REU: Sustainability of Horizontal Civil Networks in Rural Areas

Develop sustainable engineering solutions to infrastructure challenges in rural environments.

For information contact

Christine Wittich

Assistant Professor, Department of Civil and Environmental Engineering

See Projects
2019 Sustainability of Civil Infrastructures summer scholars.
2019 Sustainability of Civil Infrastructures summer scholars.

Who should apply

Related fields

  • Civil Engineering
  • Environmental Engineering
  • Physics
  • Mathematics
  • Chemistry
  • Earth Sciences

This program encourages applications from students at all undergraduate levels including freshman and sophomores.


Participation in the Nebraska Summer Research Program is limited to students who meet the following criteria:
  • U.S. Citizen or Permanent Resident
  • Current undergraduate with at least one semester of coursework remaining before obtaining a bachelor's degree

See Eligibility for more information.

How to apply

Follow the application steps to submit the following materials.

About the Program

Rural areas, which contain approximately 20% of the US population and over 90% of the land area in the United States, are fundamental to human well-being in both rural and urban areas. Rural areas provide resources such as the infrastructure for U.S. food and bioenergy production as well as the transportation infrastructure from inland urban centers to ports. Rural areas are characterized by agricultural- and natural resource-based economics, stable or declining populations with low population densities, and “farm-to-market” localized transportation patterns, and these characteristics necessitate new technologies and approaches for civil infrastructure. Despite the differences between rural and urban regions, little attention is paid to the unique challenges and opportunities for sustainability in rural areas.

In this ten-week summer research program, students will work with faculty in the Department of Civil and Environmental Engineering to conduct research and will contribute new knowledge to improve our understanding of how best to address the challenges facing rural environments.  Through collaboration with industry partners, students will also be given opportunities to learn how infrastructure challenges are currently being addressed by the civil and environmental engineering industry. In addition, this program offers a series of communication development opportunities including preparation of a conference paper, informal presentations to their peers, formal poster presentations, and outreach to high school students.

This program plans to conduct an on-campus (in-person) experience in summer 2021. However, summer 2020 was successfully conducted virtually and similar accommodations will be made in summer 2021 if required. 


  • Competitive stipend: $6,000
  • Suite-style room and meal plan
  • Travel expenses to and from Lincoln
  • Campus parking and/or bus pass
  • Full access to the Campus Recreation Center and campus library system
  • Wireless internet access

Learn more about academic and financial benefits.


  • Department seminars and presentations
  • Professional development workshops (e.g., applying to graduate school, taking the GRE)
  • Welcome picnic
  • Day trip to Omaha's Henry Doorly Zoo and Aquarium
  • Outdoor adventures
  • Research symposium

Mentors and Projects

Dr. Shannon Bartelt-Hunt Civil and Environmental Engineering: Environmental Engineering

Microplastics Occurrence in Agricultural Streams

Significance: The occurrence of microplastics, an emerging contaminant in agricultural systems, is very poorly characterized. Plastics are a frequently observed component of marine debris and there is growing concern about microplastic ecotoxicity, and the impacts of sorbed hazardous organic contaminants, heavy metals and biofilms on microplastic surfaces. However, microplastics are increasingly being found in terrestrial freshwater environments in addition to marine systems. To date, there is little information about how surrounding land use affects the concentrations of microplastics in freshwater streams. The primary research question to be addressed in this project is how concentrations of microplastics in freshwater streams differ between agricultural and suburban land uses.

Dr. Jongwan Eun Civil and Environmental Engineering: Geotechnical Engineering

Characterization of Gas Production and Mechanical Properties of Solid Waste in Rural Areas

Significance: Landfills are typically sited in rural areas with low population densities. Gas production and leachate can be particularly concerning in rural areas due to the reliance upon groundwater. Therefore, accurate predictions of landfill gas (LFG) emissions and waste settlement are crucial for the prevention of greenhouse gas emissions and for sustainable management of a municipal solid waste (MSW) landfill. The objective of this research is to characterize gas production and leachate of solid waste by using a direct injection logger including a piezocone penetration test (PCPT) with a hydraulic profiling tool (HPT) and membrane interface probe (MIP). This project aims to evaluate the properties of landfills and determine best practices for sustainable management of gas production. The primary research questions to be answered in this project are: 1) Can gas production be accurately measured in landfills using an in situ method? and 2) What are the in situ mechanical properties of solid waste?

Dr. Seunghee Kim Department of Civil and Environmental Engineering: Geotechnical Engineering

Influence of Nebraska biochar on the hydraulic and mechanical properties of rural soils

Significance: Biochar, a product of combustion of organic materials, such as corps, rice husk, forest residues, and agricultural residues, has been emerging as a potential soil amendment. To date, there are many kinds of researches that examined the potential impacts of biochar on soil carbon sequestration capacity, soil fertility, crop production, and chemical properties. However, a study on the implication of biochar application on the hydraulic and mechanical properties is still lacking. Research on this aspect could open a new opportunity for biochar use and management, particularly for rural soils. The research objective is to examine a potential improvement in the hydraulic and mechanical properties of rural soils in Nebraska.

