1
(59) / sinaxdr = —=cosax + C
) a

(60)/ sin? axdr — ; —

sin 2axr

C
4a+

. Jcosar  cosdar )
(61) / sin® axdr = ————— + +C
i da 12a
(ﬁla)[sin"‘ ardr = — lcns axr oF) l - ?1-: S ceostax| +C
. a 27 2 2
) .
(62) | cos axdr = —sinax + C
. a
o, x  sin2ax
(63) | cos” awdr = — + +C
. 2 4a
64 / cos® ardr — dsinar  8indax
i ' da 12a
(64&)/ cost axdr = _a.(l g cos' TP ax oF) ! ;'p‘ i s ‘;ﬁ‘cma axr| +C
" 1. 5 1 1
(63) { sinwcosazdr = g B E + 0 = —scosTr e = eos 2o+

(65a) / cos ax sin bedr =

cos[{a — blx]  cos[(a + b))
2(a —b) 20a+b)

b Chasb

B 1 . .
(66) / sin® x cos xdx — 3 sinx + C

sin 2af

6
in2 =~ _
fsm abdb 2 1a

flnxdx=xlnx—x+C

ax
fa"dxz +C
Ina

1
f—dlenx+C
x
dx | x c
Vo=
fexdx=ex+C
d
Power rule:—u* = u*Inu
dx

ds I [[r(t+h) —r®)||
dt  heo h

T 1 1
f 1+ 4t2de = ET‘/l + 472 +Zln(21+\/1 + 412)
0

A
fB_xdx=—Aln(B—x)+C

u substitution for simplifying integrals: 1) Substitute a single variable (u) for a hard-
to-integrate portion (x). 2) Find du. 3) Rework limits of integration.