Dr. Xu Li Civil and Environmental Engineering: Environmental Engineering

Limiting the transport of antimicrobials and antimicrobial resistance genes in the environment

Significance: The extensive use of antimicrobials (AMs) in the livestock industry for animal disease treatment/prevention and growth promotion has promoted the emergence of antimicrobial resistant bacteria. Antimicrobial resistance genes (AMR genes) - the genetic materials that render resistance mechanisms to bacteria - can proliferate among the bacteria in the environment. If human pathogens acquire AMR genes and become antimicrobial resistant, antibiotic treatment will lose its effectiveness in treating infected individuals. The goal of this research project is to understand the fate and transport of AMs and AMR genes in the agricultural environment and develop best management practices (BMPs) to control their proliferation.

Dr. Yusong Li Civil and Environmental Engineering: Water Resources Engineering

Evaluating and Predicting Agricultural Nonpoint Source Pollution under a Changing Climate

Significance: Agricultural nonpoint source pollution (NPS) is a significant contributor to the contamination of surface water and groundwater resources. With increasing demands on global agricultural production and the need to maintain sustainable water resources in the future, it is crucial to identify areas with high agricultural NPS potentials. Understanding the spatial distribution of NPS pollution is essential for the design of mitigation strategies. This project will quantify and predict the spatial distribution of agricultural NPS risks in the United States under historical and future climate scenarios. A transformed agricultural nonpoint pollution potential index (T-APPI) will be calculated to quantify the NPS risks.

Dr. Daniel Linzell Civil and Environmental Engineering: Structural Engineering

Smart Big Data Pipeline for Aging Rural Transportation Infrastructure

Significance: While transportation infrastructure around the nation is in poor health, rural areas are acutely affected by this crisis due to their low population density and distance from urban centers. More specifically, Nebraska has the 7th highest percentage of structurally deficient rural bridges in the U.S. With 60% of those bridges constructed between the 1930s and 1960s, the aging infrastructure must receive periodic inspections to assess potential deficiencies. This project strives to develop a reference smart big data pipeline for aging rural bridges, which are important components of our rural transportation network. The project combines existing and new datasets to address challenges of relevance to bridge owners using scalable and replicable big data pipeline components. Activities will inform bridge owner decision-making by integrating existing datasets and data collected using next-generation health monitoring technologies (e.g., contact and non-contact sensors, unmanned aerial vehicles) with innovative data management. The primary research questions to be addressed in this project are: 1) How can legacy and advanced sensing techniques be integrated into a structural health monitoring system in a fashion that increases its effectiveness? and 2) Can simplified models provide robust information that facilitates examining the effects of decisions on future bridge health and service life?

Dr. Mojdeh Pajouh Department of Civil and Environmental Engineering: Geotechnical and Materials Engineering

We Are Thriving: Challenging Negative Discourse Through Voices of Women in Project Teams

Significance: The current educational environment in engineering fields has “failed” women for more than 50 years. In the U.S., approximately 20% of bachelor’s degrees in engineering have historically been awarded to women. This trend exists in both urban and rural areas. The most common explanations for this continuing minority status include lack of childhood socialization; an unwelcoming, essentially masculinist environment in undergraduate engineering programs; and the reality of women’s experience of workplace bias. There is a global need to increase the number of women in STEM to provide equal opportunities and to strengthen scientific explanations through diverse perspectives. Such a diverse and inclusive workforce absolutely assists with infrastructural engineering challenges in rural areas. This NSF research effort investigates one of the most persistent and glaring “failures” of modern education – encouraging diversity and equality in engineering. This research project uses an innovative approach to explore a new direction and is more positive regarding women’s participation in engineering. The most significant impact is to (1) create a teaching/learning environment more welcoming to and engaging for women and all underrepresented populations through encouraging agency, belonging, and becoming, (2) to promote gender equity and inclusiveness in engineering workforce. The primary research question will be:  what are the personal and institutional factors that facilitate women who thrive in engineering student project teams?

Dr. Grace Panther Civil and Environmental Engineering: Environmental Engineering and Engineering Education

COVID: Faculty Adaptability and Community Engagement when Teaching in a Crisis

Significance: The unfolding response to the COVID-19 mandate to teach remotely (online) provides a unique, one-time opportunity for ground-breaking research to study how crisis-induced changes to instruction influence faculty’s teaching experience. Two research questions guide the project: 1) During a crisis, how do engineering faculty and staff experience a sudden change in course delivery (with a focus on cognition, emotions, and community engagement)? 2) How do these experiences vary throughout the duration of the crisis? 3) How do students from rural/urban areas perceive what is helping and hindering their learning as faculty adjust their teaching strategies?

Dr. Tirthankar Roy Department of Civil and Environmental Engineering: Water Resources Engineering

Machine learning approaches to address problems related to rural hydrology

Significance: Proper understanding of hydrology can help us better manage our water resources and build resilience to hydrologic extremes, such as floods and droughts. New datasets of different hydrologic variables are becoming more readily available with the advances in remote sensing technologies, in situ monitoring, and model-based assessments. Machine learning has great potential in effectively addressing a plethora of problems in the field of hydrology, leveraging these large datasets. Several problems are becoming increasingly more tractable, which was not the case before with limited data availability. This is also opening up several avenues for testing novel hypotheses related to hydrologic process-understanding. Students in this project will be working on machine learning algorithms to address hydrologic problems in the rural settings. The problems can be related to physical process-understanding where, among other things, we try to understand what factors influence different hydrologic processes and how. We study how these processes interact with each other and coevolve. The problem can also be related to hydrologic modeling, where we try to model different aspects of the physical system. Once we have a model of the system, it can be used for a wide range of problems (e.g., generation of forecasts, analysis of future scenarios, optimal water management, etc.).

Dr. Chungwook Sim Civil and Environmental Engineering: Structural Engineering

Computer-Vision Based Health Monitoring of Aging Rural Bridge Infrastructure

Significance: The number of aging rural bridges are increasing in Nebraska.  When it comes to make decisions to repair, rebuild, or rehabilitate these aging rural bridges, decisions are made by prioritizing the ranks of these bridges.  Condition ratings made by the inspectors for bridge deck, superstructure, and substructure are one of the parameters used in this decision making.  Human visual inspection is typically conducted first and if needed, additional measures are used to assess the level of deterioration for condition ratings.  This process becomes a challenge when there are thousands of bridges and limited number of inspectors available.  To assist this inspection process, this project will focus on developing a computer-vision based system to monitor the health of our aging rural bridge infrastructures.   

Dr. Joshua Steelman Civil and Environmental Engineering: Structural Engineering

Revisiting Reliability for Rural Bridges

Significance: Rural bridges are crucial to agricultural economic activities, particularly during harvest seasons when crop yield transportation imposes heavy loads on bridges. Many bridges in rural areas are at or beyond their intended service life and were designed either for unknown or lower vehicle loading than required in modern codes. Unnecessarily imposing load restrictions on bridges leads to increased trip frequencies and lengths for freight vehicles, or demolishing and replacing safe bridges.  Therefore, it is desirable to maximize permitted vehicle loading and extend service lives of aging bridges. Reassessing the structural capacity and mechanical response to vehicular loads for rural bridges is critical to achieving this goal. The primary research question that this project addresses is: how does uncertainty in mechanical response to vehicular loads influence structural reliability for rural bridges?

Dr. Christine Wittich Civil and Environmental Engineering: Structural Engineering

Resilience of Agricultural Infrastructure and Rural Communities to Natural Hazards

Significance: Despite the criticality of the agricultural industry to both U.S. and global sustainable food production, the resulting lack of economic diversity in most rural areas is theorized to be a major contributor to the low resilience of rural communities to natural hazards, including earthquakes and windstorms. While resilience is a function of many socioeconomic and organizational factors, the disaster response of the built environment is a critical aspect that cannot be ignored. In many rural areas, critical infrastructure includes vital agricultural support and production systems, such steel grain bins. However, these structures are not typically design to consistent standards and have been observed to perform poorly in recent severe windstorms. This research aims to generate a fundamental understanding of the performance of steel grin bins during extreme windstorms to enhance rural resilience to natural hazards.

Dr. Richard Wood Civil and Environmental Engineering: Structural Engineering

Remote Sensing for Wind Characterization in Rural Areas

Significance: Remote sensing data collection from unpiloted aerial systems (or drones) is an efficient and well-known approach to study the impact following extreme windstorms. Example windstorms include hurricanes, tornadoes, and straight-line winds; which result in damage to both the built and natural environment.  Post-event damage surveys typically utilize the Enhanced Fujita (EF) scale to relate structural damage to wind speeds; however, these are limited in application to rural areas.  Rural areas, which encompass a significant portion of the US with high windstorm risk, are typically sparsely populated with few structures and consequently, the relationship of natural and agricultural systems to wind speed is highly uncertain. Remote sensing data in terms of high-resolution imagery and point clouds can collect perishable data related to the distribution, orientation, and severity of damage for understanding windstorms. This research aims to develop workflows for analyzing remote sensing data through the application of computer vision and artificial intelligence techniques to understand the wind hazard and response of the built and natural environment with a particular focus on rural areas.